J. Korean Math. Soc. ${\bf 52}$ (2015), No. 1, pp. 177–190 http://dx.doi.org/10.4134/JKMS.2015.52.1.177

STRICT TOPOLOGIES AND OPERATORS ON SPACES OF VECTOR-VALUED CONTINUOUS FUNCTIONS

MARIAN NOWAK

ABSTRACT. Let X be a completely regular Hausdorff space, and E and F be Banach spaces. Let $C_{rc}(X, E)$ be the Banach space of all continuous functions $f: X \to E$ such that f(X) is a relatively compact set in E. We establish an integral representation theorem for bounded linear operators $T: C_{rc}(X, E) \to F$. We characterize continuous operators from $C_{rc}(X, E)$, provided with the strict topologies $\beta_z(X, E)$ ($z = \sigma, \tau$) to F, in terms of their representing operator-valued measures.

1. Introduction and terminology

Throughout the paper let $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ be real Banach spaces, and let E' and F' denote the Banach duals of E and F, respectively. By $B_{F'}$ and B_E we denote the closed unit ball in F' and E, respectively. By $\mathcal{L}(E, F)$ we denote the Banach space of all bounded linear operators $U : E \to F$, provided with the uniform norm $\|\cdot\|$. Given a locally convex space (L, ξ) by $(L, \xi)'$ we will denote its topological dual. We denote by $\sigma(L, K)$ the weak topology on L with respect to a dual pair $\langle L, K \rangle$.

Assume that X is a completely regular Hausdorff space. Let $C_{rc}(X, E)$ (resp. $C_b(X, E)$) stand for the Banach space of all continuous functions $f: X \to E$ such that f(X) is a relatively compact set in E (resp. bounded continuous functions $f: X \to E$) provided with the uniform norm $\|\cdot\|$. By $C_{rc}(X, E)'$ and $C_{rc}(X, E)''$ we denote the Banach dual and the Banach bidual of $C_{rc}(X, E)$, respectively. Let

 $B_{C_{rc}} = \{ f \in C_{rc}(X, E) : \|f\| \le 1 \}.$

We write $C_b(X)$ instead of $C_{rc}(X, \mathbb{R})$. For $f \in C_{rc}(X, E)$ let

 $\widetilde{f}(t) = \|f(t)\|_E$ for $t \in X$.

Let \mathcal{B} (resp. $\mathcal{B}a$) be the algebra (resp. σ -algebra) of Baire sets in X, which is the algebra (resp. σ -algebra) generated by the class \mathcal{Z} of all zero sets of

 $\bigodot 2015$ Korean Mathematical Society

Received May 18, 2014.

²⁰¹⁰ Mathematics Subject Classification. 46G10, 46A40, 46A70, 28A33.

 $Key\ words\ and\ phrases.$ spaces of vector-valued continuous functions, strict topologies, vector measures, integration operators.

functions of $C_b(X)$. Let M(X) stand for the space of all Baire measures on \mathcal{B} . Then M(X) with the norm $\|\nu\| = |\nu|(X)$ (= the total variation of ν), is a Dedekind complete Banach lattice (see [21]).

Due to the Alexandrov representation theorem (see [21, Theorem 5.1]) $C_b(X)'$ can be identified with M(X) through the lattice isomorphism $M(X) \ni \nu \mapsto \varphi_{\nu} \in C_b(X)'$, where

$$\varphi_{\nu}(u) = \int_X u d\nu \text{ for } u \in C_b(X),$$

and $\|\varphi_{\nu}\| = \|\nu\|$.

By M(X, E') we denote the set of all finitely additive measures $\mu : \mathcal{B} \to E'$ with the following properties:

- (i) For each $x \in E$, the function $\mu_x : \mathcal{B} \to \mathbb{R}$ defined by $\mu_x(A) = \mu(A)(x)$, belongs to M(X),
- (ii) $|\mu|(X) < \infty$, where $|\mu|(A)$ stands for the variation of μ on $A \in \mathcal{B}$.

In view of [11, Theorem 2.5] $C_{rc}(X, E)'$ can be identified with M(X, E')through the linear mapping $M(X, E') \ni \mu \mapsto \Phi_{\mu} \in C_{rc}(X, E)'$, where

$$\Phi_{\mu}(f) = \int_{X} f d\mu \text{ for } f \in C_{rc}(X, E),$$

and $\|\Phi_{\mu}\| = |\mu|(X)$.

In the topological measure theory the so-called strict topologies on $C_b(X)$ and $C_{rc}(X, E)$ are of importance (see [12], [13], [14], [15], [21] for definitions and more details). In this paper we will consider the strict topologies $\beta_z(X, E)$ on $C_{rc}(X, E)$ and $\beta_z(X)$ on $C_b(X)$, where $z = \sigma, \tau$.

