BOUNDED LINEAR OPERATOR ON INTERPOLATION SPACES

Doo-Hoan Jeong and Jin-Mun Jeong

1. Introduction

In this paper we cleal with the fundamental theory of interpolation spaces between the initial Banach spaces. Let X and Y be two Banach spaces contained in a locally convex linear Hausdorff space \mathcal{X} such that the embedding mapping of both X and Y in \mathcal{X} is continuous. Let $X \cap Y$ be a dense subspace in both X and Y. The purpose this paper is made to obtain abstract interpolation theorems between X and Y, which is denoted by $(X, Y)_{\theta, p}$.

Let X_{1} and Y_{1} [resp. X_{2} and Y_{2}] be two Banach spaces contained in a locally convex linear Hausdorff space \mathcal{X}_{1} [resp. \mathcal{X}_{2}] such that the embedding mappings of both X_{1} and $Y_{1}\left[\right.$ both X_{2} and $\left.Y_{2}\right]$ in \mathcal{X}_{1} [resp. \mathcal{X}_{2}] are continuous. Let T be bounded linear operator from X_{1} to X_{2} and also bounded from Y_{1} to Y_{2}. Then we give the properties of bounded operator on interpolation spaces that is from $\left(X_{1}, Y_{1}\right)_{\theta, p}$ to $\left(X_{2}, Y_{2}\right)_{\theta, p}$.

We will treet the first point of view and determine real and complex interpolation methods. To the real methods, there are the mean methods as in Lions and Peetre [2], the K-and J-methods as in Butzer and Berens[1]. We will make easier some proofs of the equivalence of the different methods in this paper. In forth coming paper, we will deal with the complex interpolation methods.

2. Definitions

Let I and Y be two Banach spaces contained in a locally convex linear Hausdorff space \mathcal{X} such that the embedding mapping of both X and Y in \mathcal{X} is continuous. Let $X \cap Y$ be a dense subspace in both X and Y. For $1<p<\infty$, we denote by $L_{*}^{p}(X)$ the Banach space of all functions $t \rightarrow u(t), t \in(0, \infty)$ and $u(t) \in X$, for which the mapping
$t \rightarrow u(t)$ is strongly measurable with respect to the measure $d t / t$ and the norm $\|u\|_{L_{*}^{p}(X)}$ is finite, where

$$
\|u\|_{L_{*}^{p}(X)}=\left\{\int_{0}^{\infty}\|u(t)\|_{X}^{p} \frac{d t}{t}\right\}^{\frac{1}{p}}
$$

For $0<\theta<1$, set

$$
\begin{aligned}
\left\|t^{\theta} u\right\|_{L_{*}^{p}(X)} & =\left\{\int_{0}^{\infty}\left\|t^{\theta} u(t)\right\|_{X}^{p} \frac{d t}{t}\right\}^{\frac{1}{p}} \\
\left\|t^{\theta} u^{\prime}\right\|_{L_{*}^{p}(Y)} & =\left\{\int_{0}^{\infty}\left\|t^{\theta} u^{\prime}(t)\right\|_{Y_{r}^{p}}^{p} \frac{d t}{t}\right\}^{\frac{1}{p}}
\end{aligned}
$$

We now introduce a Banach space

$$
V=\left\{u:\left\|t^{\theta} u\right\|_{L_{*}^{p}(X)}<\infty, \quad\left\|t^{\theta} u^{\prime}\right\|_{L_{*}^{p}(Y)}<\infty\right\}
$$

with norm

$$
\|u\|_{V}=\left\|t^{\theta} u\right\|_{L_{*}^{p}(X)}+\left\|t^{\theta} u^{t}\right\|_{L_{*}^{p}(Y)}
$$

and choose an $q \in C_{0}^{1}([0, \infty))$ satisfying $q(t) \geq 0, \quad q(0)=1$, it is easily seen that $u(0) \in \mathcal{X}$. Infact, we know

$$
\begin{aligned}
u(0) & =q(0) u(0)=-\int_{0}^{\infty} \frac{d}{d t}(q(t) u(t)) d t \\
& =-\int_{0}^{\infty} q^{\prime}(t) u(t) d t-\int_{0}^{\infty} q(t) u^{\prime}(t) d t
\end{aligned}
$$

