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a b s t r a c t

The aim of this work is the analysis, design and hardware implementation of the fractional-order point
kinetics (FNPK) model along with its closed-loop controller. The stability and closed-loop control of FNPK
models are critical issues. The closed-loop stability of the controller-plant structure is established.
Further, the designed PI/PD controllers are implemented in real-time on a DSP processor. The simulation
and real-time hardware studies confirm that the designed PI/PD controllers result in a damped stable
closed-loop response.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Selection of an appropriate model is the important step in
controller design. The classic nuclear point kinetics (CNPK) models
describe the time evolution of neutron density inside the reactor
core. The design of reactor power controllers was based on the
CNPK models [1e4], which is itself based on the Fick’s law, i.e.,
normal diffusion. To modify the Fick’s law and thereby obtain the
best representation of nuclear reactor dynamics, researchers pre-
sented the fractional neutron point kinetic (FNPK) model, which
was based on non-Fickian assumptions [5e8]. The fractional-order
models of the nuclear reactor are based on the assumption that
neutron transport inside the reactor core can be better modelled as
sub-diffusion [8].

Most practical control problems are nonlinear in nature and
require nonlinear control to solve them. It is very difficult to design
a nonlinear control for such a problem.

The PID controllers are the most popular controllers used in
industry because of their simplicity, robustness, a wide range of
applicability and near-optimal performance [10]. A PID controller
continuously calculates an error value, which is the difference
a-Paredes).

by Elsevier Korea LLC. This is an
between a desired set point (SP) value and a measured value and
applies to plant after tuning the gain parameters of the controller.
Tuning the PID controller is nothing but finding the value of
controller parameters like Kp, Ki, Kd [11]. Robustness of controller
performance will totally depend upon how we tuned the gain pa-
rameters. Some methods with simple formulas use little informa-
tion of process dynamics to obtain moderate performance,
however they often need to be re-tuned by trial and error
depending on those results. The choice of method should be based
on the characteristics of the process and performance re-
quirements. There are many variations of PID that are already
implemented on different problem statement and their usefulness
is also validated by various industries. The fuzzy PID technique is
well-known to tune the controller parameters [12]. There are even
fractional-order PID proposed in the literature [13]. The advantage
of FO-PID over conventional PID is that there are more degrees of
freedom as in addition to the conventional parameters like Kp, Ki,
Kd, there are two more parameters g and l (fractional orders of the
integral and derivative operator).

A nuclear reactor is a complex system and hence difficult to
control and simulate in real time environment. There is a plethora
of literature available on control strategies for nuclear reactor. The
PID control for nuclear reactor is discussed in Ref. [3]. Sliding mode
control commercial nuclear reactors has been presented in Ref. [14].
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It is important to note that recently there has been an increase in
research with fractional order control of nuclear reactors [15e18].
Specifically, in the work of Davijani et al. [17] the FNPK model was
applied to simulate the reactor system dynamic behaviour in order
to design a fractional-order sliding mode controller to track the
reference power trajectory.

The salient contributions of this work are as follows:

1 Design of PI/PD controllers for the linear FNPK model
2. Analysis of the effect of relaxation time and anomalous diffusion

coefficient (a and t for FNPK) on closed-loop system perfor-
mance like settling time and peak overshoot.

3. Real-time hardware implementation of the closed-loop control
with linear FNPK model and the PI/PD controllers on DSP
processor.

The article is organized as follows. Next section describes the
linear fractional neutron point kinetics model. Section 3 explains
the integer-order approximation used in this work and its valida-
tion. The design of the PI/PD controllers and the simulation analysis
is given in section 4. Section 5 presents the DSP implementation.
Conclusion is given in Section 6.
2. Fractional neutron point kinetics (FNPK) model

The basic equations of fractional neutron point kinetics,
denominated as FNPK model, are a system of two coupled
nonlinear equations, where one of them is a differential equation of
fractional-order. The basic FNPKmodel for a single group of delayed
neutron precursors is given by Ref. [5]:

ta
d1þanðtÞ
dt1þa

þ ta
�
1
l
� ð1� bÞ

L

�
danðtÞ
dta

þ dnðtÞ
dt

¼ rðtÞ � b

L
nðtÞ þ tal

daCðtÞ
dta

þ lCðtÞ
(1)

