
Bull. Korean Math. Soc. 53 (2016), No. 6, pp. 1823–1830
http://dx.doi.org/10.4134/BKMS.b151005
pISSN: 1015-8634 / eISSN: 2234-3016

RANGE INCLUSION OF TWO SAME TYPE

CONCRETE OPERATORS

Takahiko Nakazi

Abstract. Let H and K be two Hilbert spaces, and let A and B be two
bounded linear operators from H to K. We are interested in RangeB∗ ⊇

RangeA∗. It is well known that this is equivalent to the inequality
A∗A ≥ εB∗B for a positive constant ε. We study conditions in terms
of symbols when A and B are singular integral operators, Hankel opera-
tors or Toeplitz operators, etc.

1. Introduction

Let Γ be the unit circle in the complex plane C and m the normalized
Lebesgue measure on Γ. For 1 ≤ p ≤ ∞, Lp denotes the Lebesgue space and
Hp denotes the Hardy space.

For a closed subspace N in L2, PN denotes the orthogonal projection from
L2 to N . We will write PN = P for N = H2.

For φ in L∞, Mφf = φf (f ∈ L2). A Hankel operator Hφ and a Toeplitz
operator Tφ are defined as the following,

Hφf = (I − P )Mφf (f ∈ H2)

and

Tφf = PMφf (f ∈ H2).

For a and b in L∞, put

Sa,bf = (MaP +Mb(I − P ))f (f ∈ L2)

then Sa,b is called a singular integral operator. Let N be a closed subspace in
H2 such that T ∗

zN ⊂ N . For φ in L∞, a truncated Toeplitz operator Sφ is
defined as the following,

Sφf = PNMφf (f ∈ N).
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In this paper, we are interested in when RangeB∗ ⊇ RangeA∗. It is known as
a theorem of Douglas [2] that RangeB∗ ⊇ RangeA∗ if and only if A∗A ≥ εB∗B
for some positive constant ε. RangeA denotes the clousure of RangeA.

B. A. Lotto [5] studied when A = Hψ and B = Tφ or A = Tφ and B = Hψ .
That is, he studied when A and B are different kinds of operators. In this paper,
we study when A and B are same kinds of operators, that is, when both A and
B are the following operators: (1) singular integral operators, (2) the adjoints
of singular integral operators, (3) Hankel operators, (4) Toeplitz operators, (5)
truncated Toeplitz operators. The case (3) was essentially studied by C. Gu
[3].

When f is a nonzero function in Hp(1 ≤ p ≤ ∞), if |f | = 1 a.e. on Γ, then
f is called an inner function. If |f | = |g| and g is in Hp, then g = qf for some
inner function q, then f is called an outer function. If f/|f | = g/|g| and g is in
Hp, then g = cf for some positive constant c, then f is called a strongly outer
function.

2. Adjoint of singular integral operator

T. Yamamoto [10] gives a necessary and sufficient condition for S∗
a,bSa,b ≥

S∗

c,dSc,d different from Lemma 3.

Lemma 1. The following (1), (2) and (3) are equivalent.

(1) S∗

a,bSa,b ≥ S∗

c,dSc,d.

(2) For f1 ∈ H2 and f2 ∈ z̄H̄2,
∫

|af1 + bf2|
2dθ/2π ≥

∫
|cf1 + df2|

2dθ/2π.

(3) For f1 ∈ H2 and f2 ∈ z̄H̄2

|

∫
f1f̄2(ab̄ − cd̄)dθ/2π|2 ≤

∫
|f1|

2(|a|2 − |c|2)dθ/2π

∫
|f2|

2(|b|2 − |d|2)dθ/2π

and |a|2 − |c|2 ≥ 0 and |b|2 − |d|2 ≥ 0.

Proof. By well known routine calculations, it is easy to see the equivalences. �

Lemma 2. Let φ, W1 and W2 be in L∞ where Wj ≥ 0 (j = 1, 2). Then the

following (1) and (2) are equivalent.

(1) For f1 ∈ H2 and f2 ∈ z̄H̄2

|

∫
f1f̄2φdθ/2π|

2 ≤

∫
|f1|

2W1dθ/2π

∫
|f2|

2W2dθ/2π.

(2) There exists k in H∞ such that |φ− k|2 ≤W1W2.