By the simple calculation, from

$$
\begin{aligned}
& \left\|\int_{0}^{\infty} q^{\prime}(t) u(t) d t\right\|_{X}=\left\|\int_{0}^{\infty} t^{1-\theta} q^{\prime}(t) t^{\theta} u(t) \frac{d t}{t}\right\| X \\
& \leq\left\{\int_{0}^{\infty}\left|t^{1-\theta} q^{\prime}(t)\right|^{p^{\prime}} \frac{d t}{t}\right\}^{\frac{1}{p^{P}}}\left\{\int_{0}^{\infty}\left\|t^{\theta} u(t)\right\|_{X}^{p} \frac{d t}{t}\right\}^{\frac{1}{p}} \\
& =\left\{\int_{0}^{\infty} t^{(1-\theta) p^{\prime}-1}\left|q^{\prime}(t)\right|^{p^{\prime}} d t\right\}^{\frac{1}{p}}\left\|t^{\theta} u\right\|_{L^{p}(X)}<\infty
\end{aligned}
$$

where $p^{\prime}=p /(p-1)$, it follows $\int_{0}^{\infty} q^{\prime}(t) u(t) d t \in X \subset \mathcal{X}$. By the similary way since

$$
\begin{aligned}
\left\|\int_{0}^{\infty} q(t) u^{\prime}(t) d t\right\|_{Y} & =\left\|\int_{0}^{\infty} t^{1-\theta} q(t) t^{\theta} u^{\prime}(t) \frac{d t}{t}\right\| Y^{\prime} \\
& \leq\left\{\int_{0}^{\infty}\left|t^{1-\theta} q(t)\right|^{p^{\prime}} \frac{d t}{t}\right\}^{\frac{1}{p^{\prime}}}\left\{\int_{0}^{\infty}\left\|t^{\theta} u^{\prime}(t)\right\|_{Y}^{p} \frac{d t}{t}\right\}^{\frac{1}{p}} \\
& =\left\{\int_{0}^{\infty} t^{(1-\theta) p^{\prime}-1}|q(t)|^{p^{\prime}} d t\right\}^{\frac{1}{p^{\prime}}}\left\|t^{\theta} u^{\prime}\right\| L_{*}^{P}(Y)<\infty
\end{aligned}
$$

it follows $\int_{0}^{\infty} q(t) u^{\prime}(t) d t \in Y$. Thus, $u(0) \in X \cap Y \subset \mathcal{X}$.
Definition 2.1. We define $(X, Y)_{\theta, p}, 0<\theta<1,1 \leq p \leq \infty$, to be the space of all elements $u(0)$ where $u \in V$, that is,

$$
(X, Y)_{\theta, p}=\{u(0): u \in V\}
$$

Lemma 2.1(Young's inequality). Let $a>0, b>0$ and $\frac{1}{p}+\frac{1}{q}=$ 1 where $1<p<\infty$. Then $a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}$

Proposition 2.1. For $0<\theta<1$ and $1 \leq p \leq \infty$, the space $(I, I)_{\theta, p}$ is a Banach space with the norm

$$
\|a\|_{\theta, p}=\inf \{\|u\|: u \in V, \quad u(0)=a\}
$$

Furthermore, there is a constant $C_{\theta}>0$ such that

$$
\|a\|_{\theta, p}=C_{\theta} \inf \left\{\left\|t^{\theta} u\right\|_{L^{p}(X)}^{1-\theta}\left\|t^{\theta} u^{\prime}\right\|_{L_{*}^{p}(Y)}^{\theta}: u(0)=a, \quad u \in V\right\}
$$

Proof. We only prove the last equality. For $u \in V$ satistying $u(0)=$ a, we know $\|a\|_{\theta_{,}, p} \leq\|u\|_{v}$. Putting

$$
u_{\lambda}(t)=u(\lambda t), \quad \lambda>0
$$

it holds that

$$
u_{\lambda} \in V, \quad u_{\lambda}(0)=u(0)=a
$$

and
(2.1) $\quad\|a\|_{\theta, p} \leq\left\|u_{\lambda}\right\|_{V}=\left\|t^{\theta} u_{\lambda}\right\|_{L_{*}^{P}(X)}+\left\|t^{\theta} u_{\lambda}^{\prime}\right\|_{L_{*}^{P}(Y)}$.

