• Title/Summary/Keyword: cantilever plates

Search Result 45, Processing Time 0.023 seconds

Study on the Analysis of Anisotropic Laminated Cantilever Thin Plates and Anisotropic Laminated Cantilever Thick Plates (비등방성 적층 캔틸레버 박판 및 후판의 해석연구)

  • Park, Won-Tae
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.1-5
    • /
    • 2010
  • In this study, it is presented analysis results of bending problems in the anisotropic cantilever thick plates and the anisotropic laminated cantilever thin plates bending problems. Finite element method in this analysis was used. Both Kirchoff's assumptions and Mindlin assumptions are used as the basic governing equations of bending problems in the anisotropic laminated plates. The analysis results are compared between the anisotropic laminated cantilever thick plates and the anisotropic laminated cantilever thin plates for the variations of thickness-width ratios.

  • PDF

Vibration Analysis of Rotating Cantilever Plates with Arbitrary Orientation Angle (임의의 자세를 갖는 외팔평판의 진동해석)

  • Kim, Sung-Kyun;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1331-1337
    • /
    • 2003
  • Linearized equations of motion for the vibration analysis of rotating cantilever plates with arbitrary orientation angle are derived in the present work. Two in-plane stretch variables are introduced to be approximated. The use of the two in-plane stretch variables enables one to derive the equations of motion which include proper motion-induced stiffness variation terms. The equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating cantilever plates are investigated through numerical study. The natural frequency loci veering along with the associated mode shape variations, which occur while the rotating speed increases, are also presented and discussed.

Modal Analysis Employing In-plane Strain of Cantilever Plates Undergoing Translational Acceleration (병진 가속을 받는 외팔 평판의 면내 변형율을 이용한 진동 해석)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.667-672
    • /
    • 2004
  • A modeling method for the modal analysis of cantilever plates undergoing in-plane translational acceleration is presented in this paper. Cartesian deformation variables are employed to derive the equations of motion and the resulting equations are transformed into dimensionless forms. To obtain the modal equation from the equations of motion, the in-plane equilibrium strain measures are substituted into the strain energy expression based on Von Karman strain measures. The effects of two dimensionless parameters (related to acceleration and aspect ratio) on the modal characteristics of accelerated plates are investigated through numerical studies.

  • PDF

Vibration Analysis of Rotating Cantilever Plates with a Concentrated Mass (집중 질량을 가진 회전하는 외팔 평판의 진동 해석)

  • 양정식;유홍희
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1130-1136
    • /
    • 1998
  • A modelling method for the vibration analysis of rotating cantilever plates with a concentrated mass is presented. The equations of motion for the rotating plates with a concentrated mass located in an arbitrary position are derived and transformed into a dimensionless form. For the mathematical modelling of the concentrated mass. a mass density Dirac delta function is used. The effects of concentrated mass and its location. angular speed. plate aspect ratio. and hub radius of the rotating plate on the natural frequencies are studied. Particularly. mode shape variations due to some parameter variations are investigated.

  • PDF

Modal Analysis Employing In-plane Strain of Cantilever Plates Undergoing Translational Acceleration (병진 가속을 받는 외팔 평판의 면내 변형률을 이용한 진동 해석)

  • Yoo Hong Hee;Lim Hong Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.889-894
    • /
    • 2005
  • A modeling method for the modal analysis of cantilever plates undergoing in-plane translational acceleration is presented in this paper. Cartesian deformation variables are employed to derive the equations of motion and the resulting equations are transformed into dimensionless forms. To obtain the modal equation from the equations of motion, the in-plane equilibrium strain measures are substituted into the strain energy expression based on Von Karman strain measures. The effects of two dimensionless parameters (related to acceleration and aspect ratio) on the modal characteristics of accelerated plates are investigated through numerical studies.

