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STRICT TOPOLOGIES AND OPERATORS ON SPACES OF

VECTOR-VALUED CONTINUOUS FUNCTIONS

Marian Nowak

Abstract. Let X be a completely regular Hausdorff space, and E and F

be Banach spaces. Let Crc(X,E) be the Banach space of all continuous
functions f : X → E such that f(X) is a relatively compact set in E.
We establish an integral representation theorem for bounded linear op-
erators T : Crc(X,E) → F . We characterize continuous operators from
Crc(X,E), provided with the strict topologies βz(X,E) (z = σ, τ) to F ,
in terms of their representing operator-valued measures.

1. Introduction and terminology

Throughout the paper let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be real Banach spaces,
and let E′ and F ′ denote the Banach duals of E and F , respectively. By BF ′

and BE we denote the closed unit ball in F ′ and E, respectively. By L(E,F ) we
denote the Banach space of all bounded linear operators U : E → F , provided
with the uniform norm ‖ · ‖. Given a locally convex space (L, ξ) by (L, ξ)′ we
will denote its topological dual. We denote by σ(L,K) the weak topology on
L with respect to a dual pair 〈L,K〉.

Assume that X is a completely regular Hausdorff space. Let Crc(X,E)
(resp. Cb(X,E)) stand for the Banach space of all continuous functions f : X →
E such that f(X) is a relatively compact set in E (resp. bounded continuous
functions f : X → E) provided with the uniform norm ‖ ·‖. By Crc(X,E)′ and
Crc(X,E)′′ we denote the Banach dual and the Banach bidual of Crc(X,E),
respectively. Let

BCrc
= {f ∈ Crc(X,E) : ‖f‖ ≤ 1}.

We write Cb(X) instead of Crc(X,R). For f ∈ Crc(X,E) let

f̃(t) = ‖f(t)‖E for t ∈ X.

Let B (resp. Ba) be the algebra (resp. σ-algebra) of Baire sets in X , which
is the algebra (resp. σ-algebra) generated by the class Z of all zero sets of
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functions of Cb(X). Let M(X) stand for the space of all Baire measures on
B. Then M(X) with the norm ‖ν‖ = |ν|(X) (= the total variation of ν), is a
Dedekind complete Banach lattice (see [21]).

Due to the Alexandrov representation theorem (see [21, Theorem 5.1])
Cb(X)′ can be identified with M(X) through the lattice isomorphism M(X) ∋
ν 7→ ϕν ∈ Cb(X)′, where

ϕν(u) =

∫

X

udν for u ∈ Cb(X),

and ‖ϕν‖ = ‖ν‖.
By M(X,E′) we denote the set of all finitely additive measures µ : B → E′

with the following properties:

(i) For each x ∈ E, the function µx : B → R defined by µx(A) = µ(A)(x),
belongs to M(X),

(ii) |µ|(X) < ∞, where |µ|(A) stands for the variation of µ on A ∈ B.

In view of [11, Theorem 2.5] Crc(X,E)′ can be identified with M(X,E′)
through the linear mapping M(X,E′) ∋ µ 7→ Φµ ∈ Crc(X,E)′, where

Φµ(f) =

∫

X

fdµ for f ∈ Crc(X,E),

and ‖Φµ‖ = |µ|(X).
In the topological measure theory the so-called strict topologies on Cb(X)

and Crc(X,E) are of importance (see [12], [13], [14], [15], [21] for definitions
and more details). In this paper we will consider the strict topologies βz(X,E)
on Crc(X,E) and βz(X) on Cb(X), where z = σ, τ .

Let Mσ(X) and Mτ (X) denote the subspaces of M(X) of all σ-additive and
τ -additive Baire measures, respectively. Then Mτ (X) ⊂ Mσ(X). It is known
that (see [21, §6]):

(1.1) (Cb(X), βz(X))′ = {ϕν : ν ∈ Mz(X)} = Lz(Cb(X))

for z = σ, τ , where Lσ(Cb(X)) and Lτ (Cb(X)) are spaces of all σ-additive and
τ -additive functionals on Cb(X).

For z = σ, τ let

Mz(X,E′) := {µ ∈ M(X,E′) : µx ∈ Mz(X) for each x ∈ E}.

Then for z = σ, τ we have

(1.2) (Crc(X,E), βz(X,E))′ = {Φµ : µ ∈ Mz(X,E′)}

(see [12, Theorems 4.6 and 4.7]).
The theory of linear operators from Crc(X,E) and Cb(X,E) to a locally

convex Hausdorff space F (in particular, a Banach space) has been developed
by Katsaras and Liu [15], Aguayo and Sanchez [2], Aguayo and Nova-Yanèz [3]
and Khurana [17]. Locally solid topologies on the space Cb(X,E) have been
studied in [16], [18], [19]. It is known that the natural strict topologies βz(X,E)
on Cb(X,E), where z = σ,∞, p, g, τ, t are locally solid.



