• Title/Summary/Keyword: bump formation

Search Result 63, Processing Time 0.021 seconds

Fabrication Method of High-density and High-uniformity Solder Bump without Copper Cross-contamination in Si-LSI Laboratory (실리콘 실험실에 구리 오염을 방지 할 수 있는 고밀도/고균일의 Solder Bump 형성방법)

  • 김성진;주철원;박성수;백규하;이희태;송민규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.23-29
    • /
    • 2000
  • We demonstrate the fabrication method of high-density and high-quality solder bump solving a copper (Cu) cross-contamination in Si-LSI laboratory. The Cu cross-contamination is solved by separating solder-bump process by two steps. Former is via-formation process excluding Cu/Ti under ball metallurgy (UBM) layer sputtering in Si-LSI laboratory. Latter is electroplating process including Ti-adhesion and Cu-seed layers sputtering out of Si-LSI laboratory. Thick photoresist (PR) is achieved by a multiple coating method. After TiW/Al-electrode sputtering for electroplating and via formation in Si-LSI laboratory, Cu/Ti UBM layer is sputtered on sample. The Cu-seed layer on the PR is etched during Cu-electroplating with low-electroplating rate due to a difference in resistance of UBM layer between via bottom and PR. Therefore Cu-buffer layer can be electroplated selectively at the via bottom. After etching the Ti-adhesion layer on the PR, Sn/Pb solder layer with a composition of 60/40 is electroplated using a tin-lead electroplating bath with a metal stoichiometry of 60/40 (weight percent ratio). Scanning electron microscope image shows that the fabricated solder bump is high-uniformity and high-quality as well as symmetric mushroom shape. The solder bumps with even 40/60 $\mu\textrm{m}$ in diameter/pitch do not touch during electroplating and reflow procedures. The solder-bump process of high-uniformity and high-density with the Cu cross-contamination free in Si-LSI laboratory will be effective for electronic microwave application.

  • PDF

Formation of Indium Bumps on Micro-pillar Structures through BCB Planarization (BCB 평탄화를 활용한 마이크로 기둥 구조물 위의 인듐 범프 형성 공정)

  • Park, Min-Su
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.57-61
    • /
    • 2021
  • A formation process of indium bump arrays on micro-pillar structures is proposed. The space to form indium bump on the narrow structures can be secured applying the benzocyclobutene (BCB) planarization and its etch-back process. We exhibit a detailed overview of the process steps involved in the fabrication of 320×256 hybrid camera sensor for short-wavelength infrared (SWIR) detection. The shear strength of the BCB, which has undergone the different processes, is extracted by quartz crystal microbalance measurement. The shear strength of the BCB is three orders of magnitude higher than that of the indium bump itself. The measured dark current distribution of the fabricated SWIR camera sensor indicates the suggested process of indium bumps can be useful for embodying highly sensitive infared camera sensors.

PROPERTIES OF DUST OBSCURED GALAXIES IN THE NEP-DEEP FIELD

  • Oi, Nagisa;Matsuhara, Hideo;Pearson, Chris;Buat, Veronique;Burgarella, Denis;Malkan, Matt;Miyaji, Takamitsu;AKARI-NEP team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.245-249
    • /
    • 2017
  • We selected 47 DOGs at z ~ 1.5 using optical R (or r'), AKARI $18{\mu}m$, and $24{\mu}m$ color in the AKARI North Ecliptic Pole (NEP) Deep survey field. Using the colors among 3, 4, 7, and 9µm, we classified them into 3 groups; bump DOGs (23 sources), power-law DOGs (16 sources), and unknown DOGs (8 sources). We built spectral energy distributions (SEDs) with optical to far-infrared photometric data and investigated their properties using SED fitting method. We found that AGN activity such as a AGN contribution to the infrared luminosity and a Chandra detection rate for bump and power-law DOGs are significantly different, while stellar component properties like a stellar mass and a star-formation rate are similar to each other. A specific star-formation rate range of power-law DOGs is slightly higher than that of bump DOGs with wide overlap. Herschel/PACS detection rates are almost the same between bump and power-law DOGs. On the other hand SPIRE detection rates show large differences between bump and power-law DOGs. These results might be explained by differences in dust temperatures. Both groups of DOGs host hot and/or warm dust (~ 50 Kelvin), and many bump DOGs contain cooler dust (${\leq}30$ Kelvin).

Properties of Cu Pillar Bump Joints during Isothermal Aging (등온 시효 처리에 따른 Cu Pillar Bump 접합부 특성)

  • Eun-Su Jang;Eun-Chae Noh;So-Jeong Na;Jeong-Won Yoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.35-42
    • /
    • 2024
  • Recently, with the miniaturization and high integration of semiconductor chips, the bump bridge phenomenon caused by fine pitches is drawing attention as a problem. Accordingly, Cu pillar bump, which can minimize the bump bridge phenomenon, is widely applied in the semiconductor package industry for fine pitch applications. When exposed to a high-temperature environment, the thickness of the intermetallic compound (IMC) formed at the joint interface increases, and at the same time, Kirkendall void is formed and grown inside some IMC/Cu and IMC interfaces. Therefore, it is important to control the excessive growth of IMC and the formation and growth of Kirkendall voids because they weaken the mechanical reliability of the joints. Therefore, in this study, isothermal aging evaluation of Cu pillar bump joints with a CS (Cu+ Sn-1.8Ag Solder) structure was performed and the corresponding results was reported.