Let $M_{\sigma}(X)$ and $M_{\tau}(X)$ denote the subspaces of M(X) of all σ -additive and τ -additive Baire measures, respectively. Then $M_{\tau}(X) \subset M_{\sigma}(X)$. It is known that (see [21, §6]):

(1.1)
$$(C_b(X), \beta_z(X))' = \{\varphi_\nu : \nu \in M_z(X)\} = L_z(C_b(X))$$

for $z = \sigma, \tau$, where $L_{\sigma}(C_b(X))$ and $L_{\tau}(C_b(X))$ are spaces of all σ -additive and τ -additive functionals on $C_b(X)$.

For $z = \sigma, \tau$ let

$$M_z(X, E') := \{ \mu \in M(X, E') : \mu_x \in M_z(X) \text{ for each } x \in E \}.$$

Then for $z = \sigma, \tau$ we have

(1.2)
$$(C_{rc}(X, E), \beta_z(X, E))' = \{ \Phi_\mu : \mu \in M_z(X, E') \}$$

(see [12, Theorems 4.6 and 4.7]).

The theory of linear operators from $C_{rc}(X, E)$ and $C_b(X, E)$ to a locally convex Hausdorff space F (in particular, a Banach space) has been developed by Katsaras and Liu [15], Aguayo and Sanchez [2], Aguayo and Nova-Yanèz [3] and Khurana [17]. Locally solid topologies on the space $C_b(X, E)$ have been studied in [16], [18], [19]. It is known that the natural strict topologies $\beta_z(X, E)$ on $C_b(X, E)$, where $z = \sigma, \infty, p, g, \tau, t$ are locally solid.

In Section 2 we study locally solid topologies on $C_{rc}(X, E)$. Section 3 is devoted to the study of linear functionals on $C_{rc}(X, E)$. In Section 4 we state an integral representation of bounded linear operators $T: C_{rc}(X, E) \to F$. In Section 5 we characterize continuous operators from $C_{rc}(X, E)$, equipped with the strict topologies $\beta_z(X, E)$, $z = \sigma, \tau$ to F, in terms of the corresponding operator measures.

2. Locally solid topologies on $C_{rc}(X, E)$

Following [16, Section 8] we can introduce the concepts of solidness and locally solid topologies on $C_{rc}(X, E)$.

Definition 2.1. (i) A subset H of $C_{rc}(X, E)$ is said to be *solid* whenever $\widetilde{f}_1 \leq \widetilde{f}_2, f_1 \in C_{rc}(X, E), f_2 \in H$ imply $f_1 \in H$.

(ii) A linear Hausdorff topology τ on $C_{rc}(X, E)$ is said to be *locally solid* if it has a local base at 0 consisting of solid sets.

The following lemma will be of importance for the study of locally solid topologies on $C_{rc}(X, E)$.

Lemma 2.1. Assume that $f \in C_{rc}(X, E)$ and $\tilde{f} \leq \sum_{i=1}^{m} u_i$, where $u_i \in C_b(X)^+$, $i = 1, \ldots, m$. Then there exist $f_i \in C_{rc}(X, E)$ such that $f = \sum_{i=1}^{m} f_i$ and $\tilde{f}_i \leq u_i$, $i = 1, \ldots, m$.

Proof. Assume that $f_i(t) = u_i(t) \left(\sum_{j=1}^m u_j(t)\right)^{-1} f(t)$ if $\sum_{j=1}^m u_j(t) > 0$ and $f_i(t) = 0$ if $\sum_{j=1}^m u_j(t) = 0$, i = 1, 2, ..., m. Note that f_i are continuous and $f = \sum_{i=1}^m f_i$ and $\tilde{f}_i \leq u_i$, i = 1, 2, ..., m. To show that $f_i \in C_{rc}(X, E)$, we prove that $\{f_i(t) : t \in X\}$ is a relatively sequentially compact set in E. Indeed, let (t_n) be a sequence in X. Then there exists a subsequence (t_{k_n}) of (t_n) such that $f(t_{k_n}) \to x$ for some $x \in E$ and $u_i(t_{k_n}) \to a_i$, where $a_i \geq 0$ for i = 1, 2, ..., m.

Assume first that $\sum_{j=1}^{m} a_j > 0$. Then $f_i(t_{k_n}) \to a_i \left(\sum_{j=1}^{m} a_j\right)^{-1} x \in E$. Now assume that $\sum_{j=1}^{m} a_j = 0$, i.e., $u_i(t_{k_n}) \to 0$ for $i = 1, 2, \ldots, m$. We

Now assume that $\sum_{j=1}^{n} a_j = 0$, i.e., $u_i(t_{k_n}) \to 0$ for i = 1, 2, ..., m. We have $\tilde{f}_i \leq \tilde{f}$ and $\tilde{f}(t_{k_n}) \to 0$. Hence $\tilde{f}_i(t_{k_n}) \to 0$, i.e., $f_i \in C_{rc}(X, E)$ for i = 1, 2, ..., m.

Using Lemma 2.1 and arguing as in the proofs of [20, Theorems 1.2 and 2.1] we obtain the following results.

Proposition 2.2. The convex hull coH of a solid subset H of $C_{rc}(X, E)$ is solid.