Proof. (1)=⇒(2). The Cotlar-Sadosky’ lifting theorem [1] shows (2).
(2)=⇒(1). When f1 ∈ H2 and f2 ∈ z̄H̄2, f1f̄2 ∈ zH1 and so

|

∫
f1f̄2φdθ/2π| = |

∫
f1f̄2(φ− k)dθ/2π|
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≤

∫
|f1|W

1/2
1 |f2|W

1/2
2 dθ/2π

≤

∫
|f1|

2W1dθ/2π

∫
|f2|

2W2dθ/2π

because |φ− k|2 ≤W1W2. �

Lemma 3. S∗

a,bSa,b ≥ S∗

c,dSc,d if and only if |a| ≥ |c|, |b| ≥ |d| and there exists

k in H∞ such that

|(ab̄− cd̄) + k|2 ≤ (|a|2 − |c|2)(|b|2 − |d|2).

Proof. By the equivalence (1) and (3) of Lemma 1, when φ = ab̄ − cd̄, W1 =
|a|2 − |c|2 and W2 = |b|2 − |d|2, S∗

a,bSa,b ≥ S∗

c,dSc,d if and only if for f1 ∈ H2

and f2 ∈ z̄H̄2

|

∫
f1f̄2φdθ/2π|

2 ≤

∫
|f1|

2W1dθ/2π

∫
|f2|

2W2dθ/2π.

Hence by Lemma 2 there exists k in H∞ such that |φ−k|2 ≤W1W2. Therefore
S∗

a,bSa,b ≥ S∗

c,dSc,d if and only if there exists k in H∞ such that

|(ab̄− cd̄)− k|2 ≤ (|a|2 − |c|2)(|b|2 − |d|2). �

Theorem 1. RangeS∗

a,b ⊇ RangeS∗

c,d if and only if there exists a positive con-

stant ε such that |a| ≥ ε|c|, |b| ≥ ε|d|, and there exists k in H∞ such that

|(ab̄− ε2cd̄) + k|2 ≤ (|a|2 − ε2|c|2)(|b|2 − ε2|d|2).

Proof. By the Douglas theorem, it is clear from Lemma 3. �

3. Singular integral operator

K. Takahashi [9] gives a necessary and sufficient condition for that there
exists a positive constant γ such that γ(MaPMā) ≥ (McPMc̄). He applied it to
an interpolation theorem on the unit circle. We use this to study RangeSa,b ⊇
RangeSc,d. The proof of following lemma is similar to [8]. In this section, put
Q = 1− P

Lemma 4. Range(PMφ)
∗ ⊇ Range(PMψ)

∗ if and only if there exists a func-

tion f in H∞ such that ψ = f̄φ.

Proof. The ‘if’ part is clear. In fact, (PTψ)
∗PMψ = (Tf̄PMφ)

∗(Tf̄PMφ) =

(PMφ)
∗(TfT

∗

f )PMφ ≤ ‖f‖2∞(PMφ)
∗PMφ. By the Douglas theorem,

Range(PMφ)
∗ ⊇ Range(PMψ)

∗.

We will show the ‘only if’ part. By the Douglas theorem, there exists an oper-
ator onX onH2 such thatXPMφ = PMψ. Hence RangePMφ and RangePMψ

are invariant for T ∗
z because T ∗

z PMφL
2 = PMz̄PMφL

2 = PMz̄(I−Q)MφL
2 =

PMz̄MφL
2 = PMφL

2.

T ∗

zXPMφ = T ∗

z PMψ = PMψMz̄ = XPMφMz̄ = XT ∗

z PMφ.
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Hence [T ∗
z | RangePMψ][X | RangePMφ] = [X | RangePMφ][T

∗
z | RangePMφ].

Then by the Nagy-Foias lifting theorem [5] there exists an operator Y on H2

such that T ∗
z Y = Y T ∗

z and Y | RangePMφ = X | RangePMφ, that is, there
exists a function f ∈ H∞ such that T ∗

f PMφ = PMψ. Hence PMf̄φ = PMψ

and so PMf̄φ−ψP = 0. Thus f̄φ = ψ. �

Theorem 2. Suppose b = d. Then RangeSa,b ⊇ RangeSc,d if and only if there

exists a function f in H∞ such that c = fa.

Proof. By hypothesis,

Sa,b = (PMā)
∗ + (QMb̄)

∗ and Sc,d = (PMc̄)
∗ + (QMb̄)

∗.

Hence RangeSa,b ⊇ RangeSc,d if and only if Range(PMā)
∗ ⊇ Range(PMc̄)

∗.
Now Lemma 4 shows the theorem. �

4. Hankel operator

The following theorem is essentially known in [3, Corollary 2] or [3, the proof
of Lemma 4].