Since

$$
\begin{aligned}
\left\|t^{\theta} u_{\lambda}\right\|_{L_{*}^{p}(X)} & =\left\{\int_{0}^{\infty}\left\|t^{\theta} u_{\lambda}(t)\right\|_{X}^{p} \frac{d t}{t}\right\}^{\frac{1}{p}}=\left\{\int_{0}^{\infty}\left\|t^{\theta} u(\lambda t)\right\|_{X}^{p} \frac{d t}{t}\right\}^{\frac{1}{p}} \\
& =\left\{\int_{0}^{\infty}\left\|\left(\frac{t}{\lambda}\right)^{\theta} u(t)\right\|_{X}^{p} \frac{d t}{t}\right\}^{\frac{1}{p}}=\lambda^{-\theta}\left\|t^{\theta} u\right\|_{L_{*}^{p}(X)}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|t^{\theta} u_{\lambda}^{\prime}\right\|_{L_{*}^{p}(Y)} & =\left\{\int_{0}^{\infty}\left\|t^{\theta} u_{\lambda}^{\prime}(t)\right\|_{Y}^{p} \frac{d t}{t}\right\}^{\frac{1}{p}}=\left\{\int_{0}^{\infty}\left\|t^{\theta} \lambda u^{\prime}(\lambda t)\right\|_{Y}^{p} \frac{d t}{t}\right\}^{\frac{1}{p}} \\
& =\lambda\left\{\int_{0}^{\infty}\left\|\left(\frac{t}{\lambda}\right)^{\theta} u^{\prime}(t)\right\|_{Y^{p}}^{p} \frac{d t}{t}\right\}^{\frac{1}{p}}=\lambda^{-\theta}\left\|t^{\theta} u^{\prime}\right\|_{L^{P}(Y)}
\end{aligned}
$$

from (2.1) it follows that

$$
\begin{align*}
\|a\| \|_{\theta, p} & \leq \lambda^{-\theta}\left\|t^{\theta} u\right\|_{L_{:}^{p}(Y)}+\lambda^{1-\theta}\left\|t^{\theta} u^{\prime}\right\|_{L_{*}^{p}(Y)} \tag{2.2}\\
& =\lambda^{-\theta} A+\lambda^{1-\theta} B .
\end{align*}
$$

Choosing

$$
\lambda=\theta A /(1-\theta) B
$$

(2.2) implies that
(2.3) $\quad\|a\|_{\theta, p} \leq\left(\frac{\theta A}{(1-\theta) B}\right)^{-\theta} A+\left(\frac{\theta A}{(1-\theta) B}\right)^{1-\theta} B$

$$
\begin{aligned}
& =\left(\frac{\theta}{1-\theta}\right)^{-\theta} A^{1-\theta} B^{\theta}+\left(\frac{\theta}{1-\theta}\right)^{1-\theta} A^{1-\theta} B^{\theta} \\
& =\left(1+\frac{\theta}{1-\theta}\right)\left(\frac{\theta}{1-\theta}\right)^{-\theta} A^{1-\theta} B^{\theta} \\
& =\frac{\theta}{1-\theta}\left(\frac{\theta}{1-\theta}\right)^{-\theta} A^{1-\theta} B^{\theta} \\
& =\frac{A^{1-\theta} B^{\theta}}{(1-\theta)^{1-\theta} \theta^{\theta}}=\left(\frac{A}{1-\theta}\right)^{1-\theta}\left(\frac{B}{\theta}\right)^{\theta} .
\end{aligned}
$$