Proposition 2.3. Let τ be a locally solid topology on $C_{rc}(X, E)$. Then the τ -closure of a solid subset H of $C_{rc}(X, E)$ is solid.

Definition 2.2. A linear topology τ on $C_{rc}(X, E)$ that at the some time is locally solid and locally convex will be called a *locally convex-solid topology*.

In view of Propositions 2.2 and 2.3 we see that for a locally convex-solid topology on $C_{rc}(X, E)$ the collection of all τ -closed and solid τ -neighborhoods of 0 forms a local base at 0 for τ .

Definition 2.3. A seminorm ρ on $C_{rc}(X, E)$ is said to be *solid* whenever $\rho(f_1) \leq \rho(f_2)$ if $f_1, f_2 \in C_{rc}(X, E)$ and $\tilde{f}_1 \leq \tilde{f}_2$.

Arguing as in the proof of [20, Theorem 2.2] we get:

Proposition 2.4. For a locally convex topology τ on $C_{rc}(X, E)$ the following statements are equivalent:

- (i) τ is generated by the family of solid seminorms.
- (ii) τ is a locally convex-solid topology.

Now we establish a mutual relationship between locally convex-solid topologies on $C_{rc}(X, E)$ and the vector lattice $C_b(X)$.

Given a Riesz seminorm p on $C_b(X)$ let us set

$$p^{\vee}(f) := p(f)$$
 for all $f \in C_{rc}(X, E)$.

Clearly p^{\vee} is a solid seminorm on $C_{rc}(X, E)$.

Let $x_0 \in S_E = \{x \in E : ||x||_E = 1\}$. Given a solid seminorm ρ on $C_{rc}(X, E)$, let

$$\rho^{\wedge}(u) := \rho(u \otimes x_0) \text{ for } u \in C_b(X).$$

It is seen that ρ^{\wedge} is well defined because $\rho(u \otimes x_0)$ does not depend on the choice of $x_0 \in S_E$, due to solidness of ρ . Clearly ρ^{\wedge} is a Riesz seminorm on $C_b(X)$.

One can easily show the following results (see [20, Lemma 3.1]).

Proposition 2.5. (i) If ρ is a solid seminorm on $C_{rc}(X, E)$, then $(\rho^{\wedge})^{\vee}(f) = \rho(f)$ for all $f \in C_{rc}(X, E)$.

(ii) If p is a Riesz seminorm on $C_b(X)$, then $(p^{\vee})^{\wedge}(u) = p(u)$ for all $u \in C_b(X)$.

Let τ be a locally convex-solid topology on $C_{rc}(X, E)$. Then in view of Theorem 2.4 τ is generated by some family $\{\rho_{\alpha} : \alpha \in \mathcal{A}\}$ of solid seminorms on $C_{rc}(X, E)$. By τ^{\wedge} we will denote the locally convex-solid topology on $C_b(X)$ generated by the family $\{\rho_{\alpha}^{\wedge} : \alpha \in \mathcal{A}\}$ of Riesz seminorms on $C_b(X)$. One can check that τ^{\wedge} does not depend on the choice of a family $\{\rho_{\alpha} : \alpha \in \mathcal{A}\}$ of solid seminorms on $C_{rc}(X, E)$ generating τ .

Next, let ξ be a locally convex-solid topology on $C_b(X)$. Then ξ is generated by some family $\{p_\alpha : \alpha \in \mathcal{A}\}$ of Riesz seminorms on $C_b(X)$ (see [1, Theorem 6.3]). By ξ^{\vee} we will denote the locally convex-solid topology on $C_{rc}(X, E)$ generated by the family $\{p_\alpha^{\vee} : \alpha \in \mathcal{A}\}$ of solid seminorms on $C_{rc}(X, E)$. One can verify that ξ^{\vee} does not depend on the choice of a family $\{p_\alpha : \alpha \in \mathcal{A}\}$ of Riesz seminorms on $C_b(X)$ that generates ξ .

In view of Proposition 2.5 we can easily get:

Theorem 2.6. (i) For a locally convex-solid topology τ on $C_{rc}(X, E)$ we have: $(\tau^{\wedge})^{\vee} = \tau$.

(ii) For a locally convex-solid topology ξ on $C_b(X)$ we have: $(\xi^{\vee})^{\wedge} = \xi$.

Now we recall definitions of strict topologies $\beta_z(X, E)$ on $C_{rc}(X, E)$ for $z = \sigma, \tau$ (see [12], [13] and [14] for more details). Let βX stand for the Stone-Čech compactification of X. For a compact subset Q of $\beta X \smallsetminus X$ let $C_Q(X) = \{v \in C_b(X) : \overline{v}|_Q \equiv 0\}$, where \overline{v} denotes the unique extension of $v \in C_b(X)$ on βX . For each $v \in C_Q(X)$ let $\rho_v(f) := \sup_{t \in X} |v(t)| \tilde{f}(t)$ for $f \in C_{rc}(X, E)$, and let $\beta_Q(X, E)$ be the locally convex-solid topology on $C_{rc}(X, E)$ defined by $\{\rho_v : v \in C_Q(X)\}$.