Theorem 3. Let φ, ψ be in L∞.

(1) RangeH∗
ψ ⊇ RangeH∗

φ if and only if there exists a function k in H∞ such

that kψ − φ belongs to H∞.

(2) RangeHψ ⊇ RangeHφ if and only if there exists a contraction h in H∞

such that hψ̄ − φ̄ belongs to H∞.

Proof. (1) If RangeH∗
ψ ⊇ RangeH∗

φ, then by the Douglas theorem there exists

a positive constant ε such that H∗

ψHψ ≥ H∗

εφHεφ. By [3, Corollary 2], there

exists a contraction k0 in H
∞ such that k0ψ−εφ belongs to H∞. Put k = k0/ε.

Conversely if k ∈ H∞ and kψ − φ ∈ H∞, put k0 = k/‖k‖∞ and ε = 1/‖k‖∞
where we may assume k 6= 0. [3, Corollary 2] shows H∗

ψHψ ≥ H∗
εφHεφ. Now

apply the Douglas theorem
(2) It is a corollary of (1). Or it can be proved directly. �

5. Toeplitz operator

When we assume KerTφ̄ 6= {0}, we can prove a general result. However
when we do not assume KerTφ̄ 6= {0}, we have to consider only a few special
case. In general a strongly outer function is outer but the converse is not true.

Lemma 5. If KerTφ̄ 6= {0}, then φ̄ = z̄q̄g where q is inner and g2 is strongly

outer, and KerTφ̄ = (H2 ⊖ zqH2)g.

Proof. This is a theorem of E. Hayashi [4]. �

Theorem 4. Suppose RangeTφ is not dense in H2. If RangeTφ ⊇ RangeTψ,
then φ = ptg/tg and ψ = qg/ḡ where p, q and g satisfy the following condition:

(i) p and q are inner and pt ∈ H2 ⊖ qzH2.

(ii) g2 and (tg)2 are strongly outer.
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The converse is valid when Range Tφ is closed, and both g and t are bounded.

Proof. If RangeTφ ⊇ RangeTψ, then KerTψ̄ ⊇ KerTφ̄. Since RangeTφ is not

dense, KerTφ̄ 6= {0}. By Lemma 4, KerTφ̄ = (H2 ⊖ zpH2)f and KerTψ̄ =

(H2 ⊖ zqH2)g, and φ̄ = z̄p̄f̄/f and ψ̄ = z̄q̄ḡ/g where p and q are inner, and f2

and g2 are strongly outer. Since KerTψ̄ ⊇ KerTφ̄, pf = sg for some s = pt and

t is outer and f = tg for some t ∈ H2 ⊖ zqH2. This shows the first part the
theorem. The converse is clear. �

Theorem 5. Let φ and ψ be in L∞. Then the following (1) and (2) hold.
(1) When φ and ψ are nonzero functions in H∞, RangeTφ ⊇ RangeTψ if

and only if there exists k in H∞ such that ψ = kφ.
(2) When φ̄ and ψ̄ are nonzero functions in H∞, if there exists m in H∞

such that ψ = m̄φ, then RangeTφ ⊇ RangeTψ.

Proof. (1) By the Douglas theorem, it is enough to show T ∗

φTφ ≥ ε2T ∗

ψTψ for

some ε > 0 if and only if |φ| ≥ ε|ψ|. But it is clear because T ∗
φTφ = T|φ|2 and

T ∗

ψTψ = T|ψ|2 and T|φ|2−ε2|ψ|2 ≥ 0. This shows (1)

(2) It is clear because TψH
2 = TφTm̄H

2 ⊆ TφH
2. �

The converse of (2) of Theorem 5 does not hold. In fact, if φ̄ and ψ̄ are
inner, then TφH

2 = TψH
2 = H2. Thus we should consider the converse when

φ̄ and ψ̄ are outer. However if φ̄ = 1 + z and ψ̄ = 1 − z, then we can see
TφH

2 = TψH
2⊂
6−

H2.

When TφH
2 = H2, we can tell nothing about RangeTψ. Now we consider

some special case such that TφH
2 6= H2 and TφH

2 is dense in H2.

