• 제목/요약/키워드: closed-loop stability

검색결과 511건 처리시간 0.034초

A Note to the Stability of Fuzzy Closed-Loop Control Systems

  • 홍덕헌
    • Journal of the Korean Data and Information Science Society
    • /
    • 제12권1호
    • /
    • pp.89-97
    • /
    • 2001
  • Chen and Chen(FSS, 1993, 159-168) presented a reasonable analytical model of fuzzy closed-loop systems and proposed a method to analyze the stability of fuzzy control by the relational matrix of fuzzy system. Chen, Lu and Chen(IEEE Trans. Syst. Man Cybern., 1995, 881-888) formulated the sufficient and necessary conditions on stability of fuzzy closed-loop control systems. Gang and Chen(FSS, 1996, 27-34) deduced a linguistic relation model of a fuzzy closed loop control system from the linguistic models of the fuzzy controller and the controlled process and discussed the linguistic stability of fuzzy closed loop system by a linguistic relation matrix. In this paper, we study more on their models. Indeed, we prove the existence and uniqueness of equilibrium state $X_e$ in which fuzzy system is stable and give closed form of $X_e$. The same examples in Chen and Chen and Gang and Chen are treated to analyze the stability of fuzzy control systems.

  • PDF

궤환 모델 개선법을 위한 모드 분리 제어기 (Mode-decoupling controller for feedback model updating)

  • 정훈상;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.864-869
    • /
    • 2004
  • A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed -loop natural frequency information for parameter modification to overcome the problems associated with the conventional method employing the modal sensitivity matrix. To obtain new modal information from closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of closed-loop system. It is very hard to guarantee the stability of the closed-loop system with non-collocated sensor and actuator set. Ill this research, we proposed a controller called mode-decoupling controller that can change a target mode as much as the designer wants guaranteeing the stability of closed-loop system. This controller can be computed just using measured open-loop modeshape matrix. A simulation based on time domain input/output data is performed to check the feasibility of proposed control method.

  • PDF

궤환 모델 개선법을 위한 모드 분리 제어기 (Mode-decoupling Controller for Feedback Model Updating)

  • 정훈상;박영진
    • 한국소음진동공학회논문집
    • /
    • 제14권10호
    • /
    • pp.955-961
    • /
    • 2004
  • A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed-loop natural frequency information for parameter modification to overcome the problems associated with the conventional method employing the modal sensitivity matrix. To obtain new modal information from closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of closed-loop system. But it is very hard to guarantee the stability of the closed-loop system with non-collocated sensor and actuator set. In this research, we proposed a controller called mode-decoupling controller that can change a target mode as much as the designer wants guaranteeing the stability of closed-loop system. This controller can be computed Just using measured open-loop modeshape matrix. A simulation based on time domain input/output data is performed to check the feasibility of proposed control method.

비구조적인 불확실성을 가지는 시스템에 대한 반복 제어기의 설계 (Design of a repetitive controller for the system with unstructured uncertainty)

  • 도태용;문정호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.779-782
    • /
    • 1996
  • Repetitive control is a proposed control strategy in view of the internal model principle and achieves a high accuracy asymptotic tracking property by implementing a model that generates the periodic signals of period into the closed-loop system. Since the repetitive control system contains a periodic signal generator with positive feedback loop, which reduces the stability margin, in the overall closed-loop system, the stability of the closed-loop system should be considered as an important problem. In case that a real system has plant uncertainties which are not represented through modeling, the robust stability problem of the repetitive control system has not been considered sufficiently. In this paper, we propose the robust stability condition for the system with modeling uncertainty. The proposed robust stability condition will be obtained using the robust performance condition in the H$_{\infty}$ control. Moreover, by use of the proposed robust stability condition, we propose a procedure that designs a repetitive controller and a feedback controller simultaneously which can stabilize the overall closed-loop system robustly and which can also do the closedloop system without repetitive controller..

  • PDF

Closed-loop controller design, stability analysis and hardware implementation for fractional neutron point kinetics model

  • Vyawahare, Vishwesh A.;Datkhile, G.;Kadam, P.;Espinosa-Paredes, G.
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.688-694
    • /
    • 2021
  • The aim of this work is the analysis, design and hardware implementation of the fractional-order point kinetics (FNPK) model along with its closed-loop controller. The stability and closed-loop control of FNPK models are critical issues. The closed-loop stability of the controller-plant structure is established. Further, the designed PI/PD controllers are implemented in real-time on a DSP processor. The simulation and real-time hardware studies confirm that the designed PI/PD controllers result in a damped stable closed-loop response.

