• Title/Summary/Keyword: bounded operator

Search Result 279, Processing Time 0.02 seconds

A NOTE ON OPERATORS ON FINSLER MODULES

  • TAGHAVI, A.;JAFARZADEH, JAFARZADEH
    • Honam Mathematical Journal
    • /
    • v.28 no.4
    • /
    • pp.533-541
    • /
    • 2006
  • let E be a Finsler modules over $C^*$-algebras. A with norm-map $\rho$ and L(E) set of all A-linear bonded operators on E. We show that the canonical homomorphism ${\phi}:L(E){\rightarrow}L(E_I)$ sending each operator T to its restriction $T|E_I$ is injective if and only if I is an essential ideal in the underlying $C^*$-algebra A. We also show that $T{\in}L(E)$ is a bounded below if and only if ${\mid}{\mid}x{\mid}{\mid}={\mid}{\mid}{\rho}{\prime}(x){\mid}{\mid}$ is complete, where ${\rho}{\prime}(x)={\rho}(Tx)$ for all $x{\in}E$. Also, we give a necessary and sufficient condition for the equivalence of the norms generated by the norm map.

  • PDF

LOWER ORDER EIGENVALUES FOR THE BI-DRIFTING LAPLACIAN ON THE GAUSSIAN SHRINKING SOLITON

  • Zeng, Lingzhong
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1471-1484
    • /
    • 2020
  • It may very well be difficult to prove an eigenvalue inequality of Payne-Pólya-Weinberger type for the bi-drifting Laplacian on the bounded domain of the general complete metric measure spaces. Even though we suppose that the differential operator is bi-harmonic on the standard Euclidean sphere, this problem still remains open. However, under certain condition, a general inequality for the eigenvalues of bi-drifting Laplacian is established in this paper, which enables us to prove an eigenvalue inequality of Ashbaugh-Cheng-Ichikawa-Mametsuka type (which is also called an eigenvalue inequality of Payne-Pólya-Weinberger type) for the eigenvalues with lower order of bi-drifting Laplacian on the Gaussian shrinking soliton.

NEGATIVE SOLUTION FOR THE SYSTEM OF THE NONLINEAR WAVE EQUATIONS WITH CRITICAL GROWTH

  • Jung, Tacksun;Choi, Q.-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.1
    • /
    • pp.41-49
    • /
    • 2008
  • We show the existence of a negative solution for the system of the following nonlinear wave equations with critical growth, under Dirichlet boundary condition and periodic condition $$u_{tt}-u_{xx}=au+b{\upsilon}+\frac{2{\alpha}}{{\alpha}+{\beta}}u_+^{\alpha-1}{\upsilon}_+^{\beta}+s{\phi}_{00}+f,\\{\upsilon}_{tt}-{\upsilon}_{xx}=cu+d{\upsilon}+\frac{2{\alpha}}{{\alpha}+{\beta}}u_+^{\alpha}{\upsilon}_+^{{\beta}-1}+t{\phi}_{00}+g,$$ where ${\alpha},{\beta}>1$ are real constants, $u_+={\max}\{u,0\},\;s,\;t{\in}R,\;{\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}$ of the wave operator and f, g are ${\pi}$-periodic, even in x and t and bounded functions.

  • PDF

HEREDITARY PROPERTIES OF CERTAIN IDEALS OF COMPACT OPERATORS

  • Cho, Chong-Man;Lee, Eun-Joo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.457-464
    • /
    • 2004
  • Let X be a Banach space and Z a closed subspace of a Banach space Y. Denote by L(X, Y) the space of all bounded linear operators from X to Y and by K(X, Y) its subspace of compact linear operators. Using Hahn-Banach extension operators corresponding to ideal projections, we prove that if either $X^{**}$ or $Y^{*}$ has the Radon-Nikodym property and K(X, Y) is an M-ideal (resp. an HB-subspace) in L(X, Y), then K(X, Z) is also an M-ideal (resp. HB-subspace) in L(X, Z). If L(X, Y) has property SU instead of being an M-ideal in L(X, Y) in the above, then K(X, Z) also has property SU in L(X, Z). If X is a Banach space such that $X^{*}$ has the metric compact approximation property with adjoint operators, then M-ideal (resp. HB-subspace) property of K(X, Y) in L(X, Y) is inherited to K(X, Z) in L(X, Z).

ON WEIGHTED AND PSEUDO-WEIGHTED SPECTRA OF BOUNDED OPERATORS

  • Athmouni, Nassim;Baloudi, Hatem;Jeribi, Aref;Kacem, Ghazi
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.809-821
    • /
    • 2018
  • In the present paper, we extend the main results of Jeribi in [6] to weighted and pseudo-weighted spectra of operators in a nonseparable Hilbert space ${\mathcal{H}}$. We investigate the characterization, the stability and some properties of these weighted and pseudo-weighted spectra.