By regarding as

$$
a=\left(\frac{A}{1-\bar{\theta}}\right)^{1-\theta}, \quad b=\left(\frac{B}{\theta}\right)^{\theta}, \quad p=\frac{1}{1-\theta}, \quad \text { and } \quad q=\frac{1}{\theta}
$$

in Young's Lemma 2.1, from (2.3) we have

$$
\|a\|_{\theta, p} \leq \frac{A^{1-\theta} B^{\theta}}{(1-\theta)^{1-\theta} \theta^{\theta}} \leq A+B,
$$

that is,

$$
\begin{aligned}
\|a\|_{\theta, p} & \leq \frac{1}{(1-\theta)^{1-\theta} \theta^{\theta}}\left\|t^{\theta} u\right\|_{L^{\xi}(X)}^{\mathbb{\theta}}\left\|t^{\theta} u^{\prime}\right\|_{L^{P}(Y)} \\
& \leq\left\|t^{\theta} u\right\|_{L^{P}(X)}+\left\|t^{\theta} u^{\prime}\right\|_{L^{p}\left(Y^{\prime}\right)} .
\end{aligned}
$$

For every $u \in V$ satisfying $u(0)=a$, it holds

$$
\|a\|_{\theta, p} \leq C_{\theta}\left\|t^{\theta} u\right\|_{L^{p}(X)}^{1-\theta}\left\|t^{\theta^{\prime} u^{\prime} \|_{L^{p}(Y)}^{\theta}} \leq\right\| u \|_{V}
$$

where $C_{\theta}=1 /(1-\theta)^{1-\theta} \theta^{\theta}$. Thus we conclude that

$$
\begin{aligned}
\|a\|_{\theta, p} & \leq \frac{1}{(1-\theta)^{1-\theta} \theta^{\theta}}\left\|t^{\theta} u\right\|_{L^{p}\left(X^{\prime}\right)}^{1-\theta}\left\|t^{\theta} u^{\prime}\right\|_{L^{p}(Y)}^{\theta} \\
& \leq\left\|t^{\theta} u\right\|_{L^{P}(X)}+\left\|t^{\theta} u^{\prime}\right\|_{L^{p}\left(Y^{Y}\right)} .
\end{aligned}
$$

Therefore

$$
\|a\|_{\theta, p}=C_{\theta} \inf \left\{\left\|t^{\theta} u\right\|_{L^{R}(X)}^{1-\theta}\left\|t^{\theta} u^{\prime}\right\|_{L^{2}:\left(Y^{\prime}\right)}^{\theta}: u(0)=a, \quad u \in V\right\} .
$$

Proposition 2.2. For $0<\theta<1$ and $1 \leq p \leq \infty$, we have $(X, X)_{\theta, p}=X$.

Proof. We only proof the relation $(X, X)_{\theta, p} \supset X$. Let $x \in X$ and $q \in C_{0}^{1}([0, \infty))$ safisfying $q(0)=1$. Putting $u(t)=q(t) x$, we have $u(0)=x$. By simple calculation, since

$$
\begin{aligned}
& \int_{0}^{\infty}\left\|t^{\theta} u(t)\right\|_{X}^{p} \frac{d t}{t}=\int_{0}^{\infty} t^{\theta p-1}|q(t)|^{p}\|x\|_{X}^{p} d t<\infty \\
& \int_{0}^{\infty}\left\|t^{\theta} u^{\prime}(t)\right\|_{X}^{p} \frac{d t}{t}=\int_{0}^{\infty} t^{\theta p-1}\left|q^{\prime}(t)\right|^{p}\|x\|_{X}^{p} d t<\infty
\end{aligned}
$$

we have $x \in(X, X)_{\theta, p}$.

