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GENERALIZED LIOUVILLE PROPERTY FOR
SCHRODINGER OPERATOR. ON GRAPHS

SEOK W00 KiM AND YONG HAH LEE

ABSTRACT. We prove that the dimension of the space of posi-
tive (bounded, respectively) solutions for the Schrédinger operator
whose potential ¢ is nonnegative on a graph with g-regular ends is
equal to the number of ends (g-nonparabolic ends, respectively).

1. Introduction

In this paper, we study the Liouville properties of the Schrodinger
operator on a graph. Given an operator A on a graph and a class S of
solutions of A, by the Liouville property, we mean that the dimension of
the space of solutions in S is at most one. Taking this point of view, given
an operator A on a graph, it is natural to regard the finite dimensionality
of the solution space in & as the generalized Liouville property of the
pair (A,S). For example, Liouville property of the space of harmonic
functions on a graph is well understood by the works of Kanai, Soardi,
Lee and others. In [2], Kanai proved that the parabolicity of a graph is an
invariant under a rough isometry between graphs. In [6], Soardi proved
that rough isometries between graphs preserve the Liouville property
of the space of bounded harmonic functions with finite Dirichlet sum
on a graph. Later, Lee[4] proved that the dimension of the space of
all bounded harmonic functions with finite Dirichlet sum on a graph is
invariant under rough isometries between graphs.

In section 2, we obtain basic properties of solutions of the Schrodinger
operator on a graph. In section 3, we introduce the parabolicity and
regularity of ends related to the Schrédinger operator on a graph. In
section 4, we prove the generalized Liouville property of the space of
positive (bounded, respectively) solutions of the Schrédinger operator
on a graph.
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2. Preliminaries

Let G = (V, E) be an infinite graph with no self-loops, where V is
the vertex set of G and F is the edge set of G. If vertices x and y are
the endpoints of the same edge, we say that z and y are neighbors to
each other and write y € N, and x € N,. From now on, |A| denotes
the cardinality of the set A and in particular, the degree of = is denoted
by |Nz|. The graph G is said to be of bounded degree if there exists a
constant v such that |[N;| < v < oo forall z € V.

A sequence x = (zg,z1,---,x;) of vertices in G is called a path
from x¢ to x; with the length [ if each zj is an element of N, _,. We
say that a subset U of G is connected if for any two points z,y € U,
there exists a path in U joining x and y. For any z,y € V, we define
d(z,y) to be the minimum of the lengths of paths from z to y. Then
d defines a metric on G. For this metric d, define an l-neighborhood
Ni(z) ={y € G : d(z,y) <1} for each z € G and | € N. For a subset U
of G, define its boundary 0U by dU = {z € G : d(x,U) = 1}. Through
this paper, we assume that each graph G is connected and has bounded
degree, unless otherwise specified.

Let f be a real-valued function defined on V. Define the gradient of

F oy IDfI(x) = (Zyen, If (W) = f(x)[?)"/? for each z € V.

DEFINITION 1. Let U be a subset of a graph G with U # @ and ¢
be a nonnegative real valued function on G. A real valued function h
defined on a set U(= U U 9U) is called g-harmonic (g-superharmonic,
resp.) in U if

> (X (k) = @) ) = n(@) + g@h(z)n) =0 (20, resp.

z€G  yEN,

for any finitely supported (nonnegative, resp.) function 5 in U. The
function h is called g-subharmonic if —A is g-superharmonic in U.

PROPOSITION 2 (Local Harnack Inequality). Let h be a nonnegative
g-superharmonic function in a subset U of a graph G. Then for each
z € U, we have

max h(y) < (1 + |No| + q(z))h(z).
YEN,

PRrROOF. Fix a point 2 € U. Assume that h(yp) = maxyen, h(y) for
some yp € Ng. Then, obviously, h(yp) > h(x). Choose a real valued
function w on G such that w(z) =1 and w(y) =0 for all y € G\ {z}.
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Then we have

0< > (D (hly) = (=) (w(y) — w(2)) + 24(2)h(2)w(2))

zeU yeNz

= 2> (h(z) - h(y)) + 24(z)h()

yeNm

=—2 Y ()~ h@)

{yeNz:h(y)>h(z)}

+2 > (h(z) = h(y)) + 2q(z)h(z).