STRICT TOPOLOGIES AND OPERATORS 179

In Section 2 we study locally solid topologies on Crc(X,E). Section 3 is
devoted to the study of linear functionals on Crc(X,E). In Section 4 we state
an integral representation of bounded linear operators T : Crc(X,E) → F . In
Section 5 we characterize continuous operators from Crc(X,E), equipped with
the strict topologies βz(X,E), z = σ, τ to F , in terms of the corresponding
operator measures.

2. Locally solid topologies on Crc(X,E)

Following [16, Section 8] we can introduce the concepts of solidness and
locally solid topologies on Crc(X,E).

Definition 2.1. (i) A subset H of Crc(X,E) is said to be solid whenever

f̃1 ≤ f̃2, f1 ∈ Crc(X,E), f2 ∈ H imply f1 ∈ H .
(ii) A linear Hausdorff topology τ on Crc(X,E) is said to be locally solid if

it has a local base at 0 consisting of solid sets.

The following lemma will be of importance for the study of locally solid
topologies on Crc(X,E).

Lemma 2.1. Assume that f ∈ Crc(X,E) and f̃ ≤
∑m

i=1 ui, where ui ∈
Cb(X)+, i = 1, . . . ,m. Then there exist fi ∈ Crc(X,E) such that f =

∑m
i=1 fi

and f̃i ≤ ui, i = 1, . . . ,m.

Proof. Assume that fi(t) = ui(t)
(∑m

j=1 uj(t)
)−1

f(t) if
∑m

j=1 uj(t) > 0 and

fi(t) = 0 if
∑m

j=1 uj(t) = 0, i = 1, 2, . . . ,m. Note that fi are continuous and

f =
∑m

i=1 fi and f̃i ≤ ui, i = 1, 2, . . . ,m. To show that fi ∈ Crc(X,E), we
prove that {fi(t) : t ∈ X} is a relatively sequentially compact set in E. Indeed,
let (tn) be a sequence in X . Then there exists a subsequence (tkn

) of (tn)
such that f(tkn

) → x for some x ∈ E and ui(tkn
) → ai, where ai ≥ 0 for

i = 1, 2, . . . ,m.

Assume first that
∑m

j=1 aj > 0. Then fi(tkn
) → ai

(∑m
j=1 aj

)−1
x ∈ E.

Now assume that
∑m

j=1 aj = 0, i.e., ui(tkn
) → 0 for i = 1, 2, . . . ,m. We

have f̃i ≤ f̃ and f̃(tkn
) → 0. Hence f̃i(tkn

) → 0, i.e., fi ∈ Crc(X,E) for
i = 1, 2, . . . ,m. �

Using Lemma 2.1 and arguing as in the proofs of [20, Theorems 1.2 and 2.1]
we obtain the following results.

Proposition 2.2. The convex hull coH of a solid subset H of Crc(X,E) is

solid.

Proposition 2.3. Let τ be a locally solid topology on Crc(X,E). Then the

τ-closure of a solid subset H of Crc(X,E) is solid.

Definition 2.2. A linear topology τ on Crc(X,E) that at the some time is
locally solid and locally convex will be called a locally convex-solid topology.
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In view of Propositions 2.2 and 2.3 we see that for a locally convex-solid
topology on Crc(X,E) the collection of all τ -closed and solid τ -neighborhoods
of 0 forms a local base at 0 for τ .

Definition 2.3. A seminorm ρ on Crc(X,E) is said to be solid whenever

ρ(f1) ≤ ρ(f2) if f1, f2 ∈ Crc(X,E) and f̃1 ≤ f̃2.

Arguing as in the proof of [20, Theorem 2.2] we get:

Proposition 2.4. For a locally convex topology τ on Crc(X,E) the following

statements are equivalent:

(i) τ is generated by the family of solid seminorms.

(ii) τ is a locally convex-solid topology.

Now we establish a mutual relationship between locally convex-solid topolo-
gies on Crc(X,E) and the vector lattice Cb(X).

Given a Riesz seminorm p on Cb(X) let us set

p∨(f) := p(f̃) for all f ∈ Crc(X,E).

Clearly p∨ is a solid seminorm on Crc(X,E).
Let x0 ∈ SE = {x ∈ E : ‖x‖E = 1}. Given a solid seminorm ρ on Crc(X,E),

let

ρ∧(u) := ρ(u⊗ x0) for u ∈ Cb(X).

It is seen that ρ∧ is well defined because ρ(u ⊗ x0) does not depend on the
choice of x0 ∈ SE , due to solidness of ρ. Clearly ρ∧ is a Riesz seminorm on
Cb(X).

One can easily show the following results (see [20, Lemma 3.1]).

Proposition 2.5. (i) If ρ is a solid seminorm on Crc(X,E), then (ρ∧)∨(f) =
ρ(f) for all f ∈ Crc(X,E).