Now let \mathcal{C} be some family of compact subsets of $\beta X \setminus X$. The *strict topology* $\beta_{\mathcal{C}}(X, E)$ on $C_{rc}(X, E)$ determined by \mathcal{C} is the greatest lower bound (in the class of locally convex Hausdorff topologies) of the topologies $\beta_Q(X, E)$, as Q runs over \mathcal{C} .

Proposition 2.7. The strict topology $\beta_{\mathcal{C}}(X, E)$ on $C_{rc}(X, E)$ is locally convexsolid.

Proof. Since $\beta_{\mathcal{C}}(X, E)$ is an inductive limit topology on $C_{rc}(X, E)$, it has a local base at 0 consisting of all sets of the form:

$$\operatorname{eco}\left(\bigcup\left\{W_{v_Q}: Q \in \mathcal{C} \text{ and } v_Q \in C_Q(X)\right\}\right),\$$

where for $v_Q \in C_Q(X)$, $W_{v_Q} = \{f \in C_{rc}(X, E) : \varrho_{v_Q}(f) \leq 1\}$ (see [5, Chapter 2.1.4]) (here ecoW denotes the balanced convex hull of a set W in $C_{rc}(X, E)$). We shall show that a set V = ecoW, where $W = \bigcup \{W_{v_Q} : Q \in \mathcal{C} \text{ and } v_Q \in C_Q(X)\}$ is solid.

Indeed, let $f \in C_{rc}(X, E)$, $g \in V$ and $\tilde{f} \leq \tilde{g}$. Then $g = \sum_{i=1}^{n} \lambda_i g_i$, where $\sum_{i=1}^{n} |\lambda_i| \leq 1$ and $g_i \in W$ for i = 1, 2, ..., n. Hence for each i = 1, 2, ..., n, there exist $Q_i \in \mathcal{C}$ and $v_{Q_i} \in C_{Q_i}(X)$ such that $\varrho_{v_{Q_i}}(g_i) \leq 1$. By Lemma 2.1 there exist $f_1, \ldots, f_n \in C_{rc}(X, E)$ such that $f = \sum_{i=1}^{n} f_i$ and $\tilde{f}_i \leq \lambda \tilde{g}_i$ for $i = 1, 2, \ldots, n$. Let $h_i = \frac{1}{\lambda_i} f_i$ for $i = 1, 2, \ldots, n$. Since $\varrho_{v_{Q_i}}$ is a solid seminorm on $C_{rc}(X, E)$ and $\tilde{h}_i \leq \tilde{g}_i$ for $i = 1, 2, \ldots, n$, we have $\varrho_{v_{Q_i}}(h_i) \leq \varrho_{v_{Q_i}}(g_i) \leq 1$. Hence $h_i \in W_{v_{Q_i}}$, so $h_i \in W$. Then $f = \sum_{i=1}^{n} \lambda_i h_i \in V$, as desired. \Box

Let C_{σ} (resp. C_{τ}) be the family of all zero subsets (resp. compact subsets) of $\beta X \smallsetminus X$, and let $\beta_z(X, E) = \beta_{\mathcal{C}_z}(X, E)$, where $z = \sigma, \tau$.

Arguing as in the proof of [20, Theorem 4.2] we get:

Theorem 2.8. For $z = \sigma, \tau$, we have:

$$\beta_z(X, E) = \beta_z(X)^{\vee}, \quad \beta_z(X, E)^{\wedge} = \beta_z(X).$$

Now we define two classes of locally convex-solid topologies on $C_{rc}(X, E)$.

Definition 2.4. A locally convex-solid topology τ on $C_{rc}(X, E)$ is said to be:

MARIAN NOWAK

- (i) σ -Dini if $f_n \to 0$ for τ whenever (f_n) is a sequence in $C_{rc}(X, E)$ such that $\widetilde{f}_n(t) \downarrow 0$ for $t \in X$.
- (ii) Divi if $f_{\alpha} \to 0$ for τ whenever (f_{α}) is a net in $C_{rc}(X, E)$ such that $\tilde{f}_{\alpha}(t) \downarrow 0$ for $t \in X$.

It is known that $\beta_{\sigma}(X)$ is the finest σ -Dini topology on $C_b(X)$ and $\beta_{\tau}(X)$ is the finest Dini topology on $C_b(X)$ (see [21, Corollaries 11.16 and 11.28]).

Corollary 2.9. (i) $\beta_{\sigma}(X, E)$ is the finest σ -Dini topology on $C_{rc}(X, E)$. (ii) $\beta_{\tau}(X, E)$ is the finest Dini topology on $C_{rc}(X, E)$.