Formation of Low Temperature and Ultra-Small Solder Bumps with Different Sequences of Solder Layer Deposition (솔더 층의 증착 순서에 따른 저 융점 극 미세 솔더 범프의 볼 형성에 관한 연구)

  • 진정기;강운병;김영호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.1
    • /
    • pp.45-51
    • /
    • 2001
  • The effects of wettability and surface oxidation on the low temperature and ultra-fine solder bump formation have been studied. Difference sequences of near eutectic In-Ag and eutectic Bi-Sn solders were evaporated on Au/Cu/Cr or Au/Ni/Ti Under Bump Metallurgy (UBM) pads. Solder bumps were formed using lift-off method and were reflowed in Rapid Thermal Annealing (RTA) system. The solder bumps in which In was in contact with UBM in In-Ag solder and the solder bumps in which Sn was in contact with UBM in Bi-Sn solder showed better bump formability during reflow than other solder bumps. The ability to form spherical solder bumps was affected mainly by the wettability of solders to UBM pads.

  • PDF

Analysis on the Thermal Deformation of Flip-chip Bump Layer by the IMC's Implication (IMC의 영향에 따른 Flip-Chip Bump Layer의 열변형 해석)

  • Lee, Tae Kyoung;Kim, Dong Min;Jun, Ho In;Huh, Seok-Hwan;Jeong, Myung Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.49-56
    • /
    • 2012
  • Recently, by the trends of electronic package to be smaller, thinner and more integrative, fine bump is required. but It can result in the electrical short by reduced cross-section of UBM and diameter of bump. Especially, the formation of IMCs and KV can have a significant affects about electrical and mechanical properties. In this paper, we analyzed the thermal deformation of flip-chip bump by using FEM. Through Thermal Cycling Test (TCT) of flip-chip package, We analyzed the properties of the thermal deformation. and We confirmed that the thermal deformation of the bump can have a significant impact on the driving system. So we selected IMCs thickness and bump diameter as variable which is expected to have implications for characteristics of thermal deformation. and we performed analysis of temperature, thermal stress and thermal deformation. Then we investigated the cause of the IMC's effects.

Development of Polymer Elastic Bump Formation Process and Bump Deformation Behavior Analysis for Flexible Semiconductor Package Assembly (유연 반도체 패키지 접속을 위한 폴리머 탄성범프 범핑 공정 개발 및 범프 변형 거동 분석)

  • Lee, Jae Hak;Song, Jun-Yeob;Kim, Seung Man;Kim, Yong Jin;Park, Ah-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.31-43
    • /
    • 2019
  • In this study, polymer elastic bumps were fabricated for the flexible electronic package flip chip bonding and the viscoelastic and viscoplastic behavior of the polymer elastic bumps according to the temperature and load were analyzed using FEM and experiments. The polymer elastic bump is easy to deform by the bonding load, and it is confirmed that the bump height flatness problem is easily compensated and the stress concentration on thin chip is reduced remarkably. We also develop a spiral cap type and spoke cap type polymer elastic bump of $200{\mu}m$ diameter to complement Au metal cap crack phenomenon caused by excessive deformation of polymer elastic bump. The proposed polymer elastic bumps could reduce stress of metal wiring during bump deformation compared to metal cap bump, which is completely covered with metal wiring because the metal wiring on these bumps is partially patterned and easily deformable pattern. The spoke cap bump shows the lowest stress concentration in the metal wiring while maintaining the low contact resistance because the contact area between bump and pad was wider than that of the spiral cap bump.

Formation Mechanisms of Sn Oxide Films on Probe Pins Contacted with Pb-Free Solder Bumps (무연솔더 범프 접촉 탐침 핀의 Sn 산화막 형성 기제)

  • Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.545-551
    • /
    • 2012
  • In semiconductor manufacturing, the circuit integrity of packaged BGA devices is tested by measuring electrical resistance using test sockets. Test sockets have been reported to often fail earlier than the expected life-time due to high contact resistance. This has been attributed to the formation of Sn oxide films on the Au coating layer of the probe pins loaded on the socket. Similar to contact failure, and known as "fretting", this process widely occurs between two conductive surfaces due to the continual rupture and accumulation of oxide films. However, the failure mechanism at the probe pin differs from fretting. In this study, the microstructural processes and formation mechanisms of Sn oxide films developed on the probe pin surface were investigated. Failure analysis was conducted mainly by FIB-FESEM observations, along with EDX, AES, and XRD analyses. Soft and fresh Sn was found to be transferred repeatedly from the solder bump to the Au surface of the probe pins; it was then instantly oxidized to SnO. The $SnO_2$ phase is a more stable natural oxide, but SnO has been proved to grow on Sn thin film at low temperature (< $150^{\circ}C$). Further oxidation to $SnO_2$ is thought to be limited to 30%. The SnO film grew layer by layer up to 571 nm after testing of 50,500 cycles (1 nm/100 cycle). This resulted in the increase of contact resistance and thus of signal delay between the probe pin and the solder bump.

Formation of Fine Pitch Solder Bump with High Uniformity by the Tilted Electrode Ring (경사진 전극링을 이용한 고균일도의 미세 솔더범프 형성)

  • Ju, Chul-Won;Lee, Kyung-Ho;Min, Byoung-Gue;Kim, Seong-Il;Lee, Jong-Min;Kang, Young-il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.798-802
    • /
    • 2005
  • The plating shape in the opening of photoresist becomes gradated shape in the fountain plating system, because bubbles from the wafer surface are difficult to escape from the deep openings, vias. In this paper, the bubble flow from the wafer surface during plating process was studied and we designed the tilted electrode ring to get uniform bump height on all over the wafer and evaluated the film uniformity by SEM and $\alpha-step$. In a-step measurement, film uniformities in the fountain plating system and the tilted electrode ring contact system were $\pm16.6\%,\;\pm4\%$ respectively.