(ii) If p is a Riesz seminorm on Cb(X), then (p∨)∧(u) = p(u) for all u ∈
Cb(X).

Let τ be a locally convex-solid topology on Crc(X,E). Then in view of
Theorem 2.4 τ is generated by some family {ρα : α ∈ A} of solid seminorms on
Crc(X,E). By τ∧ we will denote the locally convex-solid topology on Cb(X)
generated by the family {ρ∧α : α ∈ A} of Riesz seminorms on Cb(X). One can
check that τ∧ does not depend on the choice of a family {ρα : α ∈ A} of solid
seminorms on Crc(X,E) generating τ .

Next, let ξ be a locally convex-solid topology on Cb(X). Then ξ is generated
by some family {pα : α ∈ A} of Riesz seminorms on Cb(X) (see [1, Theorem
6.3]). By ξ∨ we will denote the locally convex-solid topology on Crc(X,E)
generated by the family {p∨α : α ∈ A} of solid seminorms on Crc(X,E). One
can verify that ξ∨ does not depend on the choice of a family {pα : α ∈ A} of
Riesz seminorms on Cb(X) that generates ξ.

In view of Proposition 2.5 we can easily get:
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Theorem 2.6. (i) For a locally convex-solid topology τ on Crc(X,E) we have:
(τ∧)∨ = τ .

(ii) For a locally convex-solid topology ξ on Cb(X) we have: (ξ∨)∧ = ξ.

Now we recall definitions of strict topologies βz(X,E) on Crc(X,E) for z =
σ, τ (see [12], [13] and [14] for more details). Let βX stand for the Stone-Čech
compactification of X . For a compact subset Q of βX rX let CQ(X) = {v ∈
Cb(X) : v|Q ≡ 0}, where v denotes the unique extension of v ∈ Cb(X) on

βX . For each v ∈ CQ(X) let ρv(f) := supt∈X |v(t)|f̃(t) for f ∈ Crc(X,E),
and let βQ(X,E) be the locally convex-solid topology on Crc(X,E) defined by
{ρv : v ∈ CQ(X)}.

Now let C be some family of compact subsets of βXrX . The strict topology
βC(X,E) on Crc(X,E) determined by C is the greatest lower bound (in the
class of locally convex Hausdorff topologies) of the topologies βQ(X,E), as Q
runs over C.

Proposition 2.7. The strict topology βC(X,E) on Crc(X,E) is locally convex-

solid.

Proof. Since βC(X,E) is an inductive limit topology on Crc(X,E), it has a
local base at 0 consisting of all sets of the form:

eco
(⋃{

WvQ : Q ∈ C and vQ ∈ CQ(X)
})

,

where for vQ ∈ CQ(X), WvQ = {f ∈ Crc(X,E) : ̺vQ(f) ≤ 1} (see [5, Chapter
2.1.4]) (here ecoW denotes the balanced convex hull of a set W in Crc(X,E)).
We shall show that a set V = ecoW, where W =

⋃
{WvQ : Q ∈ C and vQ ∈

CQ(X)} is solid.

Indeed, let f ∈ Crc(X,E), g ∈ V and f̃ ≤ g̃. Then g =
∑n

i=1 λigi, where∑n
i=1 |λi| ≤ 1 and gi ∈ W for i = 1, 2, . . . , n. Hence for each i = 1, 2, . . . , n,

there exist Qi ∈ C and vQi
∈ CQi

(X) such that ̺vQi
(gi) ≤ 1. By Lemma

2.1 there exist f1, . . . , fn ∈ Crc(X,E) such that f =
∑n

i=1 fi and f̃i ≤ λ̃gi for
i = 1, 2, . . . , n. Let hi =

1
λi
fi for i = 1, 2, . . . , n. Since ̺vQi

is a solid seminorm

on Crc(X,E) and h̃i ≤ g̃i for i = 1, 2, . . . , n, we have ̺vQi
(hi) ≤ ̺vQi

(gi) ≤ 1.

Hence hi ∈ WvQi
, so hi ∈ W . Then f =

∑n
i=1 λihi ∈ V , as desired. �

Let Cσ (resp. Cτ ) be the family of all zero subsets (resp. compact subsets) of
βX rX , and let βz(X,E) = βCz

(X,E), where z = σ, τ .
Arguing as in the proof of [20, Theorem 4.2] we get:

Theorem 2.8. For z = σ, τ , we have:

βz(X,E) = βz(X)∨, βz(X,E)∧ = βz(X).

Now we define two classes of locally convex-solid topologies on Crc(X,E).

Definition 2.4. A locally convex-solid topology τ on Crc(X,E) is said to be:
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(i) σ-Dini if fn → 0 for τ whenever (fn) is a sequence in Crc(X,E) such

that f̃n(t) ↓ 0 for t ∈ X .
(ii) Dini if fα → 0 for τ whenever (fα) is a net in Crc(X,E) such that

f̃α(t) ↓ 0 for t ∈ X .