Proof. (i) Let $\{p_{\alpha} : \alpha \in \mathcal{A}\}$ be a family of Riesz seminorms on $C_b(X)$ that generates $\beta_{\sigma}(X)$. Assume that (f_n) is a sequence in $C_{rc}(X, E)$ such that $\tilde{f}_n(t) \downarrow 0$ for all $x \in X$. Then $p_{\alpha}^{\vee}(f_n) = p_{\alpha}(\tilde{f}_n) \to 0$ and this means that $f_n \to 0$ for $\beta_{\sigma}(X)^{\vee}$. In view of Theorem 2.8 we conclude that $f_n \to 0$ for $\beta_{\sigma}(X, E)$.

Now assume that τ is a σ -Dini topology on $C_{rc}(X, E)$. Then $\tau^{\wedge} \subset \beta_{\sigma}(X)$, and hence $\tau = (\tau^{\wedge})^{\vee} \subset \beta_{\sigma}(X)^{\vee} = \beta_{\sigma}(X, E)$ (see Theorems 2.6 and 2.8). (ii) It is similar to (i).

3. Linear functionals on $C_{rc}(X, E)$

Assume that $\mu \in M(X, E')$. For $u \in C_b(X)^+$ let us put

$$|\Phi_{\mu}|(u) := \sup\{|\Phi_{\mu}(h)| : h \in C_{rc}(X, E), \ h \le u\}.$$

Proposition 3.1. For $\mu \in M(X, E')$, the functional $|\Phi_{\mu}| : C_b(X)^+ \to \mathbb{R}^+$ is additive.

Proof. Let $u_1, u_2 \in C_b(X)^+$. First we shall show that

$$|\Phi_{\mu}|(u_1 + u_2) \le |\Phi_{\mu}|(u_1) + |\Phi_{\mu}|(u_2).$$

Indeed, let $\varepsilon > 0$. Then there exists $h_0 \in C_{rc}(X, E)$ such that $\tilde{h}_0 \leq u_1 + u_2$ and $|\Phi_{\mu}|(u_1 + u_2) \leq |\Phi_{\mu}(h_0)| + \varepsilon$. Then by Lemma 2.1 there exist $h_1, h_2 \in C_{rc}(X, E)$ such that $h_0 = h_1 + h_2$ and $\tilde{h}_i \leq u_i, i = 1, 2$. Hence

$$\begin{aligned} |\Phi_{\mu}|(u_{1}+u_{2}) &\leq |\Phi_{\mu}(h_{1}+h_{2})| + \varepsilon \leq |\Phi_{\mu}(h_{1})| + |\Phi_{\mu}(h_{2})| + \varepsilon \\ &\leq |\Phi_{\mu}|(u_{1}) + |\Phi_{\mu}|(u_{2}) + \varepsilon. \end{aligned}$$

Now we shall show that

$$\Phi_{\mu}|(u_1) + |\Phi_{\mu}|(u_2) \le |\Phi_{\mu}|(u_1 + u_2).$$

Indeed, let $\varepsilon > 0$ be given. Then there exist $h_1, h_2 \in C_{rc}(X, E)$ such that $\widetilde{h}_i \leq u_i$ and $|\Phi_{\mu}|(u_i) \leq |\Phi_{\mu}(h_i)| + \frac{\varepsilon}{2}$, i = 1, 2. Let $g_i = \operatorname{sign} \Phi_{\mu}(h_i)h_i$ for i = 1, 2. Then $\widetilde{g}_i \leq \widetilde{h}_i$ and $\widetilde{g_1 + g_2} \leq u_1 + u_2$, and hence

$$\begin{aligned} |\Phi_{\mu}|(u_{1}) + |\Phi_{\mu}|(u_{2}) &\leq \Phi_{\mu}(g_{1}) + \Phi_{\mu}(g_{2}) + \varepsilon = \Phi_{\mu}(g_{1} + g_{2}) + \varepsilon \\ &\leq |\Phi_{\mu}|(u_{1} + u_{2}) + \varepsilon. \end{aligned}$$

In view of [1, Theorem 1.7] we obtain that $|\Phi_{\mu}| : C_b(X)^+ \to \mathbb{R}^+$ has a unique linear extension (denoted by $|\Phi_{\mu}|$ again)

$$\Phi_{\mu}|: C_b(X) \to \mathbb{R}$$

defined by

$$|\Phi_{\mu}|(u) := |\Phi_{\mu}|(u^{+}) - |\Phi_{\mu}|(u^{-})$$
 for all $u \in C_{b}(X)$.