Proposition 2.3. Let $X \subset Y$ satisfying that there exists a constant $c>0$ such that $\|u\|_{Y} \leq c\|u\|_{X}$. If $0<\theta<\theta^{\prime}<1$ then we have

$$
(X, Y)_{\theta, p} \subset(X, Y)_{\theta^{\prime}, p}
$$

Proof. Let $a \in(X, Y)_{\theta, p}$. then there exists $u \in V$ such that $u(0)=$ a and

$$
\left\|t^{\theta} u\right\|_{L^{p}(X)} \leq \infty, \quad\left\|t^{\theta} u^{\prime}\right\|_{L^{P}(Y)} \leq \infty .
$$

Let $q \in C_{0}^{1}([0, \infty))$ safisfying $q(0)=1, \quad 0 \leq q(t) \leq 1$ for $t \in(0,1)$ and $q(t)=0$ for $1 \leq t$. Putting $v(t)=q(t) u(t)$, we have

$$
\begin{aligned}
\left\|t^{\theta^{\prime}} v\right\|_{L^{p}(X)} & =\left\{\int_{0}^{\infty}\left(t^{\theta^{\prime}}\|v(t)\|_{X}\right)^{p} \frac{d t}{t}\right\}^{\frac{1}{p}} \\
& =\left\{\int_{0}^{1}\left(t^{\theta^{\prime}} q(t)\|u(t)\|_{X}\right)^{p} \frac{d t}{t}\right\}^{\frac{1}{p}} \\
& \leq\left\{\int_{0}^{1}\left(t^{\theta}\|u(t)\|_{X}\right)^{p} \frac{d t}{t}\right\}^{\frac{1}{p}}<\infty,
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|t^{\theta^{\prime}} v^{\prime}\right\|_{L^{p}(Y)} & =\left\{\int_{0}^{\infty}\left(t^{\theta^{\prime}}\left\|q(t) u^{\prime}(t)+q^{\prime}(t) u(t)\right\|_{Y}\right)^{p} \frac{d t}{t}\right\}^{\frac{1}{p}} \\
& \leq\left\{\int_{0}^{\infty}\left(t^{\theta^{\prime}} q(t)\left\|u^{\prime}(t)\right\|_{Y}\right)^{p} \frac{d t}{t}\right\}^{\frac{1}{p}} \\
& +\left\{\int_{0}^{\infty}\left(t^{\theta^{\prime}} q^{\prime}(t)\|u(t)\|_{Y}\right)^{p} \frac{d t}{t}\right\}^{\frac{1}{p}} \\
& \leq\left\{\int_{0}^{\infty}\left(t^{\theta^{\prime}}\left\|u^{\prime}(t)\right\| Y\right)^{p} \frac{d t}{t}\right\}^{\frac{1}{p}} \\
& +\max \left|q^{\prime}(t)\right|\left\{\int_{0}^{\infty}\left(t^{\theta^{\prime}}\|u(t)\|_{Y}\right)^{p} \frac{d t}{t}\right\}^{\frac{1}{p}}<\infty,
\end{aligned}
$$

hence we obtain that $a=v(0) \in(X, Y)_{\theta^{\prime}, p}$.

3. Bounded linear operators on interpolation spaces

Let X_{1} and Y_{1} [resp. X_{2} and Y_{2}] be two Banach spaces contained in a locally convex linear Hausdorff space \mathcal{X}_{1} [resp. \mathcal{X}_{2}] such that the embedding mappings of both X_{1} and $Y_{1}\left[\right.$ both X_{2} and $\left.Y_{2}\right]$ in \mathcal{X}_{1} [resp. \mathcal{X}_{2}] are continuous. Let $T: \mathcal{X}_{1} \rightarrow \mathcal{X}_{2}$ be linear operator such that $T \in B\left(\mathrm{X}_{1}, X_{2}\right)$ and $T \in B\left(Y_{1}, Y_{2}\right)$ where $B(X, Y)$ denotes the space of all bounded linear operators.