For sub-diffusion process 0<a<1, where ta represents the
relaxation time and a is the anomalous diffusion coefficient. The
nuclear parameters are: b ¼ 0:007, l ¼ 0:00024s, l ¼ 0:0811s�11

and L ¼ 0:00002s. The concentration of precursors is given by

dCðtÞ
dt

¼ b

L
nðtÞ � lCðtÞ (2)

This work considers a linear fractional-order transfer function
model (3) fromRef. [8]. This linear model has been derived from the
nonlinear model (1)e(2) around a suitable operating point. The
fractional-order open-loop transfer function (FOTF) is given by:
GCLðsÞ¼

�
Kn*

L

�
ðsþ lÞ

taLs2þa þLs2 þ taM1s1þa þ
�
M2 þ Kn*

L

�
sþ taM3sa þ

�
M4 þ Kln*

L

� (3)
where M1 ¼ Llþ A1L, M2 ¼ lLþ A2L, M3 ¼ A1Ll� lb, and

M4 ¼ A2Ll� lb, with A1 ¼ 1
l � 1�b

L and A2 ¼ b
L. It should be

noted that the input to this model is reactivity r(t) and the output is
neutron concentration nðtÞ. The model is open-loop stable and has
underdamped response as shown in Fig. 1.
3. Approximation of the FNPK model

The FNPK model (3) has fractional-order dynamics. This dy-
namics reflects the sub-diffusive behaviour of neutron movements
in the reactor. The fractional powers of the frequency variable ‘s’ in
the transfer function arise due to the presence of fractional de-
rivatives in the fundamental differential equations. As it is well
known, the fractional integro-differential operators have infinite
memory owing to their nonlocal nature [19]. This feature of the
operatorsmade them best suitable for modelling higher-order real-
world systems [20]. However, this infinite dimensionality of the
fractional-order operators poses a major difficulty in their simula-
tion and hardware implementation on finite memory computa-
tional devices. This problem is overcome by employing a finite
memory approximation of fractional operators. There are both time
and frequency domain integer-order approximations available in
the literature [21]; viz., Tustin approximation, Charef’s approxi-
mation, limited-memory Grunwald-Letnikov definition, Continued
fraction approximation, and Oustalup’s recursive approximation.
Each method has its own merits and demerits. There have been
some successful attempts in the past to use the frequency domain
finite-memory approximation for fractional-order transfer func-
tions using the MATLAB routine ‘invfreqs’ [22]. In this work, we
have used this approach to obtain an approximation for the linear
FNPK model (3) owing to its accuracy and ease. Following sub-
sections explain the detailed procedure to obtain this integer-order
approximation.

3.1. Inverse frequency transform

The FNPK model (3) was simulated in MATLAB. The step
response data was generated using the numerical inverse Laplace
transform routine developed in Ref. [23]. The generation of fre-
quency response data was carried out by the substitution s ¼ ju in
(3) and obtaining themagnitude and phase data for a frequency set.
The invfreqs (inverse frequency) routine of MATLAB provides the
continuous time transfer function parameters, under the condition
that the magnitude and phase response of system is known. It
provides a superior algorithm that guarantees stability of the
resulting linear system and searches for the best fit using a nu-
merical, iterative scheme [21]. The procedure followed is:

S1. Obtain the magnitude and phase vectors for
Frequency 2 ½104;1010�.

S2. Identify continuous-time filter parameters from frequency
response data obtained from step S1.

S3. Integer order (IO) model validation for the frequency and
time domain fitting. For frequency domain bode plot are matched
and for time domain step response of fractional order system and
approximated integer order system are verified. If the model is well
fitted for the practical purpose the same model is used for
controller design and hardware implementation, else the step S2 is
repeated with different filter order.

S4. If the controller satisfies the system requirement and system
is stable then it is discretized using Tustin approximation with



Fig. 1. (a) Step response matching (b) Frequency response matching of FNPK and Integer Order (IO) approximation with a ¼ 0:5 and t ¼ 10�3s.