Hence for $u \in C_b(X)$,

$$\left| |\Phi_{\mu}|(u) \right| \le |\Phi_{\mu}|(u).$$

Corollary 3.2. Let $\mu \in M_{\sigma}(X, E')$. Then for $u \in C_b(X)$ we have

$$|\Phi_{\mu}|(u) = \int_{X} u d|\mu| = \varphi_{|\mu|}(u).$$

Proof. In view of [16, Theorem 2.1] for $u \in C_b(X)^+$ we have,

$$\int_X ud|\mu| = \sup\left\{ \left| \int_X gd\mu \right| : g \in C_b(X) \otimes E, \ \widetilde{g} \le u \right\}$$

and

$$|\Phi_{\mu}|(u) = \sup\left\{ \left| \int_{X} h d\mu \right| : h \in C_{rc}(X, E), \ \widetilde{h} \le u \right\}.$$

Since $C_b(X) \otimes E \subset C_{rc}(X, E)$, we get $\int_X ud|\mu| \leq |\Phi_{\mu}|(u)$. Now let $h \in C_{rc}(X, E)$ and $\tilde{h} \leq u$. Then

$$\left|\int_X hd\mu\right| \le \int_X \widetilde{h}d|\mu| \le \int_X ud|\mu|,$$

and hence $|\Phi_{\mu}|(u) \leq \int_{X} u d|\mu|$, as desired.

Corollary 3.3. For $\mu \in M(X, E')$ the following statements are equivalent:

- (i) $\mu \in M_{\sigma}(X, E')$.
- (ii) $\Phi_{\mu} \in (C_{rc}(X, E), \beta_{\sigma}(X, E))'.$
- (iii) $|\Phi_{\mu}| \in (C_b(X), \beta_{\sigma}(X))'.$
- (iv) $\Phi_{\mu}(u_ng) \to 0$ uniformly for $g \in B_{C_{rc}}$ whenever (u_n) is a sequence in $C_b(X)$ such that $u_n(t) \downarrow 0$ for $t \in X$.

Proof. (i) \iff (ii) It follows from (1.2).

(i) \Longrightarrow (iii) Assume that $\mu \in M_{\sigma}(X, E')$. Then $|\mu| \in M_{\sigma}(X)$ (see [10, Proposition 3.9]) and by Corollary 3.2 and (1.1), we get $|\Phi_{\mu}| \in (C_b(X), \beta_{\sigma}(X))'$.

(iii) \Longrightarrow (iv) Assume that (iii) holds. Let (u_n) be a sequence in $C_b(X)$ such that $u_n(t) \downarrow 0$ for $t \in X$. Then for $g \in B_{C_{rc}}$, by Corollary 3.2 we get

$$|\Phi_{\mu}(u_ng)| \leq \int_X u_n d|\mu| = |\Phi_{\mu}|(u_n).$$

Since $|\Phi_{\mu}| \in L_{\sigma}(C_b(X))$ (see (1.1)), we get $\Phi_{\mu}(u_n g) \to 0$, as desired.

183

(iv) \Longrightarrow (i) Assume that (iv) holds. Let (u_n) be a sequence in $C_b(X)$ such that $u_n(t) \downarrow 0$ for $t \in X$. Then for $x \in E$ we get

$$\Phi_{\mu}(u_n \otimes x) = \int_X (u_n \otimes x) d\mu = \int_X u_n d\mu_x \to 0.$$

e by (1.1) $\mu_x \in M_{\sigma}(X)$, i.e., $\mu \in M_{\sigma}(X, E')$.

Arguing similarly as in the proof of Corollary 3.3 and using [10, Proposition 3.9] we get:

Corollary 3.4. For $\mu \in M(X, E')$ the following statements are equivalent:

- (i) $\mu \in M_{\tau}(X, E')$.
- (ii) $\Phi_{\mu} \in (C_{rc}(X, E), \beta_{\tau}(X, E))'.$
- (iii) $|\Phi_{\mu}| \in (C_b(X), \beta_{\tau}(X))'.$
- (iv) $\Phi_{\mu}(u_{\alpha}g) \to 0$ uniformly for $g \in B_{C_{rc}}$ whenever (u_{α}) is a sequence in $C_b(X)$ such that $u_{\alpha}(t) \downarrow 0$ for $t \in X$.

Proposition 3.5. Let \mathcal{M} be a subset of $M_{\sigma}(X, E')$. Then the following statements are equivalent:

- (i) $\{\Phi_{\mu} : \mu \in \mathcal{M}\}$ is $\beta_{\sigma}(X, E)$ -equicontinuous.
- (ii) $\{|\Phi_{\mu}| : \mu \in \mathcal{M}\}$ is uniformly σ -additive, i.e., $\sup\{|\Phi_{\mu}|(u_n) : \mu \in \mathcal{M}\} \rightarrow 0$ whenever (u_n) is a sequence in $C_b(X)$ such that $u_n(t) \downarrow 0$ for $t \in X$.
- (iii) $\{|\Phi_{\mu}| : \mu \in \mathcal{M}\}$ is $\beta_{\sigma}(X)$ -equicontinuous.