{yeNz:h(y)<h(z)}

Hence we have h(yg) < (1 + |Ng| + q(z))h(x). d

PROPOSITION 3 (Maximum Principle). Let U be a connected subset
of a graph G. Let h be a nonnegative g-harmonic function in U. If
h is not identically zero on U U QU, then h cannot attain an interior
maximum. Furthermore, h is strictly positive in U.

ProOOF. First, suppose that h(z) = 0 at a point x € U. Then by the
local Harnack inequality, we have h(y) = 0 for all y € N,. Repeating
this process, we have h = 0 on U U dU. This is a contradiction to the
assumption.

Next, assume that i attains an interior maximum M > 0 at a point
z € U. Then M — h is a nonnegative g-superharmonic in U and takes
zero at the point . By the above argument, we get a contradiction. [

3. g-parabolicity and g-regularity of ends

Fix a point 0 in a graph G. We denote by #(l) the number of un-
bounded components of G \ N;(o) for each [ € N. Then (1) is nonde-
creasing in . If lim; . #(!) = k, where k may be infinity, then we say
that the number of ends of GG is k. If k is finite, then we can choose
lo € N such that §(I) = k for all I > ly. In this case, there exist mutually
disjoint unbounded components E1, Ey, - - - , Ey, of G\ Ny, (0) and we call
each F; an end of G.

Let ¢ be a nonnegative real valued function on G. We now clas-
sify ends of G by the g-parabolicity: We say that an end F of G is
g-nonparabolic if for some integer I; > Iy, there exists a g-harmonic
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function ug, called a g-harmonic measure, on E \ Ny, (0) such that

ug=0 on ONj(o)NE,
sup ug =1.
E\Ny, (o)

Otherwise, F is called g-parabolic. We now construct a g-harmonic func-
tion Lg, called the Liouville function of E, on a g-nonparabolic end E.
Let {Lg, }i>1, be a sequence of g-harmonic function on (N;(0)\ Ny, (0))N
E such that

Lg;=1 on ONi(o)NE,;

LEJ =1 on 8Nl1(0) NE.

Then by the comparison principle, ug < Lg, < 1 on (N;(0)\ N, (0))NE.
Since {Lg,;} is monotone decreasing, its limit function Lg is g-harmonic
on E such that

ug <Lg<1 on FE;

supg Lg = 1;

infg(Lg —ug) =0.

DEFINITION 4. We say that an end FE of a graph G is g-regular if
there exist a constant C' < oo such that for any nonnegative g-harmonic
function f on E and sufficiently large integer L,

sup f<C inf .
ONL(o)NE ONL(o)NE

If E is a g-regular end of G and f is a nonnegative g-harmonic function
on E, then, by combining the g-regularity and the maximum principle,
we can control the wild variance of f at infinity of F as follows:

If liminf =0, th li =0.
minf f(@) =0, then Tm  f(z)

If limsup f(z) =00, then lim Ef(:v) = 00.

r—00,zEE —00,TE

4. Main results

Let us begin with constructing some ¢-harmonic functions, which
generate all bounded or positive g-harmonic functions on a graph G.
From now on, we assume that each end of GG is g-regular, unless otherwise
specified. If we assume that E is g-nonparabolic, then there exists a
constant Cy < co such that

limsup f(z) < Cy.

z—00,xEE
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Thus, by the maximum principle, we can construct a bounded g-harmonic
function fz on G such that for any other g-nonparabolic end E’,
(1) lim_(fg—Lp)(@)=0 and _lim _fp(z)=0.

T—00, ’

o0, z€R IT—00,LE

If e is a g-parabolic end, then, by the local Harnack inequality, we can
find a g-harmonic function v on e \ Nj,(0) such that

Ve > 0 on e\ Ny, (0);
ve=0 on 9Ny (o)Ne;
lim  ve(z) = c0.
T—00,rEe
If we further assume that G has at least one g-nonparabolic end,

by the strong maximum principle, one can construct a nonnegative g-
harmonic function he on G in such a way that h. is nonnegative on G\ e
and for any g-nonparabolic end F,
(2) lim Ehe(ac) =0 and lim  he(z) = oo.