Table 1
Error Analysis of IO approximations for t ¼ 10�3s.

Domain Parameter a ¼ 0:25 a ¼ 0:5

Time data Max Error 4:39� 10�3 2:313� 10�2

Min Error 3:92� 10�53 5:94� 10�65

MSE 4:93� 10�6 1:44� 10�4

Closeness 0.9987 0.9876

Bode Magnitude Max Error 4:593� 10�2 0:2735
Min Error 1:73� 10�9 4:62� 10�9

MSE 3:05� 10�4 1:149� 10�2

Closeness 0.9995 0.9985

Bode Phase Max Error 0:269 1.85
Min Error 4:21� 10�9 1:32� 10�8

MSE 9:94� 10�3 0:4003

Closeness 0.9992 0.9711
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sampling time of Ts ¼ 10�6. The difference equations obtained are
then implemented in Digital Signal Processors (DSP) in real time
environment.

The integer-order model was validated using the procedure
given in the next subsection.

3.2. Validation of fractional and integer order models

This section discusses the procedure to validate the integer-
order approximation for FNPK models. The simulation is done in
MATLAB2014b environment. The closed-loop performance of the
fractional order model (Eq. (3)) for relaxation time t ¼ 10�3s with
two anomalous diffusion coefficient values (a ¼ 0:5 and a ¼ 0:25)
are studied. In order to design closed loop controller for FNPK
models the plant transfer function which is a closed loop transfer
function as described in Eq. (3) are approximated to:
GðsÞ¼
�4:495� 10�7s10 þ 1:459� 105s9 þ 2:354� 1016s8 þ 7:35� 1026s7 þ 8:274� 1036s6

þ3:922� 1046s5 þ 8:023� 1055s4 þ 6:684� 1064s3 þ 1:955� 1073s2 þ 1:517� 1081sþ 1:934� 1088

s10 þ 6:091� 1010s9 þ 1:105� 1021s8 þ 8:003� 1030s7 þ 2:499� 1040s6 þ 3:307� 1049s5

þ1:681� 1058s4 þ 2:71� 1066s3 þ 1:10� 1074s2 þ 1:847� 1081sþ 1:927� 1088 (4)
This indicates the integer order approximation of the FNPK
model for a ¼ 0:5 and t ¼ 10�3s; and the filter order for both
numerator and denominator is 10. Fig. 1a represents the step
response of the FNPK model (in blue) and integer order model (in
red). Frequency domain responses of the system are illustrated in
Fig. 1b. From the figures it can be deducted that the fractional order
system and the integer order approximation have very close time
and frequency response characteristics. Hence the approximated
system can be considered to be valid system for closed loop design.

Similarly the approximation of system for different values of
relaxation time t, the anomalous diffusion coefficient a, are
calculated with order of approximation taken as 10. Therefore, for
all the possible combinations of t and a this was verified,
concluding that the fractional order models agree within tolerance
level and can be applied for the controller design.

The validity of the integer order approximations is verified using
error analysis. The system performance is compared on few error
analysis techniques. The parameters taken for the modelling are
maximum error, minimum error, Mean Squared Error (MSE) and
closeness rating or goodness of fit parameters. TheMSE gives us the
numerically the order up to which the system approximation is
successful (Eq. (5)), whereas the closeness rating is calculated in
normalized mode with Eq. (6). First all the input data is normalized
between 0 and 1. Then the ratio between system error and target
value is calculated. The ratio is cumulatively added. The formulae
for calculations of error performance parameter are as follow:

MSE¼ 1
N

"XN
i¼0

ðTargeti �MeasurediÞ2
#1=2

(5)



Table 2
Closed loop parameters for FNPK system with t ¼ 10�3s.