Proof. (i) \Longrightarrow (ii) Assume that $\{\Phi_{\mu} : \mu \in \mathcal{M}\}$ is $\beta_{\sigma}(X, E)$ -equicontinuous. To show that $\{|\Phi_{\mu}| : \mu \in \mathcal{M}\}$ is uniformly σ -additive, let (u_n) be a sequence in $C_b(X)$ such that $u_n(t) \downarrow 0$ for $t \in X$. Let $\varepsilon > 0$ be given. Then there exists a convex and solid neighborhood V of 0 for $\beta_{\sigma}(X, E)$ such that $\sup_{\mu \in \mathcal{M}} |\Phi_{\mu}(f)| \leq \varepsilon$ for all $f \in V$ (see Proposition 2.7). Since $\beta_{\sigma}(X, E)$ is a σ -Dini topology (see Corollary 2.9), there exists $n_{\varepsilon} \in \mathbb{N}$ such that $u_n \otimes x_0 \in V$ ($x_0 \in S_E$) for $n \geq n_{\varepsilon}$. Hence $|\Phi_{\mu}(u_n \otimes x_0)| \leq \varepsilon$ for $n \geq n_{\varepsilon}$. Let $n_0 \geq n_{\varepsilon}$ be fixed and let $h \in C_{rc}(X)$ with $\tilde{h} \leq u_{n_0}$. Then $h \in V$ because V is solid, and hence $\sup_{\mu \in \mathcal{M}} |\Phi_{\mu}(h)| \leq \varepsilon$. It follows that $\sup_{\mu} |\Phi_{\mu}|(u_n) \leq \varepsilon$ for $n \geq n_{\varepsilon}$, as desired.

(ii) \iff (iii) See [21, Theorem 11.14].

(iii) \Longrightarrow (i) Assume that $\{|\Phi_{\mu}| : \mu \in \mathcal{M}\}$ is $\beta_{\sigma}(X)$ -equicontinuous. Let $\{\rho_{\alpha} : \alpha \in \mathcal{A}\}$ be the family of solid seminorms that generates $\beta_{\sigma}(X, E)$ (see Propositions 2.4 and 2.7). Given $\varepsilon > 0$ there exist $\alpha_1, \ldots, \alpha_n \in \mathcal{A}$ and $\eta > 0$ such that $\sup\{|\Phi_{\mu}|(u): \mu \in \mathcal{M}\} \leq \varepsilon$ for $u \in C_b(X)$ with $\max_{1 \leq i \leq n} \hat{\rho}_{\alpha_i}(u) \leq \eta$. Let $f \in C_{rc}(X, E)$ with $\max_{1 \leq i \leq n} \rho_{\alpha_i}(f) \leq \eta$. Since $\hat{\rho}_{\alpha_i}(\tilde{f}) = \rho_{\alpha_i}(\tilde{f} \otimes x_0) = \rho_{\alpha_i}(f)$ $(i = 1, 2, \ldots, n)$, we obtain that $\sup\{|\Phi_{\mu}|(\tilde{f}): \mu \in \mathcal{M}\} \leq \varepsilon$. But $|\Phi_{\mu}(f)| \leq |\Phi_{\mu}|(\tilde{f})$, so $\sup\{|\Phi_{\mu}(f)|: \mu \in \mathcal{M}\} \leq \varepsilon$, and this means that the family $\{\Phi_{\mu}: \mu \in \mathcal{M}\}$ is $\beta_{\sigma}(X, E)$ -equicontinuous. \Box

Using [21, Theorem 11.24] we can prove an analogous result for $\beta_{\tau}(X, E)$ with a similar proof.

184

Hence

Proposition 3.6. Let \mathcal{M} be a subset of $M_{\tau}(X, E')$. Then the following statements are equivalent:

- (i) $\{\Phi_{\mu} : \mu \in \mathcal{M}\}$ is $\beta_{\tau}(X, E)$ -equicontinuous.
- (ii) $\{|\Phi_{\mu}|: \mu \in \mathcal{M}\}$ is uniformly τ -additive, i.e., $\sup\{|\Phi_{\mu}|(u_{\alpha}): \mu \in \mathcal{M}\} \rightarrow$
- 0 whenever (u_{α}) is a net in $C_b(X)$ such that $u_{\alpha}(t) \downarrow 0$ for $t \in X$.
- (iii) $\{|\Phi_{\mu}| : \mu \in \mathcal{M}\}$ is $\beta_{\tau}(X)$ -equicontinuous.

4. Integral representation of bounded linear operators on $C_{rc}(X, E)$

By $B(\mathcal{B}, E)$ we denote the Banach space of all totally \mathcal{B} -measurable functions $g: X \to E$ (the uniform limits of sequences of E-valued \mathcal{B} -simple functions), provided with the uniform norm $\|\cdot\|$ (see [7], [8]).

It is known that $C_{rc}(X, E) \subset B(\mathcal{B}, E)$ (see [16]), and one can embed $B(\mathcal{B}, E)$ into $C_{rc}(X, E)''$ by the mapping $\pi : B(\mathcal{B}, E) \to C_{rc}(X, E)''$, where for $g \in B(\mathcal{B}, E)$,

$$\pi(g)(\Phi_{\mu}) = \int_{X} g d\mu \text{ for } \mu \in M(X, E').$$

Let $i_F: F \to F''$ stand for the canonical embedding, i.e., $i_F(y)(y') = y'(y)$ for $y \in F$, $y' \in F'$. Moreover, let $j_F: i_F(F) \to F$ denote the left inverse of i_F , that is, $j_F \circ i_F = id_F$. Note that j_F is $(\sigma(i_F(F), F'), \sigma(F, F'))$ -continuous.

