• Title/Summary/Keyword: clock skew

Search Result 50, Processing Time 0.025 seconds

A Wide - Range Dual-Loop DLL with Programmable Skew - Calibration Circuitry for Post Package (패키지후 프로그램을 이용 스큐 수정이 가능한 광범위한 잠금 범위를 가지고 있는 이중 연산 DLL 회로)

  • Choi, Sung-Il;Moon, Gyu;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.408-420
    • /
    • 2003
  • This paper describes a Delay Locked Loop (DLL) circuit having two advancements : 1) a dual loop operation for a wide lock-range and 2) programmable replica delays using antifuse circuitry and internal voltage generator for a post-package skew calibration. The dual loop operation uses information from the initial time-difference between reference clock and internal clock to select one of the differential internal loops. This increases the lock-range of the DLL to the lower frequency. In addition, incorporation with the programmable replica delay using antifuse circuitry and internal voltage generator allows for the elimination of skews between external clock and internal clock that occur from on and off-chip variations after the package process. The proposed DLL, fabricated on 0.16m process, operates over the wide range of 42MHz - 400MHz with 2.3v power supply. The measured results show 43psec peak-to-peak jitter and 4.71psec ms jitter consuming 52㎽ at 400MHz.

Analysis and Modeling of Clock Grid Network Using S-parameter (S-파라미터를 사용한 클락 그리드 네트워크의 분석과 모델링)

  • Kim, Kyung-Ki
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.37-42
    • /
    • 2007
  • Clock grid networks are now common in most high performance microprocessors. This paper presents a new effective modeling and simulation methodology for the clock grid using scattering parameter. It also shows the effect of wire width and grid size on the clock skew of the grid. The interconnection of the clock grid is modeled by RC passive elements. The results show that the error is within 10 % comparing to Hspice simulation results.

A single-clock-driven gate driver using p-type, low-temperature polycrystalline silicon thin-film transistors

  • Kim, Kang-Nam;Kang, Jin-Seong;Ahn, Sung-Jin;Lee, Jae-Sic;Lee, Dong-Hoon;Kim, Chi-Woo;Kwon, Oh-Kyong
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • A single-clock-driven shift register and a two-stage buffer are proposed, using p-type, low-temperature polycrystalline silicon thin-film transistors. To eliminate the clock skew problems and to reduce the burden of the interface, only one clock signal was adopted to the shift register circuit, without additional reference voltages. A two-stage, p-type buffer was proposed to drive the gate line load and shows a full-swing output without threshold voltage loss. The shift register and buffer were designed for the 3.31" WVGA ($800{\times}480$) LCD panel, and the fabricated circuits were verified via simulations and measurements.

A Low Jitter Delay-Locked Loop for Local Clock Skew Compensation (로컬 클록 스큐 보상을 위한 낮은 지터 성능의 지연 고정 루프)

  • Jung, Chae-Young;Lee, Won-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.309-316
    • /
    • 2019
  • In this paper, a low-jitter delay-locked loop that compensates for local clock skew is presented. The proposed DLL consists of a phase splitter, a phase detector(PD), a charge pump, a bias generator, a voltage-controlled delay line(VCDL), and a level converter. The VCDL uses self-biased delay cells using current mode logic(CML) to have insensitive characteristics to temperature and supply noises. The phase splitter generates two reference clocks which are used as the differential inputs of the VCDL. The PD uses the only single clock from the phase splitter because the PD in the proposed circuit uses CMOS logic that consumes less power compared to CML. Therefore, the output of the VCDL is also converted to the rail-to-rail signal by the level converter for the PD as well as the local clock distribution circuit. The proposed circuit has been designed with a $0.13-{\mu}m$ CMOS process. A global CLK with a frequency of 1-GHz is externally applied to the circuit. As a result, after about 19 cycles, the proposed DLL is locked at a point that the control voltage is 597.83mV with the jitter of 1.05ps.

Analysis of Metastability for the Synchronizer of NoC (NoC 동기회로 설계를 위한 불안정상태 분석)

  • Chong, Jiang;Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.12
    • /
    • pp.1345-1352
    • /
    • 2014
  • Bus architecture of SoC has been replaced by NoC in recent years. Noc uses the multi-clock domains to transmit and receive data between neighbor network interfaces and they have same frequency, but a phase difference because of clock skew. So a synchronizer is used for a mesochronous frequency in interconnection between network interfaces. In this paper the metastability is defined and analyzed in a D latch and a D flip-flop to search the possibilities that data can be lost in the process of sending and receiving data between interconnects when a local frequency and a transmitted frequency have a phase difference. 180nm CMOS model parameter and 1GHz are used to simulate them in HSpice. The simulation results show that the metastability happens in a latch and a flip-flop when input data change near the clock edges and there are intermediate states for a longer time as input data change closer at the clock edge. And the next stage can lose input data depending on environmental conditions such as temperature, processing variations, power supply, etc. The simulation results are very useful to design a mescochronous synchronizer for NoC.

