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ON A CLASS OF WEAKLY CONTINUOUS OPERATORS

JAE CrtL Ruo

1. Introduction

Let X and Y be normed linear spaces. An operator T defined on X with the range
in Y is continuous in the sense that if a sequence {z,} in X converges to x for the
weak topology (X, X') then {Tz,} converges to Tz for the norm topology in Y.
We shall denote the class of such operators by WC(X, Y).

For example, if 7 is a compact operator then T& WC(X, Y).

In this note we discuss relationships between WC(X, Y) and the class of weakly
compact operators WK(X, Y), the class of compact operators K(X, Y) and the class
of bounded linear operators B(X,Y). In the last section, we will consider some char-
acters for an operator in WC(X, Y).

2. Structures of WC (X, Y)

The class of compact operators K(X, Y) is a linear subspace of B(X,Y), but not
closed unless Y is complete. There are some closed subspaces of B(X, Y) see [6. p.
86], we add one more closed subspace.

PROPOSITION 2.1. Let X be a normed linear space, |Y a Banach space. Then WC
(X, Y) is a closed linear subspace of B(X,Y) containing K(X,Y) for the relative
topology of the uniform operator topology tx in B(X, Y).

Proof. Obviously, WC(X, Y) is a linear subspace of B(X, Y) and K(X, Y) ewcC
(X, Y)SB(X, Y). Let {T,} be a sequence in WC(X, Y) such that T,—7T for the
relative topology of 7y in B(X, Y). Then we have following inequalities:

ST = Tolllzal+ | Twaa— T+ | Tr— Tl
Moreover, it is known that a ¢(X, X’)~convergent sequence is norm bounded; (for
the proof, since {z,} is weakly bounded there is a positive number M >0 such that

[f(z) | <M for any z€ {z,} (=S) and for every feX’.
Let J: X—>X" be the canonical embedding, then
suplJ (@) fl =sup|f(x) | oo for any feX'.
Since J is an isometric isomorphism, the uniform bounded principle implies that

supllz|l=sup ||Jz||< oo, Hence, {z,} =S8 is norm bounded. )
z€S zES
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Therefore, if x,ox for o(X, X") then T, Tx for the norm in Y, thus T'e WC
(X, Y).

We denote WC(X, X) - WC(X).

ProrosITION 2.2. Let X be a normed lineer space. Then WC{X) s a subalgebra
of B(X) and WC(X) is a left ideal of B(X).

The proofs are immediate from the definition.

We notice that the identity operator is not contained in WC(X), but, {or special
cases, it may happen that J& WC(X, Y) so that WC(X, Y) ~B(X, Y). For instance,
if X is finite dimensional then the weak topology coincides with the norm topology in
X, whence WC(X, Y):~B(X, Y).

Another example, in the sequence space I', the weak convergence is identical to the
norm convergence even if the weak topology and the norm topology are not coincide
(750, p.157). Therefore if Xe=' and Y a normed lincar <pace, then WC(X, Y) =B
(X, Y).

The class WC(X, Y) and the class WK(X, Y) have no iaclusion relation in general.
It is known that every weakly compact operator is bounded, whence WK(X, Y)CR
(X, Y. And if at least one of X or Y iy reflexive Banacl: space then every bounded
operator Is weakly compact. Thus if X o Y v reflexive, then WA(X, Y)=B(X. ¥).

For any normed linear spaces X and Y. ohviously the following inclusion relation
hold:

KX, YVYCWHIX,Y)oB(X, Y
and
KX, V)SWCOX, Y)TB(X, Y.

A relationship between an operator To WC(X, Y and a dual operator T is given
by the following proposition.
THEOREM 2.3. Let X be a reflexive Banach space. and V a normed linear space,
then
TCWC(X, YY) implies that T WCLY', X)),
11 both N and Y are rejlexive, then
T WCX,Y) if and only if T ¢ WC(Y", X').

r

Proof. It is known that if X and Y are normed linear spaces then TCA{X, 1)
implies that T7es XY, X)) and if Y is complete, then

TCRY, X)) implies that Te KA Y).

Moreover, 1t can be shown that if TeK(X, 1) then T, —~Txr for the norm in Y
whenever a2 for ¢(X, X'). In case thet X is reflexive then cevery TeWC(X, Y)
18 a compact operator. It follows that K(X, Y) WX, V) whenever X is reflexive.

Therefore, il X is reflexive and Y a normed linear space. then
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TeWC(X, V)=K(X,Y) > T'eKY, X)cWwC(y, K X).
ie. TEWC(X,Y) o> T eWC(Y, X).