It is known that βσ(X) is the finest σ-Dini topology on Cb(X) and βτ (X)
is the finest Dini topology on Cb(X) (see [21, Corollaries 11.16 and 11.28]).

Corollary 2.9. (i) βσ(X,E) is the finest σ-Dini topology on Crc(X,E).
(ii) βτ (X,E) is the finest Dini topology on Crc(X,E).

Proof. (i) Let {pα : α ∈ A} be a family of Riesz seminorms on Cb(X) that

generates βσ(X). Assume that (fn) is a sequence in Crc(X,E) such that f̃n(t) ↓

0 for all x ∈ X . Then p∨α(fn) = pα(f̃n) → 0 and this means that fn → 0 for
βσ(X)∨. In view of Theorem 2.8 we conclude that fn → 0 for βσ(X,E).

Now assume that τ is a σ-Dini topology on Crc(X,E). Then τ∧ ⊂ βσ(X),
and hence τ = (τ∧)∨ ⊂ βσ(X)∨ = βσ(X,E) (see Theorems 2.6 and 2.8).

(ii) It is similar to (i). �

3. Linear functionals on Crc(X,E)

Assume that µ ∈ M(X,E′). For u ∈ Cb(X)+ let us put

|Φµ|(u) := sup{|Φµ(h)| : h ∈ Crc(X,E), h̃ ≤ u}.

Proposition 3.1. For µ ∈ M(X,E′), the functional |Φµ| : Cb(X)+ → R+ is

additive.

Proof. Let u1, u2 ∈ Cb(X)+. First we shall show that

|Φµ|(u1 + u2) ≤ |Φµ|(u1) + |Φµ|(u2).

Indeed, let ε > 0. Then there exists h0 ∈ Crc(X,E) such that h̃0 ≤ u1 + u2

and |Φµ|(u1 + u2) ≤ |Φµ(h0)| + ε. Then by Lemma 2.1 there exist h1, h2 ∈

Crc(X,E) such that h0 = h1 + h2 and h̃i ≤ ui, i = 1, 2. Hence

|Φµ|(u1 + u2) ≤ |Φµ(h1 + h2)|+ ε ≤ |Φµ(h1)|+ |Φµ(h2)|+ ε

≤ |Φµ|(u1) + |Φµ|(u2) + ε.

Now we shall show that

|Φµ|(u1) + |Φµ|(u2) ≤ |Φµ|(u1 + u2).

Indeed, let ε > 0 be given. Then there exist h1, h2 ∈ Crc(X,E) such that

h̃i ≤ ui and |Φµ|(ui) ≤ |Φµ(hi)|+
ε
2
, i = 1, 2. Let gi = signΦµ(hi)hi for i = 1, 2.

Then g̃i ≤ h̃i and g̃1 + g2 ≤ u1 + u2, and hence

|Φµ|(u1) + |Φµ|(u2) ≤ Φµ(g1) + Φµ(g2) + ε = Φµ(g1 + g2) + ε

≤ |Φµ|(u1 + u2) + ε. �
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In view of [1, Theorem 1.7] we obtain that |Φµ| : Cb(X)+ → R+ has a unique
linear extension (denoted by |Φµ| again)

|Φµ| : Cb(X) → R

defined by

|Φµ|(u) := |Φµ|(u
+)− |Φµ|(u

−) for all u ∈ Cb(X).

Hence for u ∈ Cb(X), ∣∣|Φµ|(u)
∣∣ ≤ |Φµ|(u).

Corollary 3.2. Let µ ∈ Mσ(X,E′). Then for u ∈ Cb(X) we have

|Φµ|(u) =

∫

X

ud|µ| = ϕ|µ|(u).

Proof. In view of [16, Theorem 2.1] for u ∈ Cb(X)+ we have,
∫

X

ud|µ| = sup

{∣∣∣∣
∫

X

gdµ

∣∣∣∣ : g ∈ Cb(X)⊗ E, g̃ ≤ u

}

and

|Φµ|(u) = sup

{∣∣∣∣
∫

X

hdµ

∣∣∣∣ : h ∈ Crc(X,E), h̃ ≤ u

}
.

Since Cb(X)⊗ E ⊂ Crc(X,E), we get
∫
X ud|µ| ≤ |Φµ|(u).

Now let h ∈ Crc(X,E) and h̃ ≤ u. Then
∣∣∣∣
∫

X

hdµ

∣∣∣∣ ≤
∫

X

h̃d|µ| ≤

∫

X

ud|µ|,

and hence |Φµ|(u) ≤
∫
X
ud|µ|, as desired. �

Corollary 3.3. For µ ∈ M(X,E′) the following statements are equivalent:

(i) µ ∈ Mσ(X,E′).
(ii) Φµ ∈ (Crc(X,E), βσ(X,E))′.
(iii) |Φµ| ∈ (Cb(X), βσ(X))′.
(iv) Φµ(ung) → 0 uniformly for g ∈ BCrc

whenever (un) is a sequence in

Cb(X) such that un(t) ↓ 0 for t ∈ X.