T—00,LE T—00,x€e

We have a characterization of the g-parabolicity as follows:

LEMMA 5. Let e be a g-parabolic (not necessarily g-regular) end, and
f be a nontrivial g-harmonic function bounded above on e \ Ny, (o) for
some lg € N. Then sup, f > limsup,_,, ze. f(Z)-

PROOF. Suppose that limsup, . e f(z) = sup, f = m. Since f
is nontrivial, for sufficiently small € > 0, there exists a proper subset
Q of e\ Ny (0) such that Q@ = {z € e\ Ny, (o) : f(z) > m — ¢}. Put
v = max{(f — m + €)/¢,0}. Then v is a nonnegative g-subharmonic
function on e\ Ny, (o) such that

v=0 on e\Q and sup v=1.
e\Ny, (o)
By the maximum principle, we can construct a g-harmonic function u,
on e\ Ny, (o) such that
ue =0 on ONj,(0)Ne and  sup ue =1.
e\Ny, (o)
This is a contradiction to the g-parabolicity of e. O

By Lemma 5 and the maximum principle, the Liouville theorem for
the Schrodinger operator immediately follows:

THEOREM 6 (Liouville Theorem). Let G be a graph with only g-
parabolic (not necessarily g-regular) ends. Then every positive g-harmonic
function and every bounded g-harmonic function on G must be zero.
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We are ready to describe the structure of the space of bounded (pos-
itive, respectively) g-harmonic functions on G:

THEOREM 7. Let G be a graph of bounded degree and Fn, Ey,--- | E;
be g-nonparabolic ends of G, each of which is q-regular. Then for each
bounded g-harmonic function f on G, there exist real numbers ai, az, -,
a; such that

l
(3) .f = Z aifEi;
i=1

where fg,’s are bounded g-harmonic functions satisfying (1).

Furthermore, the set {fg, : 1 = 1,2,--- ,l} is linearly independent,
therefore, dim HB,(G) = , where HB4(G) denotes the space of all
bounded g-harmonic functions on G.

Proor. Let f be a bounded g-harmonic function on G. By Lemma
5, there exists a g-nonparabolic end E such that supp f = supg f. With-
out loss of generality, we may assume that sups; f > 0. By the maxi-
mum principle, we get f < CyLg < Cy on E, where Cy = supg f. Since
supg f = Cy, there is a sequence {z; };en in E such that lim; o (CyLE~—
f)(z;) = 0. By g-regularity, we have lim,_,cozce(CfLr — f)(z) = 0,
hence by (1), limg—,00 ze£(Cy fE — f)(z) = 0. Repeating the above pro-

cess, we can choose nonnegative real numbers ¢1, ¢z, -+ , ¢ such that
!
4 lim - ¢ fe)z)=0
@ i (=3 afn)@) =0
1=

whenever E is a g-nonparabolic end satisfying limsup,_, zegf = 0.
Thus by Lemma 5, f — ZizlcifEi <0onG. Put g = Zé:lcifEi - f.
Then g is a nonnegative bounded g-harmonic function on G. Applying
the above argument to g again, there exist nonnegative real numbers
bl, b2, T ,bl such that

!
(5) L lim (9— ;bifE»(m) =0,
whenever E is an ¢g-nonparabolic end satisfying liminf, o zepf < 0.
Combining (4) and (5), we have (3), where a; = ¢; — b; for each i =
1,2, 1.

Clearly, the set {fg, : ¢ =1,2,---,1} is linearly independent. O

THEOREM 8. Let G be a graph of bounded degree with g-parabolic
ends e, e, - ,es and g-nonparabolic ends E1, Es, - - - , Ey, each of which
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is g-regular. Then for each positive q-harmonic function f, there exist
nonnegative real numbers a1, az,--- ,a; and by, be,--- ,bs such that

l s
f:ZaifEi+ ijhej7
i=1 j=1

where fg,’s and he;’s are g-harmonic functions satisfying (1) and (2),
respectively.