Theorem 6. Let E and F be measurable sets on Γ.
(1) If RangeTχE

⊇ RangeTχF
, then m(F ∪ E) = 1 or E = F . Moreover if

F = Ec, then m(E) = 1.
(2) If φ = χE and ψ̄ is a nonzero function in H∞, then RangeTφ 6⊇ RangeTψ.
(3) If φ = χE and ψ is a nonzero function in H∞, then RangeTφ 6⊇ RangeTψ.

Proof. (1) For a measurable set G, put hG = TχG
h where h ∈ H2. Then χGh =

hG+hG where hG ∈ H2 and hG ∈ z̄H̄2. Suppose RangeTχE
⊇ RangeTχF

. For

f ∈ H2, if χF f = fF + fF , then there exists e in H2 such that eE = fF and

χEe = eE+eE. Hence χF f −χEe = fF −eE. If m(E∪F ) < 1, then χF = χE .
Since for any g there exists f such that TχE

f = TχF
g, TχE

f = g − TχE
g and

so g = TχE
(f + g). This shows TχE

H2 = H2 and so m(E) = 1.
(2) Since ψ 6≡ 0, there exists a nonnegative integer n such that ψ̄ = znℓ for

ℓ ∈ H2 with ℓ(0) 6= 0. If TφH
2 ⊇ TψH

2, then TφH
2 ∋ ℓ̄(0) and so there exists

f ∈ H2 and g ∈ zH2 such that χEf = ℓ̄(0)+ ḡ ∈ H̄2. This contradiction shows
TφH

2 6⊇ TψH
2.

(3) If TφH
2 ⊇ TψH

2, then there exist g ∈ H2 and h ∈ zH2 such that

φg = ψ + h̄. Hence φzg = zψ + h(0) + h̄1 where we may assume h(0) 6= 0.
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Since TφH
2 ∋ zψ, there exist g1 ∈ H2 and h2 ∈ zH2 such that φg1 = zψ+ h̄2.

Therefore φ(zg − g1) = h(0) + (h1 − h2). This implies TφH
2 ∋ 1 and so

φg′ = 1 + h̄′ for some g′ ∈ H2 and h′ ∈ zH2. This shows χE ḡ
′ belongs to H2.

This contradiction shows TφH
2 6⊇ TψH

2. �

6. Truncated Toeplitz operator

Let q be a nonconstant inner function and N = Nq = H2 ⊖ qH2. For a
function φ in L∞, Sφ = PNTφ | N is called a truncated Toeplitz operator.

Lemma 6. If φ is a nonzero function in H∞, then KerS∗
φ = H2 ⊖QφH

2 and

RangeSφ = Qφ(H
2 ⊖ qφH

2) where Qφ and qφ are inner functions such that

q = Qφqφ.

Proof. Since SzSφ = SφSz, KerS∗

φ is invariant under S∗
z and hence invariant

under T ∗
z . By the Beurling theorem, KerS∗

φ = H2 ⊖ QφH
2 for some inner

function Qφ where QφH
2 ⊇ qH2. Therefore Nq = (H2 ⊖ QφH

2) ⊕ Qφ(H
2 ⊖

qφH
2) where qφ = qQ̄φ. This implies the lemma. �

For a function φ in H∞ let Qφ and qφ be two inner functions such that
q = Qφqφ in Lemma 6.

Theorem 7. Let φ and ψ be in H∞.

(1) If there exists a function k in H∞ such that kφ − ψ belongs to qH∞,

then RangeS∗
φ ⊇ RangeS∗

ψ.

(2) If RangeS∗

φ is dense and RangeS∗

φ ⊇ RangeS∗

ψ, then there exists a func-

tion k in H∞ such that kφ− ψ belongs to qH∞.

(3) There exist two inner functions qφ and qψ such that RangeS∗

φ = H2 ⊖

qφH
2 and RangeS∗

ψ = H2 ⊖ qψH
2 where gφq and qψq are in H∞. If Range S∗

φ

is closed, then Range S∗

φ ⊇ Range S∗

ψ if and only if qψqφ belongs to H∞.

Proof. (1) Since Skφ−ψ = 0, SkSφ = Skφ = Sψ and so RangeS∗

φ ⊇ RangeS∗

ψ.

(2) RangeS∗

φ ⊇ RangeS∗

ψ if and only if there exists a bounded linear operator
B such that BSφ = Sψ. Then BSzSφ = BSφSz = SψSz = SzSψ = SzBSφ.
Since Sφ has a dense range, BSz = SzB and so by a theorem of Sarason B = Sk
for some k ∈ H∞. Hence Skφ = Sψ and so kφ− ψ ∈ qH∞.