Suppose that both X and Y are reflexive. K(Y',X’)SWC(Y’,X') as noted above,
and since Y is reflexive if and only if Y’ is reflexive, we have

K(Y,X")=-=WC(Y'X").
Thus
T eWC(Y,X)=K(Y',X")o>TeK(X, Y).
And since K(X, Y)=WC(X, Y), we have
T eWC(Y, X ) o2TeWC(X,Y).

COROLLARY 2.4. Let H, W be Hilbert spaces, Then T=WC(H, W) if and only
if T"eWC(W’',H").

This follows directly from Theorem 2.3.

In Propositions 2.1, 2.2 we have shown that WC(X) is a closed left ideal in B(X)
whenever X is a Banach space. But this is not a right ideal in B(X) in general.
However, if X is reflexive then WC(X) is a closed two sided ideal in B(X); for,
K(X)=WC(X) and K(X) is a closed two sided ideal of B(X). Thus we have the

following.

COROLLARY 2.5. If X is a reflexive Banach space then WC(X) is a closed two
sided ideal in B(X).

For an adjoint operator, we have a following corollary.
COROLLARY 2.6. Let H, W be Hilbert spaces then
TeWC(H, W) if and only if T*€ WC(W, H).
Proof. This follows from the facts that
TcB(H, W) if and only if T*eB(W, H),
and
TeK(H, W) if and only if T*eK(W, H).

Furthermore,

KH,W)=WC(H, W), K(W,H)=WC(W, H).

3. Characters of an operator in WC(X,Y).

We list here a definition of the houndary which is related to the theory of Choquet
boundary:

Let X be a compact Hausdorff space, a linear subspace A of C(X) such that A
separates the points of X and contains constants. A subset Y of X is called a “boun-
dary” for A if for every fE A there exists y& Y such that |f(y)|=]fl.
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The following theorem gives a generalized notion of the above mentioned boundary:

TUEOREM 3.1. Let X be a reflexive Banach space. For each TE WC(X,Y), there

exists a unit vector x<:X such that '
And if TEWC(X), there is a unit vector f&X' such that |T'||=| T f].

Proof. By definition of the norm of T in B(X, Y), therc is a sequence {x,} in S=
freX 2 |<1} such that || Tl=1lim| Tz,

It is known that if X is reflexive, ecach haunded sequence in X contains a weakly
convergent subsequence; in particular if {+,} is a sequence for which |lz,)[<1 then it
contains a subsequence {x,} converging weakly to a limit = for which |z/|<1. Thus
for a Te WC(X, Y), Tx,—Tx for the norm whenever x,->z for c(X, X"), whence
| T, Tl

It follows that

“TH=lim T, Tl 2ES.

A simple calculation shows that {z]i==1.
The second proposition follows from the fact that X is refexive if and only if X’
does, and since 7€ WC(X’) by Theorem 2.3, we apply the same arguments as the

theorem.

COROLLARY 3.2. Let H and W be Hilbert spaces. For each T in K(H, W) there is
a unit vector x in H such that |T||=
Iz fi.

Let X be reflexive, for any T@ WC(X) and a positive integer z 7"& WC(X) since
WC(X) is a subalgebra of B(X). By Theorem 3.1 there is a unit, vector z(a) such
that [|77|== | T"2(n)}| thus the sequence {!T7x(n)|I}1/" converges as a—cc and its limit
is the spectral radius of T. If T is a proper contraction then the sequence [Tz (n)}
converges to the zero vector,

LemMA 8.8, Let X be a reflexive Banach space, let =S(T*) == {58 ¢+ |
(nezN) for TEe WC(X), where 08={zeX : |z| =1).

Then if there is a p& N for which T?=( then <NT?) =05, while if there is no p
for which T*t==0 then J(T") is a norm closed subset of 6S for each neN.

=T}

Proof. The first part is obvious. Let {z;} be a sequence in J(7T") such that z;—z
for the norm. Since T WC(X),  THj-=:Tro T2, Thus [ T*i=||Trz!, |lz|j=
1. Therefore <3(T™) is a closed subset of 685 for each ac N.

Obviously Y ;5('YA)( v[ft‘u“::%(xﬁ)]) X. We denote

X ATWEN

A
UA) = {eeaS : jAl= . Axli}, then U)=¢ and <5{0)=0S.

Whether or not does there exist A, B in WC(X) for which J(A)NI(B)=¢, or
equivalently U(A) JU(B) =98 so that { U{A) =X, Instead of to answer on this ques-
A WL
tion we shall show a restricted problem. To do this we begin with the following de-

finition.

Let X be a complex Banach space. A closed subspace Y itavariant under 7€ B(X)
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is said to be a spectral maximal space of T if it contains every closed subspace Z of
X invariant under T with ¢(T{Z)ce(T|Y). Anoperator T in B(X) is decomposable
if every finite open cover {G;} of the spectrum o(T), there exist a system of spectral
maximal spaces {Y;} of T such that

Q) o(TIY)CG; (=12, ...,n), (i) X:é‘.lY,-.

