References
- P. Krishnapriya, M. Pitchaimani and Tarynn M. Witten, Mathematical analysis of an influenza A epidemic model with discrete delay, J. Comput. and Appl. Math., 324 (2017), 155-172. https://doi.org/10.1016/j.cam.2017.04.030
- P. Krishnapriya and M. Pitchaimani, Analysis of time delay in viral infection model with immune impairment, J. Appl. Math. Comput., 55 (2017), 421-453. https://doi.org/10.1007/s12190-016-1044-5
- P. Krishnapriya and M. Pitchaimani, Modeling and bifurcation analysis of a viral infection model with time delay and immune impairment, Japan J. Indust. Appl. Math., 34(1) (2017), 99-139. https://doi.org/10.1007/s13160-017-0240-5
- P. Krishnapriya and M. Pitchaimani, Optimal control of mixed immunotherapy and chemotherapy of tumours with discrete delay, Int. J. Dynam. Cont., 5(3) (2017), 872-892. https://doi.org/10.1007/s40435-015-0221-y
- M.C. Maheswari, P. Krishnapriya, K. Krishnan and M. Pitchaimani, A mathematical model of HIV-1 infection within host cell to cell viral transmissions with RTI and discrete delays, J. Appl. Math. Comput., 56(1) (2018), 151-178. https://doi.org/10.1007/s12190-016-1066-z
- M. Pitchaimani, P. Krishnapriya and C. Monica Mathematical modeling of intra-venous glucose tolerance test model with two discrete delays, J. Bio. Syst., 23(4) (2015), 631-660.
- N.S. Ravindran, M. Mohamed Sheriff and P. Krishnapriya Analysis of tumour-immune evasion with chemo-immuno therapeutic treatment with quadratic optimal control, J. Bio. Dyna., 11(1) (2017), 480-503. https://doi.org/10.1080/17513758.2017.1381280
- R.Nagarajan, K.Krishnan and P. Krishnapriya, Optimal control of HIV-1 infection model with logistic growth using discrete delay, Nonlinear Funct. Anal. Appl., 22(2) (2017), 301-309.
- P. Krishnapriya and M. Pitchaimani, Analysis of HIV-1 Model: Within Host Cell to Cell Viral Transmission with ART, Nonlinear Funct. Anal. Appl., 21(4) (2016), 597-612.
- A.S. Perelson, A.U. Neumann, M. Markowitz, J.M. Leonard and D.D. Ho HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271(5255) (1996), 1582-1586. https://doi.org/10.1126/science.271.5255.1582
- X. Wei, S.K. Ghosh, M.E. Taylor, V.A. Johnson, E.A. Emini, P. Deutsch, J.D. Lifson, S. Bonhoeffer, M.A. Nowak, B.H. Hahn et. al., Viral dynamics in human immunodeficiency virus type 1, infection, Nature, 373(6510) (1995), 117-122. https://doi.org/10.1038/373117a0
- A.U. Neumann, N.P. Lam, H. Dahari, D.R. Gretch, T.E. Wiley, T.J. Layden and A.S. Perelson, Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy, Science, 282(5386) (1998), 103-107. https://doi.org/10.1126/science.282.5386.103
- A.S. Perelson, E. Herrmann, F. Micol and S. Zeuzem, New kinetic models for the hepatitis C virus, Hepatology, 42(4) (2005), 749-754. https://doi.org/10.1002/hep.20882
- H. Dahari, M. Major, X. Zhang, K. Mihalik, C.M. Rice, A.S. Perelson, S.M. Feinstone and A.U. Neumann, Mathematical modeling of primary hepatitis C infection: noncytolytic clearance and early blockage of virion production, Gastroenterology, 128(4) (2005), 1056-1066. https://doi.org/10.1053/j.gastro.2005.01.049
- H. Dahari, A. Lo, R.M. Ribeiro and A.S. Perelson, Modelling hepatitis C virus dynamics: liver regeneration and critical drug efficacy, J. Theor. Biol., 247(2) (2007), 371-381. https://doi.org/10.1016/j.jtbi.2007.03.006
- H. Dahari, R.M. Ribeiro and A.S. Perelson, Triphasic decline of hepatitis C virus RNA during antiviral therapy, Hepatology, 46(1) (2007), 16-21. https://doi.org/10.1002/hep.21657
- M.A. Nowak and R.M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, New York, 2000.
- A.S. Perelson and P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41(1) (1999), 3-44. https://doi.org/10.1137/S0036144598335107
- Ruthie Birger, Roger Kouyos, Jonathan Dushoff and Bryan Grenfell, Modeling the effect of HIV coinfection on clearance and sustained virologic response during treatment for hepatitis C virus, Epidemics, 12 (2015), 1-10. https://doi.org/10.1016/j.epidem.2015.04.001
- N. MacDonald, Biological Delay Systems: Linear Stability Theory, Cambridge University, Cambridge, 1989.
- J. Hale, Theory of Functional differential equations, Springer, New York, 1997.
- Y. Kuang, Delay differential equations with applications in population dynamics, Math. Sci. Eng., Academic Press, Boston, 1993.
- E. Avila-Vales, Noe Chan-Chi, Gerardo E. Garcia-Almeida a and Cruz Vargas-De-Leon, Stability and Hopf bifurcation in a delayed viral infection model with mitosis transmission, Appl. Math. Comput., 259 (2015), 293-312. https://doi.org/10.1016/j.amc.2015.02.053
- E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33(5) (2002), 1144-1165. https://doi.org/10.1137/S0036141000376086
- J. Hale and S.V. Lunel, Introduction to Functional Differential Equations, SpringerVerlag, New York, 1993.
- H. Smith and X. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47(9) (2001), 6169-6179. https://doi.org/10.1016/S0362-546X(01)00678-2
- X. Lai and X. Zou, Modeling cell-to-cell spread of HIV-1 with logistic target cell growth, J. Math. Anal. Appl., 426(1) (2015), 563-584. https://doi.org/10.1016/j.jmaa.2014.10.086
- K.A. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data, Math. Biosci., 235(1) (2012), 98-109. https://doi.org/10.1016/j.mbs.2011.11.002