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RANGE INCLUSION OF TWO SAME TYPE
CONCRETE OPERATORS

TAKAHIKO NAKAZI

ABSTRACT. Let H and K be two Hilbert spaces, and let A and B be two
bounded linear operators from H to K. We are interested in RangeB* O
RangeA*. It is well known that this is equivalent to the inequality
A*A > eB*B for a positive constant €. We study conditions in terms
of symbols when A and B are singular integral operators, Hankel opera-
tors or Toeplitz operators, etc.

1. Introduction

Let T" be the unit circle in the complex plane C and m the normalized
Lebesgue measure on I'. For 1 < p < oo, LP denotes the Lebesgue space and
HP denotes the Hardy space.

For a closed subspace N in L?, Py denotes the orthogonal projection from
L? to N. We will write Py = P for N = H2.

For ¢ in L™, Myf = ¢f (f € L?). A Hankel operator Hy and a Toeplitz
operator Ty are defined as the following,

Hyf =(I—P)Myf (f € H?)
and
Tyf = PMyf (f € H?).
For a and b in L™, put
Sapf = (MoP + My(I - P))f (f €L?

then S, is called a singular integral operator. Let N be a closed subspace in
H? such that TN C N. For ¢ in L>, a truncated Toeplitz operator Sy is
defined as the following,

Sef =PnMyf (f €N).
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In this paper, we are interested in when RangeB* O RangeA*. It is known as
a theorem of Douglas [2] that RangeB* O RangeA* if and only if A*A > eB*B
for some positive constant e. RangeA denotes the clousure of RangeA.

B. A. Lotto [5] studied when A = Hy, and B=T, or A=T, and B = Hy.
That is, he studied when A and B are different kinds of operators. In this paper,
we study when A and B are same kinds of operators, that is, when both A and
B are the following operators: (1) singular integral operators, (2) the adjoints
of singular integral operators, (3) Hankel operators, (4) Toeplitz operators, (5)
truncated Toeplitz operators. The case (3) was essentially studied by C. Gu
[3].

When f is a nonzero function in HP(1 < p < o0), if |f| = 1 a.e. on T, then
f is called an inner function. If |f| = |g| and g is in HP, then g = qf for some
inner function g, then f is called an outer function. If f/|f| = g/|g| and ¢ is in
H? then g = cf for some positive constant ¢, then f is called a strongly outer
function.

2. Adjoint of singular integral operator

T. Yamamoto [10] gives a necessary and sufficient condition for SapSab =
S;dSQd different from Lemma 3.

Lemma 1. The following (1), (2) and (3) are equivalent.
(1) 53 pSab = 52 4Se,a-
(2) For fi € H? and f, € ZH?,

/|af1 + bfo)?do/2m > /lcf1 + dfo|?df/2m.
(3) For f1 € H? and fy € 2H?
| [ fifatab— cdojzn < [ 17 (Gal ~ Py 2n [ 17  aP)ds 2
and |a|* — |c|* > 0 and |b]* — |d|*> > 0.

Proof. By well known routine calculations, it is easy to see the equivalences. [

Lemma 2. Let ¢, Wi and Wy be in L™ where W; > 0 (j = 1,2). Then the
following (1) and (2) are equivalent.
(1) For f; € H? and f, € zH?

|/f1f2¢d9/27r|2 < /|f1|2W1d9/27r/|f2|2W2d9/27r.
(2) There exists k in H* such that |¢ — k|* < W1 Ws.

Proof. (1)==(2). The Cotlar-Sadosky’ lifting theorem [1] shows (2).
(2)==(1). When f; € H? and fo € ZH?, fif> € zH! and so

| / f1fabd6)2m| = | / Fifo(6 — K)d6)2n]
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1/2 1/2
< / oW ol W2 d0 /2

S/|f1|2W1d9/27r/|f2|2W2d9/27r
because |¢p — k|2 < Wi Wa. 0

Lemma 3. S S0 > S} 4Sc.a if and only if |a| > |c|,|b| > |d| and there exists
k in H*® such that

|(ab — cd) + k| < (|af* — |c[*)([bf* — |d]?).
Proof. By the equivalence (1) and (3) of Lemma 1, when ¢ = ab — cd, W) =
|a[* = |c|* and Wa = [b|* — |d|*, S} ,Sap > Sk 4Se.a if and only if for fi € H?
and fo € ZH?