Proof. (i)⇐⇒(ii) It follows from (1.2).
(i)=⇒(iii) Assume that µ ∈ Mσ(X,E′). Then |µ| ∈ Mσ(X) (see [10, Propo-

sition 3.9]) and by Corollary 3.2 and (1.1), we get |Φµ| ∈ (Cb(X), βσ(X))′.
(iii)=⇒(iv) Assume that (iii) holds. Let (un) be a sequence in Cb(X) such

that un(t) ↓ 0 for t ∈ X . Then for g ∈ BCrc
, by Corollary 3.2 we get

|Φµ(ung)| ≤

∫

X

und|µ| = |Φµ|(un).

Since |Φµ| ∈ Lσ(Cb(X)) (see (1.1)), we get Φµ(ung) → 0, as desired.
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(iv)=⇒(i) Assume that (iv) holds. Let (un) be a sequence in Cb(X) such
that un(t) ↓ 0 for t ∈ X . Then for x ∈ E we get

Φµ(un ⊗ x) =

∫

X

(un ⊗ x)dµ =

∫

X

undµx → 0.

Hence by (1.1) µx ∈ Mσ(X), i.e., µ ∈ Mσ(X,E′). �

Arguing similarly as in the proof of Corollary 3.3 and using [10, Proposition
3.9] we get:

Corollary 3.4. For µ ∈ M(X,E′) the following statements are equivalent:

(i) µ ∈ Mτ (X,E′).
(ii) Φµ ∈ (Crc(X,E), βτ (X,E))′.
(iii) |Φµ| ∈ (Cb(X), βτ (X))′.
(iv) Φµ(uαg) → 0 uniformly for g ∈ BCrc

whenever (uα) is a sequence in

Cb(X) such that uα(t) ↓ 0 for t ∈ X.

Proposition 3.5. Let M be a subset of Mσ(X,E′). Then the following state-

ments are equivalent:

(i) {Φµ : µ ∈ M} is βσ(X,E)-equicontinuous.
(ii) {|Φµ| : µ ∈ M} is uniformly σ-additive, i.e., sup{|Φµ|(un) : µ ∈ M} →

0 whenever (un) is a sequence in Cb(X) such that un(t) ↓ 0 for t ∈ X.

(iii) {|Φµ| : µ ∈ M} is βσ(X)-equicontinuous.

Proof. (i)=⇒(ii) Assume that {Φµ : µ ∈ M} is βσ(X,E)-equicontinuous. To
show that {|Φµ| : µ ∈ M} is uniformly σ-additive, let (un) be a sequence in
Cb(X) such that un(t) ↓ 0 for t ∈ X . Let ε > 0 be given. Then there exists a
convex and solid neighborhood V of 0 for βσ(X,E) such that supµ∈M |Φµ(f)| ≤
ε for all f ∈ V (see Proposition 2.7). Since βσ(X,E) is a σ-Dini topology (see
Corollary 2.9), there exists nε ∈ N such that un⊗x0 ∈ V (x0 ∈ SE) for n ≥ nε.
Hence |Φµ(un ⊗ x0)| ≤ ε for n ≥ nε. Let n0 ≥ nε be fixed and let h ∈ Crc(X)

with h̃ ≤ un0
. Then h ∈ V because V is solid, and hence supµ∈M |Φµ(h)| ≤ ε.

It follows that supµ |Φµ|(un) ≤ ε for n ≥ nε, as desired.
(ii)⇐⇒(iii) See [21, Theorem 11.14].
(iii)=⇒(i) Assume that {|Φµ| : µ ∈ M} is βσ(X)-equicontinuous. Let

{ρα : α ∈ A} be the family of solid seminorms that generates βσ(X,E) (see
Propositions 2.4 and 2.7). Given ε > 0 there exist α1, . . . , αn ∈ A and η > 0
such that sup{|Φµ|(u) : µ ∈ M} ≤ ε for u ∈ Cb(X) with max1≤i≤n ρ̂αi

(u) ≤ η.

Let f ∈ Crc(X,E) with max1≤i≤n ραi
(f) ≤ η. Since ρ̂αi

(f̃) = ραi
(f̃ ⊗ x0) =

ραi
(f) (i = 1, 2, . . . , n), we obtain that sup{|Φµ|(f̃) : µ ∈ M} ≤ ε. But

|Φµ(f)| ≤ |Φµ|(f̃), so sup{|Φµ(f)| : µ ∈ M} ≤ ε, and this means that the
family {Φµ : µ ∈ M} is βσ(X,E)-equicontinuous. �

Using [21, Theorem 11.24] we can prove an analogous result for βτ (X,E)
with a similar proof.
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Proposition 3.6. Let M be a subset of Mτ (X,E′). Then the following state-

ments are equivalent:

(i) {Φµ : µ ∈ M} is βτ (X,E)-equicontinuous.
(ii) {|Φµ| : µ ∈ M} is uniformly τ-additive, i.e., sup{|Φµ|(uα) : µ ∈ M} →

0 whenever (uα) is a net in Cb(X) such that uα(t) ↓ 0 for t ∈ X.