Design of the Bit selectable and Bi-directional Interface Port (접속 비트 전환식 양방향 접속 포트의 설계)

  • 임태영;곽명신;정상범;이천희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.733-736
    • /
    • 1999
  • In this Paper, Bit selectable and Bi-directional Interface Port is described, which can communicate data with the peripheral devices. Specially A description of the asynchronous design method is given to remove the clock skew phenomenon and the output asynchronous control method which finds the optimal clock and controls all the enable signal of the output pins at the same time is presented. Using this technique interface ports have delay time of less-than 0.5㎱.

  • PDF

A DLL-Based Multi-Clock Generator Having Fast-Relocking and Duty-Cycle Correction Scheme for Low Power and High Speed VLSIs (저전력 고속 VLSI를 위한 Fast-Relocking과 Duty-Cycle Correction 구조를 가지는 DLL 기반의 다중 클락 발생기)

  • Hwang Tae-Jin;Yeon Gyu-Sung;Jun Chi-Hoon;Wee Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.23-30
    • /
    • 2005
  • This paper describes a DLL(delay locked loop)-based multi-clock generator having the lower active stand-by power as well as a fast relocking after re-activating the DLL. for low power and high speed VLSI chip. It enables a frequency multiplication using frequency multiplier scheme and produces output clocks with 50:50 duty-ratio regardless of the duty-ratio of system clock. Also, digital control scheme using DAC enables a fast relocking operation after exiting a standby-mode of the clock system which was obtained by storing analog locking information as digital codes in a register block. Also, for a clock multiplication, it has a feed-forward duty correction scheme using multiphase and phase mixing corrects a duty-error of system clock without requiring additional time. In this paper, the proposed DLL-based multi-clock generator can provides a synchronous clock to an external clock for I/O data communications and multiple clocks of slow and high speed operations for various IPs. The proposed DLL-based multi-clock generator was designed by the area of $1796{\mu}m\times654{\mu}m$ using $0.35-{\mu}m$ CMOS process and has $75MHz\~550MHz$ lock-range and maximum multiplication frequency of 800 MHz below 20psec static skew at 2.3v supply voltage.

Design of Asynchronous Library and Implementation of Interface for Heterogeneous System

  • Jung, Hwi-Sung;Lee, Joon-Il;Lee, Moon-Key
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.221-225
    • /
    • 2000
  • We designed asynchronous event logic library with 0.25$\mu\textrm{m}$ CMOS technology and interface chip for heterogeneous system with high-speed asynchronous FIFO operating at 1.6㎓. Optimized asynchronous standard cell layouts and Verilog models are designed for top-down design methodology. A method for mitigating a design bottleneck when it comes to tolerate clock skew is described. This communication scheme using clock control circuits, which is used for the free of synchronization failures, is analyzed and implemented. With clock control circuit and FIFO, high-speed communication between synchronous modules operating at different clock frequencies or with asynchronous modules is performed. The core size of implemented high-speed 32bit-interface chip for heterogeneous system is about 1.1mm ${\times}$ 1.1mm.

  • PDF

Design of Asynchronous Library and Implementation of Interface for Heterogeneous System (비동기 라이브러리 설계와 Heterogeneous시스템을 위한 인테페이스 설계)

  • Jung, Hwi-Sung;Lee, Joon-Il;Lee, Moon-Key
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.9
    • /
    • pp.47-54
    • /
    • 2000
  • We designed asynchronous event logic library with 0.25um CMOS technology and interface chip for heterogeneous system with high-speed asynchronous FIFO operating at 1.6GHz. Optimized asynchronous standard cell layouts and Verilog models are designed for top-down design methodology. A Method for mitigating a design bottleneck when it comes to tolerate clock skew is described. This communication scheme using clock control circuits, which is used for the free of synchronization failures, is analyzed and implemented. With clock control circuit and FIFO, high-speed communication between synchronous modules operating at different clock frequencies or with asynchronous modules is performed. The core size of implemented high-speed 32bit-interface chip for heterogeneous system is about $1.1mm{\times}1.1mm$.

  • PDF

A Survey of Time Synchronization Techniques in Underwater Acoustic Networks (수중 음향 네트워크를 위한 시간 동기화 기술 동향 분석에 대한 연구)

  • Cho, A-Ra;Yun, Changho;Lim, Yong-Kon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.264-274
    • /
    • 2014
  • Time synchronization becomes a critical issue in underwater acoustic networks (UANets) because nodes cooperate together or individually work by communicating each other in diverse underwater applications. Compared with the time synchronization approaches in terrestrial networks, several intrinsic limitations of UANets (e.g., the unavailability of GPS, long propagation delay, mobility due to currents, limited energy consumption, or low data rate) need to be considered in synchronizing the timing among underwater nodes. For the purpose of developing more efficient time synchronization protocols for UANets, we review the existing approaches, which estimate both the clock offset and the clock skew of underwater nodes. Finally, we outline the state-of-the art time synchronization protocols for UANets by comparing and summarizing them according to their synchronization characteristics.