(3) Since S∗
zS

∗

φ = S∗

φS
∗
z and S∗

zS
∗

ψ = S∗

ψS
∗
z , there exist inner functions qφ

and qψ such that RangeS∗
φ = H2 ⊖ qφH

2 and RangeS∗
ψ = H2 ⊖ qψH

2 where
qφq and qψq are in H∞. Suppose Range S∗

φ is closed. If Range S∗
φ ⊇ Range

S∗

ψ, then H
2 ⊖ qφH

2 ⊇ H2 ⊖ qψH
2. Conversely if H2 ⊖ qφH

2 ⊇ H2 ⊖ qψH
2,

then Range S∗

φ ⊇ H2 ⊖ qψH
2 ⊇ RangeS∗

ψ. �

Theorem 8. Let φ and ψ be in H∞.

(1) Suppose q is a Blaschke product with simple zeros in D. Then, RangeSφ⊇
RangeSψ if and only if there exists a positive constant γ such that γ|φ(a)| ≥
|ψ(a)| if q(a) = 0 and a ∈ D.
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(2) If RangeSφ ⊇ RangeSψ, then Qψ = q0Qφ and qφ = q0qψ for some inner

function q0.
(3) When RangeSφ is closed, RangeSφ ⊇ RangeSψ if and only if Qψ = q0Qφ

and qφ = q0qψ for some inner function q0.

Proof. (1) Range Sφ ⊇ RangeSψ if and only if γ2SφS
∗

φ ≥ SψS
∗

ψ for some

positive constant γ. If Ka is a reproducing kernel for a ∈ D and q(a) = 0, then
γ2〈SφS∗

φKa,Ka〉 ≥ 〈SψS∗

ψKa,Ka〉. Hence γ|φ(a)| ≥ |ψ(a)| if q(a) = 0. The

linear span of Ka with q(a) = 0 is dense in N and so we can prove the converse.
(2) If RangeSφ ⊇ RangeSψ, then KerS∗

φ ⊆ KerS∗

ψ and so by Lemma 6

QφH
2 ⊇ QψH

2. Hence q = Qφqφ = Qψqψ and q0 = QψQ̄φ. Therefore
Qψ = q0Qφ and qφ = q0qψ.

(3) The ‘only if’ part follows from (2). Conversely if Qψ = q0Qφ and qφ =
q0qψ, then

Qφ(H
2 ⊖ qφH

2) = Qφ{(H
2 ⊖ q0H

2) + q0(H
2 ⊖ qψH

2)}

= Qφ(H
2 ⊖ q0H

2) +Qψ(H
2 ⊖ qψH

2)

⊇ Qψ(H
2 ⊖ qψH

2).

Now by Lemma 6 RangeSφ = RangeSφ ⊇ RangeSψ ⊇ RangeSψ. �

In Theorems 4, 7 and 8, the following Example will be interesting. In two
inner function q1 and q2, if these do not have common inner divisors except
unimodular constants, then we write q1 ∧ q2 = 1.

Example. (1) Let φ be a unimodular and dist (φ,H∞) < 1. Then Range Tφ
is closed.

(2) Let Q be an inner function and q = Qq0 where q0 is inner. Suppose
φ = Qh where h is an invertible outer function in H∞. Then RangeSφ is
closed.

(3) Let Q be an inner function and q = Qq0 where q0 is inner. If φ = Qh
where h is outer, then RangeS∗

φ is closed.

(4) Let Q be an inner function and Q ∧ q = 1. If φ = Q, then RangeS∗
φ is

dense in Nq.

Proof. (1) It is well known.
If q = Qq0, then

Nq = (H2 ⊖ q0H
2)⊕ q0(H

2 ⊖QH2)

= (H2 ⊖QH2)⊕Q(H2 ⊖ q0H
2).

(2) Range Sφ = Range SQ because h is an invertible outer function in H∞.
By the above remark, SQNq = Q(H2 ⊖ q0H

2) and so RangeSφ is closed.
(3) Since Q̄(H2 ⊖QH2) ⊆ z̄H̄2, by the above remark, S∗

QNq = H2 ⊖ q0H
2

and so RangeS∗

φ is closed.
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(4) It is enough to prove KerSφ = {0}. If Sφf = 0, then Qf ∈ qH2 and
f ⊥ qH2 because f ∈ Nq. This contradicts Q ∧ q = 1 because we may assume
f is outer. �
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