(iii) {|Φµ| : µ ∈ M} is βτ (X)-equicontinuous.

4. Integral representation of bounded linear operators on Crc(X,E)

By B(B, E) we denote the Banach space of all totally B-measurable functions
g : X → E (the uniform limits of sequences of E-valued B-simple functions),
provided with the uniform norm ‖ · ‖ (see [7], [8]).

It is known that Crc(X,E) ⊂ B(B, E) (see [16]), and one can embed B(B, E)
into Crc(X,E)′′ by the mapping π : B(B, E) → Crc(X,E)′′, where for g ∈
B(B, E),

π(g)(Φµ) =

∫

X

gdµ for µ ∈ M(X,E′).

Let iF : F → F ′′ stand for the canonical embedding, i.e., iF (y)(y
′) = y′(y)

for y ∈ F , y′ ∈ F ′. Moreover, let jF : iF (F ) → F denote the left inverse of iF ,
that is, jF ◦ iF = idF . Note that jF is (σ(iF (F ), F ′), σ(F, F ′))-continuous.

Now assume that T : Crc(X,E) → F is a bounded linear operator. Let
T ′ : F ′ → Crc(X,E)′ and T ′′ : Crc(X,E)′′ → F ′′ stand for the conjugate and
biconjugate operators of T , respectively. Let

T̂ := T ′′ ◦ π : B(B, E) → F ′′.

Then T̂ is a bounded operator. For A ∈ B let us put

m(A)(x) := T̂ (1A ⊗ x) for x ∈ E.

Then m : B → L(E,F ′′) will be called a representing measure of T .
We define the semivariation m̃(A) of m on A ∈ B by

m̃(A) = sup ‖
∑

m(Ai)(xi)‖F ′′ ,

where the supremum is taken over all finite B-partitions (Ai) of A and xi ∈
BE for each i. For y′ ∈ F ′ let my′ : B → E′ be vector measures defined
by my′(A)(x) := m(A)(x)(y′) for A ∈ B, x ∈ E. Let |my′ |(A) stand for the
variation of my′ on A. Then for A ∈ B (see [7, §4, Proposition 5]),

m̃(A) = sup{|my′ |(A) : y′ ∈ BF ′}.

Since T̂ : B(B, E) → F ′′ is bounded, we have

T̂ (g) =

∫

X

gdm for g ∈ B(B, E),

‖T̂‖ = m̃(X), and for each y′ ∈ F ′ we have,

T̂ (g)(y′) =

∫

X

gdmy′ for g ∈ B(B, E),
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(see [7, §6], [8, §1, G-H]). Moreover, from the general properties of the operator

T̂ it follows immediately that

(4.1) T̂ (Crc(X,E)) ⊂ iF (F ).

For each x ∈ E we can define a vector measure mx : B → F ′′ by

mx(A)(y
′) := m(A)(x)(y′) for A ∈ B, y′ ∈ F ′.

For x ∈ E and y′ ∈ F ′ let

mx,y′(A) := m(A)(x)(y′) for A ∈ B.

An integral representation of weakly compact operators T : Crc(X,E) → F
was established by Katsaras and Liu (see [15, Theorem 3]). Now we state a gen-
eral Riesz representation theorem for bounded linear operators T : Crc(X,E) →
F .

Theorem 4.1. Let T : Crc(X,E) → F be a bounded linear operator, and

m : B → L(E,F ′′) its representing measure. Then the following statements

hold:

(i) my′ ∈ M(X,E′) for each y′ ∈ F ′.

(ii) The mapping F ′ ∋ y′ 7→ my′ ∈ M(X,E′) is (σ(F ′, F ), σ(M(X,E′),
Crc(X,E)))-continuous.

(iii) For each y′ ∈ F ′, y′(T (f)) =
∫
X fdmy′ for f ∈ Crc(X,E).

(iv) T (f) = jF (
∫
X fdm) for f ∈ Crc(X,E).

(v) ‖T ‖ = m̃(X).

Conversely, let m : B → L(E,F ′′) be a vector measure satisfying (i) and

(ii). Then there exists a unique bounded linear operator T : Crc(X,E) → F
such that (iii) holds and m(A)(x) = (T ′′ ◦ π)(1A ⊗ x) for all A ∈ B, x ∈ E. In

consequence, the vector measure m : B → L(E,F ′′) satisfying (i), (ii) and (iii)
is uniquely determined by a bounded linear operator T : Crc(X,E) → F .

