DOI QR코드

DOI QR Code

Closed-loop controller design, stability analysis and hardware implementation for fractional neutron point kinetics model

  • Vyawahare, Vishwesh A. (Department of Electronics Engineering, Ramrao Adik Institute of Technology) ;
  • Datkhile, G. (Department of Electronics Engineering, Ramrao Adik Institute of Technology) ;
  • Kadam, P. (Department of Electronics Engineering, Ramrao Adik Institute of Technology) ;
  • Espinosa-Paredes, G. (Energy Resources Engineering Area, Universidad Autonoma Metropolitana-Iztapalapa)
  • Received : 2020.05.07
  • Accepted : 2020.07.20
  • Published : 2021.02.25

Abstract

The aim of this work is the analysis, design and hardware implementation of the fractional-order point kinetics (FNPK) model along with its closed-loop controller. The stability and closed-loop control of FNPK models are critical issues. The closed-loop stability of the controller-plant structure is established. Further, the designed PI/PD controllers are implemented in real-time on a DSP processor. The simulation and real-time hardware studies confirm that the designed PI/PD controllers result in a damped stable closed-loop response.

Keywords

References

  1. B.R. Upadhyaya, M.R. Lish, J.W. Hines, R.A. Tarver, Instrumentation and control strategies for an integral pressurized water reactor, Nucl. Eng. and Tech. 47 (2015) 148-156. https://doi.org/10.1016/j.net.2015.01.001
  2. K.D. Badgujar, System science and control techniques for harnessing nuclear energy, Sys. Sc. & Control Eng. 4 (2016) 138-164. https://doi.org/10.1080/21642583.2016.1196468
  3. S.M.H. Mousakazemi, N. Ayoobian, G.R. Ansarifar, Control of the pressurized water nuclear reactors power using optimized proportional-integral-derivative controller with particle swarm optimization algorithm, Nucl. Eng. and Tech. 50 (2018) 877-885. https://doi.org/10.1016/j.net.2018.04.016
  4. G. Li, X. Wang, B. Liang, X. Li, R. Liang, Review on application of control algorithms to power regulations of reactor cores, in: 3rd Annual International Conference on Information Technology and Applications, Hangzhou, China, July 29-31, 2016.
  5. G. Espinosa-Paredes, M.A. Polo-Labarrios, E.G. Espinosa-Martinez, E. del Valle-Gallegos, Fractional neutron point kinetics equations for nuclear reactor dynamics, Ann. Nucl. Energy 38 (2011) 307-330. https://doi.org/10.1016/j.anucene.2010.10.012
  6. G. Espinosa-Paredes, Fractional-space neutron point kinetics (F-SNPK) equations for nuclear reactor dynamics, Ann. Nucl. Energy 107 (2017) 136-143. https://doi.org/10.1016/j.anucene.2016.08.007
  7. V.A. Vyawahare, P.S.V. Nataraj, Fractional-order modeling of neutron transport in a nuclear reactor, Appl. Math. Model. 37 (2013) 9747-9767. https://doi.org/10.1016/j.apm.2013.05.023
  8. V.A. Vyawahare, G. Espinosa-Paredes, BWR stability analysis with sub-diffusive and feedback effects, Ann. Nucl. Energy 110 (2017) 349-361. https://doi.org/10.1016/j.anucene.2017.06.059
  9. C. Zhao, D. Xue, Y. Chen, A fractional order PID tuning algorithm for a class of fractional order plants, in: IEEE International Conference on Mechatronics and Automation, Ontario, Canada, July 29 - August 01, 2005.
  10. G. Chen, H. Ying, BIBO stability of nonlinear fuzzy PI control systems, J. Intell. Fuzzy Syst. 5 (1997) 245-256. https://doi.org/10.3233/IFS-1997-5306
  11. H. Ying, Theory and application of a novel fuzzy PID controller using a simplified Takagi-Sugeno rule scheme, Inf. Sci. 123 (2000) 281-293. https://doi.org/10.1016/S0020-0255(99)00133-4
  12. F. Padula, A. Visioli, Tuning rules for optimal PID and fractional-order PID controllers, J. Process Contr. 21 (2011) 69-81. https://doi.org/10.1016/j.jprocont.2010.10.006
  13. G.D. Reddy, Y. Park, B. Bandyopadhyay, A.P. Tiwari, Discrete-time output feedback sliding mode control for spatial control of a large PHWR, Auto In. 45 (2009) 2159-2163. https://doi.org/10.1016/j.automatica.2009.05.003
  14. S.S. Bhase, B.M. Patre, Robust FOPI controller design for power control of PHWR under step-back condition, Nucl. Eng. Des. 274 (2014) 20-29. https://doi.org/10.1016/j.nucengdes.2014.03.041
  15. M.R. Bongulwar, B.M. Patre, Design of PIlDm controller for global power control of pressurized heavy water reactor, ISA Trans. 69 (2017) 234-241. https://doi.org/10.1016/j.isatra.2017.04.007
  16. N.Z. Davijani, G. Jahanfarnia, A.E. Abharian, Nonlinear fractional sliding mode controller based on reduced order FNPK model for output power control of nuclear research reactors, IEEE Trans. Nucl. Sci. 64 (2017) 713-723. https://doi.org/10.1109/TNS.2016.2635026
  17. R. Lamba, S.K. Singla, S. Sondhi, Fractional order PID controller for power control in perturbed pressurized heavy water reactor, Nucl. Eng. Des. 323 (2017) 84-94. https://doi.org/10.1016/j.nucengdes.2017.08.013
  18. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, first ed., Elsevier, Amsterdam, 2006.
  19. R. Mansouri, M. Bettayeb, S. Djennoune, Approximating of high order integer systems by fractional order reduced parameter models, Math. Comput. Model. 51 (2010) 53-62. https://doi.org/10.1016/j.mcm.2009.07.018
  20. C.A. Monje, Y. Chen, B.M. Vinagre, D. Xue, V. Feliu-Batlle, Fractional-order Systems and Controls: Fundamentals and Applications, first ed., Springer-Verlag, London, 2010.
  21. H. Sheng, Y. Chen, T. Qiu, Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications, first ed., Springer-Verlag, London, 2012.
  22. F.R. de Hoog, J.H. Knight, A.N. Stokes, An improved method for numerical inversion of Laplace transforms, SIAM J. Sci. Stat. Comput. 3 (1982) 357-366. https://doi.org/10.1137/0903022