Theorem 3.1. If $T \in B\left(X_{1}, \mathrm{X}_{2}\right) \cap B\left(Y_{1}, Y_{2}\right)$, then $T \in B\left(\left(X_{1}, Y_{1}\right)_{\theta, p},\left(X_{2}, Y_{2}\right)_{\theta, p}\right)$ satisfying

$$
\|T\|_{B\left(\left(X_{1}, Y_{1}\right)_{\theta, p},\left(X_{2}, Y_{2}\right)_{P, p}\right)} \leq\|T\|_{B\left(X_{1}, Y_{2}\right)}^{1-\theta}\|T\|_{B\left(Y_{1}, Y_{2}\right)} .
$$

Proof. Let $a \in\left(X_{1}, Y_{1}\right)_{\theta, p}$. Then there exists u such that $u(0)=a$ and

$$
\left\|t^{\theta} u\right\|_{L^{p}\left(X_{1}\right)} \leq \infty, \quad\left\|t^{\theta} u^{\prime}\right\|_{L^{p}\left(Y_{1}\right)} \leq \infty .
$$

Here, we know that

$$
\begin{aligned}
\left\|t^{\theta} T u\right\|_{L^{p}\left(X_{2}\right)} & \leq\left\{\int_{0}^{\infty}\left\|t^{\theta} T u(t)\right\|_{X_{2}}^{p} \frac{d t}{t}\right\}^{\frac{1}{p}} \\
& \leq\|T\|_{B\left(X_{1}, X_{2}\right)}\left\|t^{\theta} u\right\|_{L^{?}\left(X_{1}\right)}
\end{aligned}
$$

and

$$
\left\|t^{\theta}(T u)^{\prime}\right\|_{L^{P}\left(Y_{2}\right)}=\left\|t^{\theta} T u^{\prime}\right\|_{L_{(}^{p}\left(Y_{2}\right)} \leq\|T\|_{B\left(Y_{1}, Y_{2}\right)}\left\|t^{\theta} u^{\prime}\right\|_{L^{?}\left(Y_{1}\right)}
$$

where $d / d t\{T u(t)\}=T u^{\prime}(t)$ in distribution sense, which implies $T u(0)$ $=T a \in\left(X_{2}, Y_{2}\right)_{\theta, p}$. On the other hand, from Proposition 2.1 it follows

$$
\begin{aligned}
\|T a\|_{\left(X_{2}, Y_{2}\right)_{\theta, p}} & \leq C_{\theta}\left\|t^{\theta} T u\right\|_{L^{p}\left(X_{2}\right)}^{1-\theta}\left\|t^{\theta}(T u)^{\prime}\right\|_{L^{p}\left(Y_{2}\right)}^{\theta} \\
& \leq C_{\theta}\|T\|_{B\left(X_{1}, X_{2}\right)}^{1-\theta}\|T\|_{B\left(Y_{1}, Y_{2}\right)}\left\|t^{\theta} u\right\|_{L^{?}\left(X_{1}\right)}^{1-\theta}\left\|t^{\theta} u^{\prime}\right\|_{L^{p}\left(Y_{1}\right)}^{\theta} .
\end{aligned}
$$

Therefore, we have

$$
\|T a\|_{\left(X_{2}, Y_{2}\right)_{\theta, p}} \leq\|T\|_{B\left(X_{1}, Y_{2}\right)}^{1-\theta}\|T\|_{B\left(Y_{1}, Y_{2}\right)}^{\theta}\|a\|_{\left(X_{1}, Y_{1}\right)_{\theta, P}}
$$

and hence the proof is complete.

References

1. P. L. Butzer and H. Berens, Semigroup of Operators and Approximatzon,, Springer-Verlag Berm Herdelberg New York, 1967
2. J. L. Lions and J Peetie, Sur une classe d'espaces d'interpolatzon, Inst. Hautes 19 (1964), 5-68
3 H Triebelng, Interpolaizon Spaces, Function Spaces, Differentzal Operators, North-Holland Publ.
4 H. Tanabe, Functzonal analysts II, Jikko Suppan Publ. Co., Tokyo [in Japanese], 1981.

Dongeui Technacal Junior College
Pusan 614-053, Korea

Department of Applied Mathematics
PuKyong National University
Pusan 608-737, Korea