For a decomposable operator T, let ¢ be a separate part of ¢(T). then E(s, T)=

_zlﬂfr R;(T)dA defines a projection operator, where I" is any closed Jordan curve su-

rounding ¢ and separating ¢ and ¢ =¢(T)\o.

It is well known that

(1) E(s, T)X is a spectral maximal space of T, (T|E(¢, T)X)=0¢, and (2) the
restriction operator T|E (o, T)X is decomposable.

THEOREM 3.4. Let X be a reflexive Banach space. Then for any nonzero operator T
in WC(X) there exist invariant subspaces Xy, X, under T such that

1) X=XPX, @) TIX,eWC(X)(E=1,2) and (3) HT|X)NI(T|X;)=¢.

Proof. Previously we noted that WC(X)=K(X). It is known that every compact
operator is decomposable ([4], p.33), and the spectrum of a compact operator consists
of at most countable number of eigenvalues of 7T, only limit point of it is 0. There-
fore we may choose a disjoint open cover {Gy, G5} of ¢(T), that is,

O'(T) CG1UG2, G1ﬂGz:¢ (G;#QS 1:1, 2)

putting o(T) NG;=0;, we have 6,Uo,=06(T) and o;No,=¢, obviously o ’s are sepa-
rate parts of ¢(T). Therefore X;=E(o; T)X (i=1,2) are spectral maximal spaces of
T, whence X;'s are invariant subspaces of T. Furthermore it is easily seen that X=
X1®X2.

Since X is reflexive if and only if X, X, are reflexive, the restriction operators T
X;=T; ({=1,2) are elements of WC(X,) and both J(T}) and J(7T,) are nonempty
closed subsets of 85 by Lemma 3.3.

Furthermore since X=X;PX,, IH(THcX;NasS (:=1,2) and 3SN(XiNX,)=¢, we
have S(T|X)NI(T|X,) =¢. This completes the proof.

From the last assertion of Theorem 3.4, we have the following corollary.

COROLLARY 3.5. Let X be a reflexive Banach space. Then for any nonzero operator
T in WC(X) there exist invariant subspaces Xy and X, under T such that U(T|X;)
Y U(T|Xy)=X.

Proof. Since I(T|X) NS(T|Xy)=¢ by Theorem 3.4, U(T|Xy) UU(T |X,)=0dS.
And since the closed linear span [2S] of 3S is the whole space X, we have the desired
equality.

Let MCB(X) be any set of operators and let £CX be any set of vectors. We call
% separating for M if T€M and Tz=0 for all z&€X then T=0.

PROPOSITION 3.6. Let X be reflexive. Then for each T in WC(X) there is a set of
separating vectors for {T}. If S(T) is cyclic for WC(X) then 3(T) separating for
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the commuiani of WC(X .

Proof. The first assertion follows from Theorem 3.1. For the second, 1if § is an
element of the commutant of WC(X ) and Sz 0 for all e 2 (T) then S{T) = T(Sx)
0. Since =T Is eyvelic for WCUX), that is [WC(X)=4 T) ]+ X, we have S=0.
Let X, ¥ be normed lincar spaces and let NOT') be the null space of a bounded
lnear operator from X into Y. An aperator T2 X/N(T)- Y defined by TN ]=Tx
is norm continuous and 1" T where X/N(T) is the normed linear space with

the quotient norm. For this operator, we have the following proposition.
Provosurion 3.7 1f T WCXIN(T)Y, Yy then Te WCIX, Y)Y, and if X is reflex-
ive then there is a wunit vector ") in XNUT) such that "1 4="T v,

Proof. Since (N N{T); - N{7T), that is there is a natural isometric isomorphism
of (XIN(TY) onto N(TY {feXN 1 f(x) =0, 2N (T)i. Therefore, {for each Fe
(XINCT)Y there extsts a unique fEN(T ) such that Fef (dentify). Thus

Fia, 5 Iy whenever o, for o(X X'

Henee T, | converges to T7a] for the norm on Y, and siace

- - -

T vy =T ] = Ty To o0 s n-r o,

we have T WCLX, Y. Therefore, by Theorem 3.1, ther: is o unit veetor roX
such that 7T Tre . With this equality and with the faot that " T = To T7a]
T, we have the conclusions.

We notice that the reflexibility of X/N(T) was dropped i the proposition 4.7, but
the same conclution is obtiined as in Theorem 3. 1. However it is true that X/N(T)
i3 reflexive whenever X is reflexive,
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