|/f1f_2¢d9/27r|2 S /|f1|2W1d9/27T/|f2|2W2d9/27T
Hence by Lemma 2 there exists k& in H> such that |¢—k|? < W;W,. Therefore
S;’bSa,b > S:7d8’c,d if and only if there exists k in H such that
[(ab — ed) — k|* < (la* — [e*)(b]* — |d|*). O
Theorem 1. RangeS; , 2 RangeS; , if and only if there exists a positive con-
stant € such that |a| > gl|c|,|b| > e|d|, and there exists k in H™ such that
|(ab — e?cd) + k|* < (|laf® = 2|c[*)(|b]* — £]d]?).
Proof. By the Douglas theorem, it is clear from Lemma 3. ]

3. Singular integral operator

K. Takahashi [9] gives a necessary and sufficient condition for that there
exists a positive constant  such that v(M,PMz) > (M.PM;). He applied it to
an interpolation theorem on the unit circle. We use this to study RangeS, ;, 2

RangeS. 4. The proof of following lemma is similar to [8]. In this section, put
Q=1-P

Lemma 4. Range(PMy)* 2 Range(PMy)* if and only if there exists a func-

tion f in H> such that ¢ = f¢.

Proof. The ‘if’ part is clear. In fact, (PTy)*PMy = (T;PMy)* (TfPMy) =

(PMy)"(TyT7)PMy < || fII2(PMy)*PM,. By the Douglas theorem,
Range(PMy)* D Range(PMy)*.

We will show the ‘only if’ part. By the Douglas theorem, there exists an oper-
ator on X on H? such that X PMy = PM,,. Hence RangeP M, and RangeP M,
are invariant for T because T} PMyL?> = PM;PMyL?* = PM;(I —Q)MysL* =
PM:MyL? = PM,L>.

T*XPMy = T:PMy = PMyM: = XPMyM: = XTPM,.
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Hence [T} | RangePMy|[X | RangePMy] = [X | RangePMy|[T} | RangeP My).
Then by the Nagy-Foias lifting theorem [5] there exists an operator Y on H?>
such that 7Y = YT} and Y | RangePM, = X | RangePM,, that is, there
exists a function f € H* such that T7PMy = PMy. Hence PMy, = PM,
and so PMy,_,, P = 0. Thus fo=1p. O

Theorem 2. Suppose b =d. Then RangeSq, O RangeS. q if and only if there
erists a function f in H* such that c = fa.

Proof. By hypothesis,
Sap = (PMz)* + (QM3)* and S q = (PMz)* + (QMz)™.

Hence RangeS, , 2 RangeS, 4 if and only if Range(PMjz)* O Range(PMz)*.
Now Lemma 4 shows the theorem. (I

4. Hankel operator

The following theorem is essentially known in [3, Corollary 2] or [3, the proof
of Lemma 4].

Theorem 3. Let ¢, be in L.

(1) RangeH ], O RangeHj if and only if there exists a function k in H> such
that ki — ¢ belongs to H*.

(2) RangeHy O RangeHy if and only if there exists a contraction h in H™
such that hi) — ¢ belongs to H™.

Proof. (1) If RangeH,;, O RangeHj, then by the Douglas theorem there exists
a positive constant ¢ such that HjHy > H,H.s. By [3, Corollary 2], there
exists a contraction kg in H such that kg —e¢ belongs to H>®. Put k = ko/e.
Conversely if k € H* and k¢ — ¢ € H*®, put ko = k/||k]|lec and € = 1/||k]| o
where we may assume k # 0. [3, Corollary 2] shows HjHy > HX H.s. Now
apply the Douglas theorem

(2) It is a corollary of (1). Or it can be proved directly. O

5. Toeplitz operator

When we assume KerTy; # {0}, we can prove a general result. However
when we do not assume KerTy # {0}, we have to consider only a few special
case. In general a strongly outer function is outer but the converse is not true.

Lemma 5. If KerT; # {0}, then ¢ = 2Gg where q is inner and g° is strongly
outer, and KerTy = (H? © zqH?)g.

Proof. This is a theorem of E. Hayashi [4]. O
Theorem 4. Suppose RangeTy is not dense in H?. If RangeTy O RangeTly,
then ¢ = ptg/tg and v = qg/g where p,q and g satisfy the following condition:

(i) p and q are inner and pt € H?> © qzH?>.
(i) g2 and (tg)? are strongly outer.
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The converse is valid when Range Ty is closed, and both g and t are bounded.