Proof. Let y′ ∈ F ′. Since y′ ◦ T ∈ Crc(X,E)′, there exists a unique µy′◦T ∈
M(X,E′) such that

(y′ ◦ T )(f) =

∫

X

fdµy′◦T for f ∈ Crc(X,E).

For A ∈ B and x ∈ E we have

my′(A)(x) = m(A)(x)(y′) = T̂ (1A ⊗ x)(y′)

= T ′′(π(1A ⊗ x))(y′) = π(1A ⊗ x)(T ′(y′))

= π(1A ⊗ x)(y′ ◦ T ) =

∫

X

(1A ⊗ x)dµy′◦T = µy′◦T (A)(x).

It follows that my′ = µy′◦T ∈ M(X,E′) and

(y′ ◦ T )(f) =

∫

X

fdmy′ for f ∈ Crc(X,E).
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This means that (i) and (iii) hold. Since the mapping T ′ : F ′ → Crc(X,E)′ is
(σ(F ′, F ), σ(Crc(X,E)′, Crc(X,E)))-continuous, the mapping F ′ ∋ y′ 7→ my′ ∈
M(X,E′) is (σ(F ′, F ), σ(M(X,E′), Crc(X,E)))-continuous, i.e., (ii) holds.

Note that using (4.1) we have T (f) = jF (T̂ (f)) = jF (
∫
X fdm) for f ∈

Crc(X,E), i.e., (iv) holds. Using (iii) we get

‖T ‖ = ‖T ′‖ = sup{‖T ′(y′)‖ : y′ ∈ BF ′}

= sup{‖y′ ◦ T ‖ : y′ ∈ BF ′}

= sup{|my′ |(X) : y′ ∈ BF ′}

i.e., (v) holds.
Conversely, let m : B → L(E,F ′′) be a vector measure satisfying (i) and

(ii). Then my′ ∈ M(X,E′) and the mapping F ′ ∋ y′ 7→ my′ ∈ M(X,E′) is
(σ(F ′, F ), σ(M(X,E′), Crc(X,E)))-continuous.

For f ∈ Crc(X,E) define a linear mapping Ψf : F ′ → R by

Ψf (y
′) =

∫

X

fdmy′ for all y′ ∈ F ′.

Then by (ii) Ψf is a σ(F ′, F )-continuous linear functional, so there exists a
unique yf ∈ F such that Ψf = iF (yf ), i.e., Ψf (y

′) = y′(yf ) for each y′ ∈ F ′.
For each f ∈ Crc(X,E) let us put

T (f) = yf .

Then T : Crc(X,E) → F is a linear mapping and for each y′ ∈ F ′ we have

sup{|y′(T (f))| : ‖f‖ ≤ 1} = sup{{|y′(yf )| : ‖f‖ ≤ 1}

= sup

{∣∣∣
∫

X

fdmy′

∣∣∣ : ‖f‖ ≤ 1

}

≤ sup

{∫

X

‖f‖d|my′| : ‖f‖ ≤ 1

}

≤ |my′ |(X) < ∞.

This means that {T (f) : ‖f‖ ≤ 1} is σ(F, F ′)-bounded, so sup{‖T (f)‖F :
‖f‖ ≤ 1} < ∞, i.e., T is bounded. Moreover, for each y′ ∈ F ′ we have

y′(T (f)) = y′(yf ) = Ψf (y
′) =

∫

X

fdmy′ for f ∈ Crc(X,E),

i.e., T satisfies (iii).
Assume that S : Crc(X,E) → F is another bounded linear operator such

that for each y′ ∈ F ′,

y′(S(f)) =

∫

X

fdmy′ for f ∈ Crc(X,E).

Then y′(S(f)) = y′(T (f)) for all f ∈ Crc(X,E), so S = T .
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Let mo(A)(x) = (T ′′ ◦ π)(1A ⊗ x) for all A ∈ B, x ∈ E. Then by the first
part of the proof, for each y′ ∈ F ′, we get

y′(T (f)) =

∫

X

fd(mo)y′ for f ∈ Crc(X,E).

Hence (mo)y′ = my′ ∈ M(X,E′). It follows that

m(A)(x) = mo(A)(x) = (T ′′ ◦ π)(1A ⊗ x).

Thus the proof is complete. �

Definition 4.1. A measure m : B → L(E,F ′′) is said to be a representing

measure if it satisfies conditions (i) and (ii) of Theorem 4.1.

5. Continuous operators on Crc(X,E) with strict topologies

First we distinguish two classes of operators on Crc(X,E).

Definition 5.1. A bounded linear operator T : Crc(X,E) → F is said to be:

(i) σ-additive, if ‖T (ung)‖F → 0 uniformly for g ∈ BCrc
whenever (un) is

a sequence in Cb(X) such that un(t) ↓ 0 for t ∈ X .
(ii) τ-additive, if ‖T (uαg)‖F → 0 uniformly for g ∈ BCrc

whenever (uα) is
a net in Cb(X) such that uα(t) ↓ 0 for t ∈ X .

