Browse > Article
http://dx.doi.org/10.5303/PKAS.2017.32.1.245

PROPERTIES OF DUST OBSCURED GALAXIES IN THE NEP-DEEP FIELD  

Oi, Nagisa (Department of Infrared Astrophysics Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency)
Matsuhara, Hideo (Department of Infrared Astrophysics Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency)
Pearson, Chris (Department of Physical Sciences, The Open University)
Buat, Veronique (Aix-Marseille Universite, CNRS, LAM (Laboratoire d'Astrophysique de Marseille))
Burgarella, Denis (Aix-Marseille Universite, CNRS, LAM (Laboratoire d'Astrophysique de Marseille))
Malkan, Matt (Department of Physics and Astronomy, UCLA)
Miyaji, Takamitsu (Universidad Nacional Autonoma de Mexico)
AKARI-NEP team (Department of Infrared Astrophysics Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency)
Publication Information
Publications of The Korean Astronomical Society / v.32, no.1, 2017 , pp. 245-249 More about this Journal
Abstract
We selected 47 DOGs at z ~ 1.5 using optical R (or r'), AKARI $18{\mu}m$, and $24{\mu}m$ color in the AKARI North Ecliptic Pole (NEP) Deep survey field. Using the colors among 3, 4, 7, and 9µm, we classified them into 3 groups; bump DOGs (23 sources), power-law DOGs (16 sources), and unknown DOGs (8 sources). We built spectral energy distributions (SEDs) with optical to far-infrared photometric data and investigated their properties using SED fitting method. We found that AGN activity such as a AGN contribution to the infrared luminosity and a Chandra detection rate for bump and power-law DOGs are significantly different, while stellar component properties like a stellar mass and a star-formation rate are similar to each other. A specific star-formation rate range of power-law DOGs is slightly higher than that of bump DOGs with wide overlap. Herschel/PACS detection rates are almost the same between bump and power-law DOGs. On the other hand SPIRE detection rates show large differences between bump and power-law DOGs. These results might be explained by differences in dust temperatures. Both groups of DOGs host hot and/or warm dust (~ 50 Kelvin), and many bump DOGs contain cooler dust (${\leq}30$ Kelvin).
Keywords
Infrared galaxies; Dusty galaxies; High redshift galaxies; AKARI; Deep survey;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bussmann, R. S., Dey, A., Armus, L., et al., 2012, The Star Formation Histories of z 2 Dust-obscured Galaxies and Submillimeter-selected Galaxies, ApJ, 744, 150   DOI
2 Calzetti, D., Armus, L., Bohlin, R. C., et al., 2000, The Dust Content and Opacity of Actively Star-forming Galaxies, ApJ, 533, 682   DOI
3 Dale, D. A. & Helou, G., 2002, The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths, ApJ,, 576, 159   DOI
4 Dey, A., Soifer, B. T., Desai, V., et al., 2008, A Signicant Population of Very Luminous Dust-Obscured Galaxies at Redshift z - 2, ApJ, 677, 943   DOI
5 Fritz, J., 2006, Revisiting the infrared spectra of active galactic nuclei with a new torus emission model, MNRAS, 366, 767   DOI
6 Goto, T., Takagi, T., Matsuhara, H., et al., 2010, Evolution of infrared luminosity functions of galaxies in the AKARI NEP-deep field. Revealing the cosmic star formation history hidden by dust, A&A, 514, A6   DOI
7 Ilbert, O., Arnouts, S., McCracken, H. J., et al., 2006, Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey, A&A, 457, 841   DOI
8 Lonsdale, C. J., Polletta, M. d. C., Omont, A., et al., 2009, MAMBO 1.2 mm Observations of Luminous Starbursts at z 2 in the SWIRE Fields, ApJ, 692, 422   DOI
9 Kovacs, A., Omont, A., Beelen, A., et al., 2010, Far-infrared Properties of Spitzer-selected Luminous Starbursts, ApJ, 717, 29   DOI
10 Kroupa, P., 2001, On the variation of the initial mass function, MNRAS, 322, 231   DOI
11 Maraston, C., 2005, Evolutionary population synthesis: models, analysis of the ingredients and application to high-z galaxies, MNRAS, 362, 799   DOI
12 Matsuhara, H., Wada, T., Matsuura, S., et al., 2006, Deep Extragalactic Surveys around the Ecliptic Poles with AKARI (ASTRO-F), PASJ, 58, 673   DOI
13 Melbourne, J., Peng, C. Y., Soifer, B. T., et al., 2011, The Black Hole Masses and Star Formation Rates of z > 1 Dust Obscured Galaxies: Results from Keck OSIRIS Integral Field Spectroscopy, AJ, 141, 141   DOI
14 Murata, K., Matsuhara, H., Wada, T., et al., 2013, AKARI North Ecliptic Pole Deep Survey. Revision of the catalogue via a new image analysis, A&A, 559A, 132
15 Lagache, G., Abergel, A., Boulanger, F., Desert, F. X., & Puget, J. -L., 1999, First detection of the warm ionised medium dust emission. Implication for the cosmic far-infrared background, A&A, 344, 322
16 Noll, S., Burgarella, D., Giovannoli, E., et al., 2009, Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample, A&A, 507, 1793   DOI
17 Oi, N., Matsuhara, H., Murata, K., et al., 2014, Optical - near-infrared catalog for the AKARI north ecliptic pole Deep field, A&A, 566A, 60
18 Soifer, B. T., Sanders, D. B., Neugebauer, G., et al., 1986, The luminosity function and space density of the most luminous galaxies in the IRAS survey, ApJ, 303, L41   DOI