STRICT TOPOLOGIES AND OPERATORS ON SPACES OF VECTOR-VALUED CONTINUOUS FUNCTIONS

  • Nowak, Marian
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.177-190
    • /
    • 2015
  • Let X be a completely regular Hausdorff space, and E and F be Banach spaces. Let $C_{rc}(X,E)$ be the Banach space of all continuous functions $f:X{\rightarrow}E$ such that f(X) is a relatively compact set in E. We establish an integral representation theorem for bounded linear operators $T:C_{rc}(X,E){\rightarrow}F$. We characterize continuous operators from $C_{rc}(X,E)$, provided with the strict topologies ${\beta}_z(X,E)$ ($z={\sigma},{\tau}$) to F, in terms of their representing operator-valued measures.

WEYL TYPE-THEOREMS FOR DIRECT SUMS

  • Berkani, Mohammed;Zariouh, Hassan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.1027-1040
    • /
    • 2012
  • The aim of this paper is to study the Weyl type-theorems for the orthogonal direct sum $S{\oplus}T$, where S and T are bounded linear operators acting on a Banach space X. Among other results, we prove that if both T and S possesses property ($gb$) and if ${\Pi}(T){\subset}{\sigma}_a(S)$, ${\PI}(S){\subset}{\sigma}_a(T)$, then $S{\oplus}T$ possesses property ($gb$) if and only if ${\sigma}_{SBF^-_+}(S{\oplus}T)={\sigma}_{SBF^-_+}(S){\cup}{\sigma}_{SBF^-_+}(T)$. Moreover, we prove that if T and S both satisfies generalized Browder's theorem, then $S{\oplus}T$ satis es generalized Browder's theorem if and only if ${\sigma}_{BW}(S{\oplus}T)={\sigma}_{BW}(S){\cup}{\sigma}_{BW}(T)$.

MULTIPLICITY OF SOLUTIONS FOR BIHARMONIC ELLIPTIC SYSTEMS INVOLVING CRITICAL NONLINEARITY

  • Lu, Dengfeng;Xiao, Jianhai
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1693-1710
    • /
    • 2013
  • In this paper, we consider the biharmonic elliptic systems of the form $$\{{\Delta}^2u=F_u(u,v)+{\lambda}{\mid}u{\mid}^{q-2}u,\;x{\in}{\Omega},\\{\Delta}^2v=F_v(u,v)+{\delta}{\mid}v{\mid}^{q-2}v,\;x{\in}{\Omega},\\u=\frac{{\partial}u}{{\partial}n}=0,\; v=\frac{{\partial}v}{{\partial}n}=0,\;x{\in}{\partial}{\Omega},$$, where ${\Omega}{\subset}\mathbb{R}^N$ is a bounded domain with smooth boundary ${\partial}{\Omega}$, ${\Delta}^2$ is the biharmonic operator, $N{\geq}5$, $2{\leq}q$ < $2^*$, $2^*=\frac{2N}{N-4}$ denotes the critical Sobolev exponent, $F{\in}C^1(\mathbb{R}^2,\mathbb{R}^+)$ is homogeneous function of degree $2^*$. By using the variational methods and the Ljusternik-Schnirelmann theory, we obtain multiplicity result of nontrivial solutions under certain hypotheses on ${\lambda}$ and ${\delta}$.

STRONG LAWS OF LARGE NUMBERS FOR LINEAR PROCESSES GENERATED BY ASSOCIATED RANDOM VARIABLES IN A HILBERT SPACE

  • Ko, Mi-Hwa
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.703-711
    • /
    • 2008
  • Let ${{\xi}_k,k{\in}{\mathbb{Z}}}$ be an associated H-valued random variables with $E{\xi}_k$ = 0, $E{\parallel}{\xi}_k{\parallel}$ < ${\infty}$ and $E{\parallel}{\xi}_k{\parallel}^2$ < ${\infty}$ and {$a_k,k{\in}{\mathbb{Z}}$} a sequence of bounded linear operators such that ${\sum}^{\infty}_{j=0}j{\parallel}a_j{\parallel}_{L(H)}$ < ${\infty}$. We define the sationary Hilbert space process $X_k={\sum}^{\infty}_{j=0}a_j{\xi}_{k-j}$ and prove that $n^{-1}{\sum}^n_{k=1}X_k$ converges to zero.

CHEYSHEFF-HALLEY-LIKE METHODS IN BANACH SPACES

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.83-108
    • /
    • 1997
  • Chebysheff-Halley methods are probably the best known cubically convergent iterative procedures for solving nonlinear equa-tions. These methods however require an evaluation of the second Frechet-derivative at each step which means a number of function eval-uations proportional to the cube of the dimension of the space. To re-duce the computational cost we replace the second Frechet derivative with a fixed bounded bilinear operator. Using the majorant method and Newton-Kantorovich type hypotheses we provide sufficient condi-tions for the convergence of our method to a locally unique solution of a nonlinear equation in Banach space. Our method is shown to be faster than Newton's method under the same computational cost. Finally we apply our results to solve nonlinear integral equations appearing in radiative transfer in connection with the problem of determination of the angular distribution of the radiant-flux emerging from a plane radiation field.