• Title/Summary/Keyword: bounded operator

Search Result 279, Processing Time 0.021 seconds

HARDY TYPE ESTIMATES FOR RIESZ TRANSFORMS ASSOCIATED WITH SCHRÖDINGER OPERATORS ON THE HEISENBERG GROUP

  • Gao, Chunfang
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.235-254
    • /
    • 2022
  • Let ℍn be the Heisenberg group and Q = 2n + 2 be its homogeneous dimension. Let 𝓛 = -∆n + V be the Schrödinger operator on ℍn, where ∆n is the sub-Laplacian and the nonnegative potential V belongs to the reverse Hölder class $B_{q_1}$ for q1 ≥ Q/2. Let Hp𝓛(ℍn) be the Hardy space associated with the Schrödinger operator 𝓛 for Q/(Q+𝛿0) < p ≤ 1, where 𝛿0 = min{1, 2 - Q/q1}. In this paper, we consider the Hardy type estimates for the operator T𝛼 = V𝛼(-∆n + V )-𝛼, and the commutator [b, T𝛼], where 0 < 𝛼 < Q/2. We prove that T𝛼 is bounded from Hp𝓛(ℍn) into Lp(ℍn). Suppose that b ∈ BMO𝜃𝓛(ℍn), which is larger than BMO(ℍn). We show that the commutator [b, T𝛼] is bounded from H1𝓛(ℍn) into weak L1(ℍn).

ON FIXED POINT OF UNIFORMLY PSEUDO-CONTRACTIVE OPERATOR AND SOLUTION OF EQUATION WITH UNIFORMLY ACCRETIVE OPERATOR

  • Xu, Yuguang;Liu, Zeqing;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • v.24 no.3
    • /
    • pp.305-315
    • /
    • 2008
  • The purpose of this paper is to study the existence and uniqueness of the fixed point of uniformly pseudo-contractive operator and the solution of equation with uniformly accretive operator, and to approximate the fixed point and the solution by the Mann iterative sequence in an arbitrary Banach space or an uniformly smooth Banach space respectively. The results presented in this paper show that if X is a real Banach space and A : X $\rightarrow$ X is an uniformly accretive operator and (I-A)X is bounded then A is a mapping onto X when A is continuous or $X^*$ is uniformly convex and A is demicontinuous. Consequently, the corresponding results which depend on the assumptions that the fixed point of operator and solution of the equation are in existence are improved.

  • PDF

A geometric criterion for the element of the class $A_{1,aleph_0 $(r)

  • Kim, Hae-Gyu;Yang, Young-Oh
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.635-647
    • /
    • 1995
  • Let $H$ denote a separable, infinite dimensional complex Hilbert space and let $L(H)$ denote the algebra of all bounded linear operators on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $1_H$ and is closed in the $weak^*$ operator topology on $L(H)$. For $T \in L(H)$, let $A_T$ denote the smallest subalgebra of $L(H)$ that contains T and $1_H$ and is closed in the $weak^*$ operator topology.

  • PDF

WEIGHTED COMPOSITION OPERATORS FROM F(p, q, s) INTO LOGARITHMIC BLOCH SPACE

  • Ye, Shanli
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.977-991
    • /
    • 2008
  • We characterize the boundedness and compactness of the weighted composition operator $uC_{\psi}$ from the general function space F(p, q, s) into the logarithmic Bloch space ${\beta}_L$ on the unit disk. Some necessary and sufficient conditions are given for which $uC_{\psi}$ is a bounded or a compact operator from F(p,q,s), $F_0$(p,q,s) into ${\beta}_L$, ${\beta}_L^0$ respectively.

RANGE INCLUSION OF TWO SAME TYPE CONCRETE OPERATORS

  • Nakazi, Takahiko
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1823-1830
    • /
    • 2016
  • Let H and K be two Hilbert spaces, and let A and B be two bounded linear operators from H to K. We are interested in $RangeB^*{\supseteq}RangeA^*$. It is well known that this is equivalent to the inequality $A^*A{\geq}{\varepsilon}B^*B$ for a positive constant ${\varepsilon}$. We study conditions in terms of symbols when A and B are singular integral operators, Hankel operators or Toeplitz operators, etc.

SELF-ADJOINT INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

  • Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.845-850
    • /
    • 2002
  • Given vectors x and y in a filbert space H, an interpolating operator for vectors is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i=y_i$, for i = 1, 2 …, n. In this article, we investigate self-adjoint interpolation problems for vectors in tridiagonal algebra.

RIESZ PROJECTIONS FOR A NON-HYPONORMAL OPERATOR

  • Lee, Jae Won;Jeon, In Ho
    • Korean Journal of Mathematics
    • /
    • v.24 no.1
    • /
    • pp.65-70
    • /
    • 2016
  • J. G. Stampfli proved that if a bounded linear operator T on a Hilbert space ${\mathfrak{H}}$ satisfies ($G_1$) property, then the Riesz projection $P_{\lambda}$ associated with ${\lambda}{\in}iso{\sigma}$(T) is self-adjoint and $P_{\lambda}{\mathfrak{H}}=(T-{\lambda})^{-1}(0)=(T^*-{\bar{\lambda}})^{-1}(0)$. In this note we show that Stampfli''s result is generalized to an nilpotent extension of an operator having ($G_1$) property.

ON A CLASS OF WEAKLY CONTINUOUS OPERATORS

  • Rho, Jae-Chul
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.87-93
    • /
    • 1983
  • Let X and Y be normed linear spaces. An operator T defined on X with the range in Y is continuous in the sense that if a sequence {x$_{n}$} in X converges to x for the weak topology .sigma.(X.X') then {Tx$_{n}$} converges to Tx for the norm topology in Y. We shall denote the class of such operators by WC(X, Y). For example, if T is a compact operator then T.mem.WC(X, Y). In this note we discuss relationships between WC(X, Y) and the class of weakly of bounded linear operators B(X, Y). In the last section, we will consider some characters for an operator in WC(X, Y).).

  • PDF