DOI QR코드

DOI QR Code

BCB 평탄화를 활용한 마이크로 기둥 구조물 위의 인듐 범프 형성 공정

Formation of Indium Bumps on Micro-pillar Structures through BCB Planarization

  • 박민수 (동아대학교 전자공학과)
  • Park, Min-Su (Department of Electronics Engineering, Dong-A University)
  • 투고 : 2021.12.02
  • 심사 : 2021.12.13
  • 발행 : 2021.12.30

초록

마이크로 기둥 구조물 위에 인듐 범프 배열을 형성하는 공정을 제안한다. Benzocyclobutene (BCB) 평탄화와 etch-back 공정을 통하여 매우 협소한 마이크로 기둥 위에 인듐 범프를 형성할 수 있는 공간을 확보할 수 있다. 본 연구에서는 단파장 적외선을 감지용 320×256 포맷의 하이브리드 카메라 센서 제조에 대한 자세한 공정 과정을 소개한다. 다양한 공정을 거친 BCB 필름의 shear strength는 quartz crystal microbalance 방법으로 측정하여 추출하였다. BCB 필름의 shear strength는 인듐 범프보다 103배 더 높은 것으로 확인하였다. 제작된 SWIR 카메라 센서로부터 측정된 암전류의 분포는 제안한 인듐 범프 형성 공정이 매우 민감한 적외선 카메라 센서를 구현하는 데 유용할 수 있음을 제시한다.

A formation process of indium bump arrays on micro-pillar structures is proposed. The space to form indium bump on the narrow structures can be secured applying the benzocyclobutene (BCB) planarization and its etch-back process. We exhibit a detailed overview of the process steps involved in the fabrication of 320×256 hybrid camera sensor for short-wavelength infrared (SWIR) detection. The shear strength of the BCB, which has undergone the different processes, is extracted by quartz crystal microbalance measurement. The shear strength of the BCB is three orders of magnitude higher than that of the indium bump itself. The measured dark current distribution of the fabricated SWIR camera sensor indicates the suggested process of indium bumps can be useful for embodying highly sensitive infared camera sensors.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NO.2020R1C1C1004971).

참고문헌

  1. M. Rezaei, M. S. Park, C. Rabinowitz, C. L. Tan, S. Wheaton, M. Ulmer, and H. Mohseni, "InGaAs based Heterojunction Phototransistors: Viable Solution for High-speed and Lownoise Short Wave Infrared Imaging", Appl. Phys. Lett., 114, 161101 (2019). https://doi.org/10.1063/1.5091052
  2. J. Jiang, S. Tsao, T. O'Sullivan, M. Razeghi, and G. J. Brown, "Fabrication of Indium Bumps for Hybrid Infrared Focal Plane Array Applications," Infrared Phys. Technol., 45(2), 143-151 (2004). https://doi.org/10.1016/j.infrared.2003.08.002
  3. M. Datta, "Manufacturing Processes for Fabrication of Flipchip Micro-bumps Used in Microelectronic Packaging: An Overview," J. Micromanufacturing, 3(1), 69-83 (2020). https://doi.org/10.1177/2516598419880124
  4. L. Liu, J. Rabinowitz, S. Bianconi, M. S. Park, and H. Mohseni, "Highly Sensitive SWIR Detector Array Based on Nanoscale Phototransistors Integrated on CMOS Readout," Appl. Phys. Lett., 117, 191102 (2020). https://doi.org/10.1063/5.0024259
  5. K. M. Chu, J. S. Lee, H. S. Cho, B. S. Rho, H. H. Park, and D. Y. Jeon, "Characteristics of Indium Bump for Flip-Chip Bonding Used in Polymeric-Waveguide-Integrated Optical Interconnection Systems," Jpn. J. Appl. Phys., 43(8B), 5922-5927 (2004). https://doi.org/10.1143/JJAP.43.5922
  6. N. C. Das, M. Taysing-Lara, K. A. Olver, F. Kiamilev, J. P. Prineas, J. T. Olesberg, E. J. Koerperick, L. M. Murray, and T. F. Boggess, "Flip Chip Bonding of 68×68 MWIR LED Arrays," IEEE Transactions on Electronics Packaging Manufacturing, 32(1), 9-13 (2009). https://doi.org/10.1109/TEPM.2008.2005062
  7. M. Rezaei, M. S. Park, C. L. Tan, and H. Mohseni, "Sensitivity Limit of Nanoscale Phototransistors," IEEE Electron Devices Lett. 38(8), 1051 (2017). https://doi.org/10.1109/LED.2017.2721381
  8. A. Rogalski, P. Martyniuk, and M. Kopytko, "Challenges of Small-pixel Infrared Detectors: A Review," Rep. Prog. Phys., 79, 046501 (2016). https://doi.org/10.1088/0034-4885/79/4/046501
  9. M. S. Park, M. Rezaei, K. Barnhart, C. L. Tan, and H. Mohseni, "Surface Passivation and Aging of InGaAs/InP Heterojunction Phototransistor," J. Appl. Phys., 121, 233105 (2017). https://doi.org/10.1063/1.4986633
  10. J. Yang, "Processing Procedures for CYCLOTENE 3000 Series Dry Etch Resins," DOW Chemical Co. (2005).
  11. P. Kozlowski, K. Czuba, K. Chmielewski, J. Ratajczak, J. Branas, A. Korczyc, K. Reginski, and A. Jasik, "Indium-Based Micro-Bump Array Fabrication Technology with Added Pre-Reflow Wet Etching and Annealing," Materials, 14, 6269 (2021). https://doi.org/10.3390/ma14216269
  12. H. Qiuping, X. Gaowei, Q. Gang, Y. Yuan, and Luo Le, "Electroplated Indium Bump Arrays and the Bonding Reliability," J. Semicond., 31(11), 116004 (2010). https://doi.org/10.1088/1674-4926/31/11/116004
  13. Q. Huang, G. Xu, Y. Yuan, X. Cheng, and L. Luo, "Development of Indium Bumping Technology through AZ9260 Resist Electroplating," J. Micromech. Microeng., 20, 055035 (2010). https://doi.org/10.1088/0960-1317/20/5/055035
  14. Y. Huang, C. Lin, Z. H. Ye, and R. J. Ding, "Reflow Flipchip Bonding Technology for Infrared Detectors," J. Micromech. Microeng., 25, 85009 (2015). https://doi.org/10.1088/0960-1317/25/8/085009
  15. P. Merken, J. John, L. Zimmermann, and C. V. Hoof, "Technology for Very Dense Hybrid Detector Arrays Using Electroplated Indium Solderbumps," IEEE Trans. Adv. Packag., 26(1), pp. 60-64 (2003). https://doi.org/10.1109/TADVP.2003.811550
  16. D. Johannsmann, A. Langhoff, and C. Leppin, "Studying Soft Interfaces with Shear Waves: Principles and Applications of the Quartz Crystal Microbalance (QCM)," Sensors, 21, 3490 (2021). https://doi.org/10.3390/s21103490
  17. K. Huang, and L. Szlufarska, "Friction and Slip at Solid/liquid Interface in Vibrational Systems," Langmuir, 28(50), pp. 17302-17312 (2012). https://doi.org/10.1021/la303381z