Proof. If RangeTy 2 RangeT),, then KerT; 2 KerTy. Since RangeTy is not
dense, KerT; # {0}. By Lemma 4, KerT; = (H? © 2pH?)f and KerT; =
(H?© 2qH?)g, and ¢ = zpf/f and ¢ = 2Gg/g where p and q are inner, and f?
and g2 are strongly outer. Since KerTy; 2 KerTy, pf = sg for some s = pt and
t is outer and f = tg for some t € H? © zqgH?. This shows the first part the
theorem. The converse is clear. (|

Theorem 5. Let ¢ and ¢ be in L. Then the following (1) and (2) hold.

(1) When ¢ and ¢ are nonzero functions in H*, Rangely O RangeTly if
and only if there exists k in H* such that ¢ = ko.

(2) When ¢ and 1 are nonzero functions in H>, if there ewists m in H>
such that ¢ = m¢, then Rangely O Rangely.

Proof. (1) By the Douglas theorem, it is enough to show T;T, > €2TJ}T¢ for
some € > 0 if and only if || > e|¢[. But it is clear because T Ty = T}z and
T$Tw = T“w‘z and 1—“¢‘2752|¢|2 Z 0. This shows (1)

(2) It is clear because Ty H? = TyT;; H*> C T,H?. O

The converse of (2) of Theorem 5 does not hold. In fact, if ¢ and 1) are
inner, then T,H? = T,H?> = H?. Thus we should consider the converse when
¢ and 1) are outer. However if ¢ = 1 + z and ¢ = 1 — 2z, then we can see
T,H? = T¢H2§H2.

When TyH? = H?, we can tell nothing about RangeT,. Now we consider
some special case such that T, H? # H? and TyH? is dense in H?.

Theorem 6. Let E and F' be measurable sets on I'.
(1) If RangeTy,, O Rangel),, then m(FUE) =1 or E = F. Moreover if
F = E°, then m(E) = 1.
(2) If $ = xE and 1 is a nonzero function in H>, then RangeT, 2 RangeTy.
(3) If = xE and ¢ is a nonzero function in H*, then Rangely 2 Rangely.

Proof. (1) For a measurable set G, put hg = Ty, h where h € H?. Then xgh =
he 4 hG where hg € H? and hG € ZH?. Suppose RangeT), , O RangeT) .. For
feH? if xypf = fr+ fF, then there exists e in H? such that ex = fr and
xEe =ep+ef. Hence xpf —xpe = fF —€F. If m(FEUF) < 1, then xr = x&.
Since for any g there exists f such that T, f = Ty.9, Txpf =9 — Ty,g and
so g =Ty, (f + g). This shows T, ,H? = H? and so m(E) = 1.

(2) Since 1 # 0, there exists a nonnegative integer n such that ) = 2"¢ for
¢ € H? with £(0) # 0. If T,H? D Ty H?, then T,H? > £(0) and so there exists
f € H? and g € zH? such that ygf = £(0)+g € H?. This contradiction shows
TyH* 2 T, H?.

(3) If T,H?* D T,H?, then there exist ¢ € H? and h € zH? such that

g = v + h. Hence ¢zg = 21 + h(0) + hy where we may assume h(0) # 0.
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Since TyH? > 21, there exist g; € H? and hy € zH? such that ¢g; = 21 + ha.
Therefore ¢(2g — g1) = h(0) + (h1 — ha). This implies T,H? > 1 and so
¢g' =1+ 1/ for some ¢’ € H? and b/ € zH?. This shows xgg’ belongs to H?.
This contradiction shows Ty, H? 2 Ty, H?. O

6. Truncated Toeplitz operator

Let ¢ be a nonconstant inner function and N = N, = H? & ¢H?. For a
function ¢ in L, Sy, = PnTy | N is called a truncated Toeplitz operator.

Lemma 6. If ¢ is a nonzero function in H>, then KerS} = H? © QsH? and
RangeSy = Qu(H? © qpH?) where Q, and gy are inner functions such that
q=Q¢dsp-

Proof. Since S.S4 = 549-, KerS;; is invariant under S} and hence invariant
under T7. By the Beurling theorem, KerS} = H? & QgH? for some inner
function Q4 where QyH? 2 gH?. Therefore N, = (H? © QsH?) ® Q4(H? ©
q¢H2) where g4 = qQ¢. This implies the lemma. ([

For a function ¢ in H*™ let Q)4 and g4 be two inner functions such that
g = Q494 in Lemma 6.

Theorem 7. Let ¢ and i) be in H>.