We characterize (βz(X,E), ‖·‖F )-continuous linear operators T :Crc(X,E)→
F for z = σ, τ .

Theorem 5.1. Let T : Crc(X,E) → F be a bounded linear operator, and

m : B → L(E,F ′′) its representing measure. Then the following statements are

equivalent:

(i) T is (βσ(X,E), ‖ · ‖F )-continuous.
(ii) T is σ-additive.
(iii) m̃(Zn) whenever Zn ↓ ∅, (Zn) ⊂ Z.

Proof. (i)=⇒(ii) Assume that T is (βσ(X,E), ‖ · ‖F )-continuous. Let (un) be a
sequence in Cb(X) such that un(t) ↓ 0 for t ∈ X , and let ε > 0 be given. Then
there exists a solid neighborhood V of 0 for βσ(X,E) such that ‖T (f)‖F ≤ ε
for all f ∈ V (see Proposition 2.7). Choose nε ∈ N such that un ⊗ x0 ∈ V for
n ≥ nε, where x0 ∈ SE (see Corollary 2.9). Hence ung ∈ V for all g ∈ BCrc

and n ≥ nε, and it follows that supg∈BCrc
‖T (ung)‖F ≤ ε for n ≥ nε.

(ii)=⇒(iii) Assume that T is σ-additive. Then for y′ ∈ F ′ we have

(y′ ◦ T )(f) =

∫

X

fdmy′ for f ∈ Crc(X,E)

and by Corollary 3.3, my′ ∈ Mσ(X,E′), and hence |my′ | ∈ Mσ(X). In view of
Corollary 3.2 we have

|y′ ◦ T |(u) =

∫

X

ud|my′ | for u ∈ Cb(X).
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Let (un) be a sequence in Cb(X) such that un(t) ↓ 0 for t ∈ X . We shall
show that supy′∈BF ′

|y′ ◦ T |(un) → 0. For each y′ ∈ F ′ there exists a sequence

(hy′,n) in Crc(X,E) with h̃y′,n ≤ un and such that

|y′ ◦ T |(un) ≤

∣∣∣∣
∫

X

hy′,ndmy′

∣∣∣∣+
1

n
.

Let gy′,n(t) =
hy′,n(t)

un(t)
for t ∈ X . Then gy′,n ∈ BCrc

for n ∈ N. Hence for

each y′ ∈ BF ′ , we get

|y′ ◦ T |(un) ≤
∣∣∣
∫

X

hy′,ndmy′

∣∣∣+ 1

n
=

∣∣∣
∫

X

ungy′,ndmy′

∣∣∣+ 1

n

≤ sup
g∈BCrc

∣∣∣
∫

X

ungdmy′

∣∣∣+ 1

n
= sup

g∈BCrc

|y′(T (ung)|+
1

n

≤ sup
g∈BCrc

‖T (ung)‖F +
1

n
.

Hence supy′∈BF ′
|y′ ◦ T |(un) → 0, as desired. By [21, Theorem 11.14] the

family {|my′| : y′ ∈ BF ′} in Mσ(X) is uniformly σ-additive, i.e.,

m̃(Zn) = sup{|my′ |(Zn) : y
′ ∈ BF ′} → 0 whenever Zn ↓ ∅, (Zn) ⊂ Z.

(iii)=⇒(i) Assume that (iii) holds. Then |my′ | ∈ Mσ(X) for each y′ ∈ F ′.
Note that for A ∈ B, x ∈ E we have |mx,y′(A)| ≤ |my′ |(A) · ‖x‖E . It follows
that mx,y′ ∈ Mσ(X) for x ∈ E, i.e., my′ ∈ Mσ(X,E′), and hence y′ ◦ T ∈
(Crc(X,E), βσ(X,E))′ (see (1.2)). In view of [21, Theorem 11.14] the family
{|y′ ◦T | : y′ ∈ BF ′} is βσ(X)-equicontinuous, and hence by Proposition 3.5 the
family {y′ ◦ T : y′ ∈ BF ′} is βσ(X,E)-equicontinuous. This means that T is
(βσ(X,E), ‖ · ‖F )-continuous. �

Arguing as in the proof of Theorem 5.1 and using Proposition 3.6 we get:

Theorem 5.2. Let T : Crc(X,E) → F be a bounded linear operator, and

m : B → L(E,F ′′) its representing measure. Then the following statements are

equivalent:

(i) T is (βτ (X,E), ‖ · ‖F )-continuous.
(ii) T is τ-additive.
(iii) m̃(Zn) → 0 whenever Zα ↓ ∅, (Zα) ⊂ Z.

Remark. For weakly compact operators T : Crc(X,E) → F , the equivalences
(i)⇐⇒(iii) in Theorems 5.1 and 5.2 were derived in a different way in [15,
Theorems 4 and 5].
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