Parameters Open Loop PI Controller PD controller

a ¼ 0:5 a ¼ 0:25 a ¼ 0:5 a ¼ 0:25 a ¼ 0:5 a ¼ 0:25

Gain value Kp e e 0 0 86.7 12.1
Ki e e 2:24� 106 9:61� 106 0 0
Kd e e 0 0 6:01� 10�8 0

Closed Loop Wgc 2:31� 107 9:70� 107 2:31� 106 9:70� 106 3:7� 108 9:63� 108

PM 89.2 138 87 87.6 60 72.6
Settling time 4:37� 10�7 5:57� 10�8 1:63� 10�6 3:96� 10�7 1:72� 10�8 7:49� 10�9

Rise time 6:71� 10�8 1:17� 10�8 8:90� 10�7 2:16� 10�7 3:75� 10�9 1:45� 10�9

% Overshoot 26.90% 9.1% 0% 0% 20.10% 9.7%

Fig. 2. Control block diagram for FNPK model.

Fig. 3. Closed Loop frequency response for FNPK model with a ¼ 0:5 and t ¼ 10�3s: (a) Step response of PI controller (b) Frequency response of PI controller (c) Step response of PD
controller (d) Frequency response of PD controller.
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Fig. 4. Hardware setup.
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Closeness¼ 1
N

XN
i¼0

�
1�

����Target0i �Measured0i
Target0i

����
�

(6)

where the subscript 0 in Eq. (6) represents a normalized value. The
ideal value of MSE should be equal to zero and that of closeness
function should be close to 1.

The index of 1 in closeness indicates the perfect fit. The error
results are presented in Table 1. According with these results the
maximum error between FNPK models and their approximations is
small in every case. Now, the MSE values are sufficiently small, and
for all the system the value of closeness parameter is close to 1.
From the closeness function value, it can be concluded that the
integer order approximations represent the dynamics of the FNPK
model in both time and frequency domain.
4. Controller design

This section discusses the closed loop control design of FNPK
models using frequency domain analysis. The controller design and
analysis were done in MATLAB 2014b environment. The effect of
the controller on the time domain indices like settling time, over-
shoot, rise time and frequency domain parameters like gainmargin,
phase margin, gain cross-over frequency are calculated and
analysed.

Fig. 2 represents the control block diagram for proposed system.
The output of FNPK model is neutron concentration as given in Eq.
(3). The difference between FNPK output and reference value n* is
given as input to the PID controller. It generates the control signal
for the stable performance. The controller is tuned accordingly such
that the response of the nuclear model is stalled.

Combinations of controllers are designed for the current system
for various performance parameters. For a given system it was
observed that the PI controller can be tuned to reduce the response
time of the FNPK system whereas PD controllers can be used to
improve the settling time. Frequency domain loop shaping tech-
nique is used to find out the controller parameters of PID control-
lers. The gain cross-over frequency of bode response of model
decides the settling time of closed loop systems. The higher the
cross-over frequency values faster the response in proportional. By
proper placement of pole/zero provides the control over the closed



Fig. 5. Time response of FNPK system a ¼ 0:5.

Fig. 6. Time response of FNPK system a ¼ 0:25.
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loop performance.
The two types of controller were designed for each system.
C1. Proportional-Integral Control: This type of control is used to

increase the settling time of a closed loop system making the sys-
tem slower.

C2. Proportional-Derivative Control: This type of control is used
to decrease the settling time of a closed loop system making the
system faster.
4.1. Closed-loop FNPK model

This section discusses the closed loop performance of the FNPK
system under study. The system was first approximated using the
inverse frequency technique as was discussed in Section 3. The
control algorithm is then designed for the PI/PD controller.

The performance of the closed loop system under study, FNPK
model with a ¼ 0:5 and a ¼ 0:25 for t ¼ 10�3s, is analysed. Both PI
and PD controllers were designed for their performance analysis,
the parameters are given in Table 2.