(1) If there exists a function k in H*® such that k¢ — i belongs to gH™>,
then RangeSj 2 RangeSy,.

(2) If RangeS} is dense and RangeSj 2 RangeS,,, then there exists a func-
tion k in H*> such that k¢ — 1 belongs to qH®.

(3) There exist two inner functions gy and g, such that RangeS}, = H? o
qoH? and RWgeS;Z = H?6& gy H? where gyq and gpq are in H*. If Range S5
is closed, then Range Sj 2 Range Sy, if and only if qyqe belongs to H.

Proof. (1) Since Skp—y = 0, SiSp = Skg = Sy and so RangeS} O RangeS;.

(2) RangeSj 2 RangeSy, if and only if there exists a bounded linear operator
B such that BS; = Sy. Then BS.Sy = BSyS. = SyS. = 5.8y = S.BS,.
Since Sy has a dense range, BS, = S, B and so by a theorem of Sarason B = Sj,
for some k € H*°. Hence Siy = Sy and so k¢ — ¢ € ¢H™.

(3) Since S5} = S;SI and SIS = 5,57, there exist inner functions g,
and ¢y such that RangeS; = H? & qyH? and Rangesy, = H? & qyH? where
7pq and gyq are in H>. Suppose Range S7 is closed. If Range S7 2 Range
Sy, then H? © qsH? D H? © g H?. Conversely if H> © gH? 2 H* © gy H?,
then Range S7 2 H?©quH?D Ranges),. O

Theorem 8. Let ¢ and v be in H™.

(1) Suppose q is a Blaschke product with simple zeros in D. Then, RangeSy D
RangeSy, if and only if there exists a positive constant vy such that v|é(a)| >
[¥(a)| if g(a) =0 and a € D.
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(2) If RangeSy O RangeSy, then Qy = qoQ¢ and g4 = qogy for some inner
function qq.

(3) When RangeSy is closed, RangeSy O RangeSy if and only if Qy = qoQs
and gy = qoqy for some inner function qo.

Proof. (1) Range S, 2 RangeSy if and only if 72S¢S; > Sy, for some
positive constant . If K, is a reproducing kernel for a € D and ¢(a) = 0, then
V(S84S5 Ko, Ka) > (SyS;Ka, Ka). Hence v|¢(a)| > [(a)| if g(a) = 0. The
linear span of K, with ¢(a) = 0 is dense in N and so we can prove the converse.

(2) If RangeS, 2 RangeSy, then KerSj C KerS) and so by Lemma 6

QusH? 2 QuH? Hence ¢ = Quqp = Quqy and qo = QwQ¢. Therefore
Qy = qoQ¢ and gy = qoqy.
(3) The ‘only if’ part follows from (2). Conversely if Qy = qoQ¢ and ¢y =

40y, then
Qu(H? 6 quH?) = Qu{(H? & qoH?) + qo(H? & qu H?)}
= Qu(H? © qoH?) + Qu(H? © qpH?)
D Qu(H? © quH?).

Now by Lemma 6 RangeSy4 = RangeSy 2 RangeS, 2 RangeSy. O

In Theorems 4, 7 and 8, the following Example will be interesting. In two
inner function ¢; and g9, if these do not have common inner divisors except
unimodular constants, then we write ¢; A g2 = 1.

Example. (1) Let ¢ be a unimodular and dist (¢, H*°) < 1. Then Range T}
is closed.

(2) Let @ be an inner function and ¢ = Qqo where go is inner. Suppose
¢ = Qh where h is an invertible outer function in H*. Then RangeSy is
closed.

(3) Let @ be an inner function and ¢ = Qqo where ¢ is inner. If ¢ = Qh
where h is outer, then RangeSy is closed.

(4) Let @ be an inner function and @ A ¢ = 1. If ¢ = @, then RangeS} is
dense in N,.

Proof. (1) It is well known.
If ¢ = Qqo, then
N, = (H?>© qoH?) @ qo(H? © QH?)
= (H? e QH*) & Q(H? & qoH?).
(2) Range S, = Range Sg because h is an invertible outer function in H>.
By the above remark, SqN, = Q(H? © qoH?) and so RangeS,; is closed.

(3) Since Q(H? © QH?) C ZH?, by the above remark, SNy = H* © qoH?
and so RangeS; is closed.
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(4) It is enough to prove KerSy = {0}. If Syf = 0, then Qf € ¢H? and

f L qH? because f € N,. This contradicts Q A ¢ = 1 because we may assume

fi

s outer. 0
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