Flapwise Bending Vibration Analysis of Rotating Cantilever Plates (회전 외팔평판의 면외 방향 굽힘진동 해석)

  • Kim, Sung-Kyun;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.613-618
    • /
    • 2000
  • It is well known that the rotating motion of a blade-like structure induces centrifugal inertia force that causes the variation of the natural frequencies of the structure. Even though most of blade-like structures can be successfully Idealized as beams, some behave like plates rather than beams. This paper presents a modeling method for the flapwise bending vibration analysis of rotating cantilever plates. The dependence of natural frequencies and free vibration modes on the angular speed as well as the aspect ratio of a rotating plate is investigated. Particularly. the natural frequency loci crossing is observed and discussed In the present study.

  • PDF

Vibration Analysis of Rotating Cantilever Plates with a Concentrated Mass (집중 질량을 가진 회전하는 외팔 평판의 진동 해석)

  • 양정식;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.181-186
    • /
    • 1998
  • A modelling method for the vibration analysis of rotating cantilever plates with a concentrated mass is presented. The equations of motion for the rotating plates with a concentrated mass located in an arbitrary position are derived. For the modelling of the concentrated mass, a mass density Dirac delta function is used. The effects of concentrated mass and its location, angular speed, and hub radius of the rotating plate on the natural frequencies are studied. Particularly, mode shape variations due to some parameter variations are investigated.

  • PDF

Free Vibration Analysis of Al Cantilever Square Plates with a Brass Inclusion (황동 개재물이 있는 Al 외팔형 정사각판의 자유진동해석)

  • Lee, Youn-bok;Lee, Young-shin;Lee, Se-hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1347-1354
    • /
    • 2005
  • The free vibration characteristics of Al cantilever square plates with a brass inclusion were analyzed experimentally and numerically The experimentally obtained natural frequencies and mode shapes were compared with the FEM analysis results. The impulse exciting method was used for experiment and ANSYS software package was used for FEM analysis. The natural frequencies obtained iron experiment and numerical analysis matched within $0\%$. It was found that the natural frequencies of the Al cantilever square plates with a brass inclusion decrease as the size of inclusion increases. For the third mode shape, comparing the nodal line of the Al plate and the Al plate with a inclusion, the mode shape showed the reversed quadratic curve. The natural frequencies of inclusion plate were decreased as the location of inclusion moves from the clamped edge to the tree edge.

Vibration Analysis of Rotating Composite Cantilever Plates (회전하는 복합재 외팔평판의 진동해석)

  • 김성균;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.407-413
    • /
    • 2001
  • A modeling method for the vibration analysis of rotating composite cantilever plates is presented. Explicit mass and stiffness matrices are derived by considering the coupling effects between extensional motions and the bending motion, To confirm the accuracy of the method presented in this study, numerical results are obtained and compared to those of a commercial program. Numerical results show that the coupling effect among the three motions becomes important for the accurate estimation of natural frequencies as laminates are stacked up unsymmetrically. Also, natural frequencies loci veering, loci crossing, and mode shape variations are observed.

  • PDF

A Study on the Natural Frequency of Al Square Plates with a Brass Inclusion using Rule of Mixtures (혼합법칙을 이용한 황동 개재물이 있는 Al 정사각판의 고유진동수 해석)

  • Lee, Youn-Bok;Lee, Se-Hoon;Lee, Young-Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.399-406
    • /
    • 2006
  • The natural frequencies of Al square plates with a brass inclusion were analyzed by the rule of mixtures. The rule of mixtures is the method to derive natural frequency mutiplying effective inplane wane speed and nondimensional frequency parameters. Numerical models were Al square plates with an inclusion with cantilever type, 2 clamped edge-2 free edge type, 3 clamped edge-1 free edge type and fully clamped edge type. In cantilever type plates, 2 clamped edge-2 free edge type plates and 3 clamped edge-1 free edge plates with an inclusion, good agreement within 10% obtained from rule of mixtures' results and numerical analysis results within inclusion area ratio 1/9. It was found that the natural frequencies of the cantilever type, 2 clamped edge-2 free edge type and 3 clamped edge-1 free edge type plates with an inclusion decrease as the size of inclusion increases when inclusion is located center of plates. And when the density of inclusion is less than the plates, natural frequency of plates with an inclusion increases as the size of inclusion increases.