Furthermore, the set {fg,,he; 11 =1,2,---,1,5=1,2,--- s} is lin-
early independent, therefore, dim H} (G) = s+, where HF(G) denotes
the space spanned by all positive g-harmonic functions on G.

ProoF. Let f be a positive g-harmonic function on G. Then by
the g-nonparabolicity, there exists a nonnegative constant Cg, < oo
for each i = 1,2,---, such that liminf, . zepf(z) = Cg,. We may
assume that Cg, > 0 for all i = 1,2,--- ,[. By the maximum principle,
f > Cg,ug, on E;. Hence there exist a nonnegative constant d; and
a sequence {z,} of points in E; such that f — d;ug, > 0 on E; and
(f — diug,)(zn) — 0 as x, — co. By the g-regularity, we have

lim (f —dug,)(z)=0.

r—00,xEE;

Hence
lim (f - dif,)(x) = 0.

z—o00,2€E;
Repeating this process, we can choose nonnegative constants dy, ds, - - -,
d; such that

T—00,x€EE),

l
lim (f—) difs)(z) =0,
i=1

for each £ = 1,2,---,1. If f — ZLI difE, is also bounded on each
g-parabolic end, then by Lemma 5, f = 22:1 d;fg, on M.

Assume that h = f — Ei.:l difE, is unbounded on g¢-parabolic ends
e1, ez, ---, e where 1 <t < s. We claim that for each j = 1,2,--- ¢,
there exists a constant 0 < ¢; < oo such that h — cjhe; is bounded on
e;j. Otherwise, there exists a g-parabolic end e; for some 1 < 5 < ¢ such
that for any constant 0 < ¢ < oo,

(6) h — che; is still unbounded on e;.

By the comparison principle, there exists a constant 0 < ¢; < oo such
that

(7) h > cjhe; or h < cjhe; on ey
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First, assume that cjhe; —h > Oone;. Set ¢; = inf{c; : cjhe; > h on €jts
then 0 < ¢; < oo because h > 0. By (6), ¢jhe; —h > 0 is still unbounded
on e;. On the other hand, by (7) and the definition of the number ¢;,
there exists a constant 0 < a; < oo such that

(¢j — aj)he; < h.

Set ¢; = sup{c; : cjhe; < h on e;}. If h =TCjhe,, then we get the claim.
Otherwise, by the strong maximum principle, we get

(8) cihe;, —h >0 and h—Tjhe; >0 on ¢,

and each of them is unbounded on e;. There exists a constant 0 < b; <
oo such that ¢;he, —h > bj(h —Cjhe;) or cjhe; —h < bj(h —Cjhe,;) on
e;, hence

G 0%, S o 9T,
b; +1 7 b;+1
From the definition of ¢; and ¢;, we have ¢; = ¢;. This implies that
¢jhe; = h or Cjhe, = h on e;. This is a contradiction to (8).
Consequently, for each j = 1,2, --- ,t, there exists a constant 0 < ¢; <
oo such that h — ¢;h; is bounded on e;. For such constants 0 < ¢; < o0,
h — Z;Zl cjhe; is bounded on G and

e; Shoon e

Tz—00,2€F;

lim (b= cjhe;)(z) =0
j=1

foralli=1,2,---,l. By Lemma 5, we have h = 23:1 cjhe; on G, i.e.,

! ¢
f:ZdifEi-i- chhej on M.
i=1 =1

It is easy to check that the set {fg;, he; 4 =1,2,---,1,j=1,2,--- s}
is linearly independent. O

The case of the space of harmonic functions on G is directly applicable
to our result, since it is the case when ¢ = 0. In particular, if each end of
a graph satisfies the volume doubling condition, the Poincaré inequality,
the Sobolev inequality, and the finite covering condition on the end, then
it becomes regular for harmonic functions. (See (1] and [3].)

On the other hand, in [5], Lee pointed out that the dimension of the
space of energy finite bounded solutions of the Schrodinger operator is
preserved under rough isometries between graphs. Hence, our result can
be extended to the case being rough isometric to the graphs satisfying
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the assumptions in Theorem 7 in the case of the energy finite bounded
solutions of the Schrédinger operator.
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