Both cases were analysed, but only the case for a ¼ 0:5 is pre-
sented: The frequency response of closed loop system is shown in
Fig. 3b and d. For PI controller, the settling time of system is reduced
by decreasing the gain crossover frequency of the closed loop
system. The phase margin obtained is 87�, which implies that the
system will not have any overshoots. The Gain margin obtained is
47.5 dB providing good immunity towards noisy signal. The time
performance of the system is presented in Fig. 3. The blue repre-
sents the open loop system step response and red represent the
closed loop response. The settling time of the open loop systemwas
4:37� 10�7s and the closed loop system is 1:63� 10�6s. For PD
controller, the settling time is increased to a value of 1:72� 10�8s
and the phase margin is 60�. For a ¼ 0:25 it can be deducted
(Table 2) that for the stability only I or only P controller is required.
If we try to create a PD controller the system becomes unstable.
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5. DSP implementation

This section focuses on hardware implementation and analysis
of the proposed control based on the FNPK model. In order to
validate the feasibility of designed controller in a real time envi-
ronment the transfer function of plant and controller are dis-
cretized with a proper time sampling suitable with hardware
speed. First, the plant model is verified for its step response. The
model obtained from step S3 of the procedure (Section 3.1) is dis-
cretized and equations are implemented into the hardware. The
hardware platform used is a TMS320F28335 Digital Signal Proces-
sor (DSP) boards (see Fig. 4). TMS320F28335 is a Digital Signal
Processor by Texas Instruments with High-Performance Static
CMOS Technology. The clock speed is 150 MHz with 32-Bit CPU
embedded with IEEE-754 Single-Precision Floating-Point Up to 6
Event Capture Inputs Unit (FPU), allowing floating point operations.

Initially the open loop step performance of the approximated
model on hardware is verified. The Code Composer Studio (CCS) is
used for online debugging and live tuning. Once the step responses
are matched the performance of the closed loop system for refer-
ence tracking is observed.

The step response of simulation and hardware system, as well as
the reference tracking of closed loop system for variation in set-
point are depicted in Fig. 4 for a ¼ 0:5 and a ¼ 0:25 with t ¼
10�3s, respectively.

The system consists of a DSP development board with real time
computing systemwith Code Composer Studio (CCS) v6.1 installed.
The CCS enables real time debugging and monitoring facility to the
system. The system runs at 150 MHZ clock frequency, hence the
discretization of 10�6 s is possible. The ePWM1A and ePWM1B
ports are used for open-loop and closed-loop output. The results
are displayed on a digital oscilloscope. Even though the system can
run at very high speed, in order to see the results on oscilloscope
the sampling time of system is changed to 0.5s. The limitation on
DSP allows DAC signal of maximum voltage of 3.3 V. Hence the
interpolation of data is performed in order to see visualize the re-
sults. The equation for the interpolation of data is as follows:

Voltageout ¼
3:3� value
MaxðvalueÞ (7)

GPIO 00 is generating the open-loop response and is connected
to the blue channel of oscilloscope. The GPIO 01 is connected to the
yellow channel of oscilloscope and is representing the closed-loop
response of the system. Both GPIO pins are enabled in PWM pe-
ripheral with frequency of 15 kHz.

Fig. 5 represents the time response of the FNPK systemwith a ¼
0:5 and Fig. 6 with a ¼ 0:25. The blue signal represents the open-
loop response of the system whereas the yellow represents the
closed-loop response with PI controller. In these figures it can be
observed two cases, the first case corresponds to the reactor with
relatively low sub-diffusivity (Fig. 5), and the second case corre-
sponds to relatively high subdiffusivity (Fig. 6). The suddiffusivity
behaviour is evident in an open-loop response, where for a ¼ 0:5 it
shows a damped response. However, for a ¼ 0:25 presents an
initial overshoot due to high suddiffusivity. The hardware imple-
mentation shows that the closed-loop system is stable with mini-
mal overshoot and better control over settling time of the system.

6. Conclusions

This technical note reports the exercise of design and hardware
implementation of PI/PD controllers for the inherently unstable
linear fractional-order neutron point kinetics (FNPK) model. The
closed-loop PI/PD controllers were designed for the suitable time
performance as per the system requirement. The closed-loop sys-
tem was found to be stable with minimal overshoot and better
control over settling time of the system. The system approximation
using frequency-domain identification was good enough to be
implemented on hardware in real-time environment. The proposed
closed-loop models with PI/PD controllers were implemented and
verified on the DSP platform.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
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