Data-based Stability Analysis for MIMO Linear Time-invariant Discrete-time Systems

  • Park, Un-Sik;Ikeda, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.680-684
    • /
    • 2005
  • This paper presents a data-based stability analysis of a MIMO linear time-invariant discrete-time system, as an extension of the previous results for a SISO system. In the MIMO case, a similar discussion as in the case of a SISO system is also applied, except that an augmented input and output space is considered whose dimension is determined in relation to both the orders of the input and output vectors and the numbers of inputs and outputs. As certain subspaces of the input and output space, both output data space and closed-loop data space are defined, which contain all the behaviors of a system, respectively, with zero input in open-loop and with a control input in closed-loop. Then, we can derive the data-based stability conditions, in which the open-loop stability can be checked by using a data matrix whose column vectors span the output data space and the closed-loop stability can also be checked by using a data matrix whose column vectors span the closed-loop data space.

  • PDF

폐루프시스템의 성능을 보장하는 이산제어기 차수축소 (Discrete controller order reduction with the closed-loop performance guaranteed)

  • 오도창;정은태;박홍배
    • 전자공학회논문지S
    • /
    • 제34S권3호
    • /
    • pp.24-32
    • /
    • 1997
  • This paper is on a discrete controller order reduction with the closed-loop stability and performance guaranteed. to achieve this, after finding the solutionsof two lyapunov inequalities and balancing the full order controller system, we find the reudced order controlers using the balanced truncation (BT) and the balanced singular perturbation approximation (BSPA). When the solutions of the two lyapunov inequalities exist, it is shown that the resulting controllers guarantee the closed-loop stability, and .inf.-norm error bounds are derived for the closed-loop performance region for the BT and in low frequency region for the BSPA. Finally, a numerical example is given to illustrate the validity of the proposed method.

  • PDF

가속도계의 동작범위 확장와 선형성 향상을 위한 피드백 제어 (Feedback Control for Expanding Range and Improving Lineraity of Microaccelerometers)

  • 박용화;박상준;최병두;고형호;송태용;임근원;허건수;박장현;조동일
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1082-1088
    • /
    • 2004
  • This paer presents a feedback-controlled, MEMS-fabricated microaccelerometer($\mu$XL). The $\mu$XL has received much commercial attraction, but its performance is generally limited. To improve the open-loop performance, a feedback controller is designed and experimentally evaluated. The feedback controller is applied to the x/y-axis $\mu$XL fabricated by sacrificial bulk micromachining(SBM) process. Even though the resolution of the closed-loop system is slightly worse than open-loop system, the bandwidth, linearity, and bias stability are stability are significantly improved. The noise equivalent resolution of open-loop system is 0.615 mg and that of closed-loop system is 0.864 mg. The bandwidths of open-loop and closed-loop system are over 100Hz. The input range, non-linearity and bias stability are improved from $\pm10\;g\;to\;\pm18g$, from 11.1%FSO to 0.86%FSO, and from 0.221 mg to 0.128 mg by feedback control, respectively.

Relaxing of the Sampling Time Requirement in Prove of the EDMC Stability

  • Haeri, Mohammad;Beik, Hossein Zadehmorshed
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1829-1832
    • /
    • 2004
  • Closed loop stability of Extended Dynamic Matrix Control (EDMC) is investigated for limited sampling time. Linear approximation of the sensitivity functions is employed in the derivation of the stability condition. It is shown that the closed loop system will be stable if the control moves suppression coefficient ${\lambda}$ is taken arbitrarily large. Special cases such as M=P=1 and M=1, P>1 are discussed in more details.

  • PDF

민감도 함수의 최대치 제어를 통한 강인제어 (Robust Control via Peak Control of Sensitivity Function)

  • 서상민
    • 제어로봇시스템학회논문지
    • /
    • 제15권11호
    • /
    • pp.1071-1075
    • /
    • 2009
  • This article describes a robust control method by using peak control of a sensitivity function in the state-feedback control systems. This method apparently reduces the peak, and as a result makes closed loop systems more stable. The designed closed loop systems also make the response to an external step disturbance more fast with a lower undershoot. At the conclusion, it is verified that the proposed method enhances robust stability and robust performance to parametric uncertainties through $\mu$-plot.