Now assume that $T : C_{rc}(X, E) \to F$ is a bounded linear operator. Let $T': F' \to C_{rc}(X, E)'$ and $T'': C_{rc}(X, E)'' \to F''$ stand for the conjugate and biconjugate operators of T, respectively. Let

$$\hat{T} := T'' \circ \pi : B(\mathcal{B}, E) \to F''.$$

Then \hat{T} is a bounded operator. For $A \in \mathcal{B}$ let us put

$$m(A)(x) := \hat{T}(\mathbb{1}_A \otimes x) \text{ for } x \in E$$

Then $m: \mathcal{B} \to \mathcal{L}(E, F'')$ will be called a *representing measure* of T.

We define the semivariation $\widetilde{m}(A)$ of m on $A \in \mathcal{B}$ by

$$\widetilde{m}(A) = \sup \|\sum m(A_i)(x_i)\|_{F''},$$

where the supremum is taken over all finite \mathcal{B} -partitions (A_i) of A and $x_i \in B_E$ for each i. For $y' \in F'$ let $m_{y'} : \mathcal{B} \to E'$ be vector measures defined by $m_{y'}(A)(x) := m(A)(x)(y')$ for $A \in \mathcal{B}, x \in E$. Let $|m_{y'}|(A)$ stand for the variation of $m_{y'}$ on A. Then for $A \in \mathcal{B}$ (see [7, §4, Proposition 5]),

$$\widetilde{m}(A) = \sup\{|m_{y'}|(A) : y' \in B_{F'}\}.$$

Since $\hat{T}: B(\mathcal{B}, E) \to F''$ is bounded, we have

$$\hat{T}(g) = \int_X g dm \text{ for } g \in B(\mathcal{B}, E),$$

 $\|\hat{T}\| = \widetilde{m}(X)$, and for each $y' \in F'$ we have,

$$\hat{T}(g)(y') = \int_X g dm_{y'} \text{ for } g \in B(\mathcal{B}, E),$$

(see [7, §6], [8, §1, G-H]). Moreover, from the general properties of the operator \hat{T} it follows immediately that

(4.1)
$$\hat{T}(C_{rc}(X,E)) \subset i_F(F).$$

For each $x \in E$ we can define a vector measure $m_x : \mathcal{B} \to F''$ by

$$m_x(A)(y') := m(A)(x)(y')$$
 for $A \in \mathcal{B}, y' \in F'$.

For $x \in E$ and $y' \in F'$ let

 $m_{x,y'}(A) := m(A)(x)(y')$ for $A \in \mathcal{B}$.

An integral representation of weakly compact operators $T: C_{rc}(X, E) \to F$ was established by Katsaras and Liu (see [15, Theorem 3]). Now we state a general Riesz representation theorem for bounded linear operators $T: C_{rc}(X, E) \rightarrow$ F.

Theorem 4.1. Let $T : C_{rc}(X, E) \to F$ be a bounded linear operator, and $m: \mathcal{B} \to \mathcal{L}(E, F'')$ its representing measure. Then the following statements hold:

- (i) $m_{u'} \in M(X, E')$ for each $y' \in F'$.
- (ii) The mapping $F' \ni y' \mapsto m_{y'} \in M(X, E')$ is $(\sigma(F', F), \sigma(M(X, E'), \sigma(M(X, E')))$ $C_{rc}(X, E)))$ -continuous.
- (iii) For each $y' \in F'$, $y'(T(f)) = \int_X f dm_{y'}$ for $f \in C_{rc}(X, E)$.
- (iv) $T(f) = j_F(\int_X f dm)$ for $f \in C_{rc}(X, E)$. (v) $||T|| = \widetilde{m}(X)$.

Conversely, let $m : \mathcal{B} \to \mathcal{L}(E, F'')$ be a vector measure satisfying (i) and (ii). Then there exists a unique bounded linear operator $T: C_{rc}(X, E) \to F$ such that (iii) holds and $m(A)(x) = (T'' \circ \pi)(\mathbb{1}_A \otimes x)$ for all $A \in \mathcal{B}$, $x \in E$. In consequence, the vector measure $m: \mathcal{B} \to \mathcal{L}(E, F'')$ satisfying (i), (ii) and (iii) is uniquely determined by a bounded linear operator $T: C_{rc}(X, E) \to F$.

Proof. Let $y' \in F'$. Since $y' \circ T \in C_{rc}(X, E)'$, there exists a unique $\mu_{y' \circ T} \in C_{rc}(X, E)'$ M(X, E') such that

$$(y' \circ T)(f) = \int_X f d\mu_{y' \circ T}$$
 for $f \in C_{rc}(X, E)$.

For $A \in \mathcal{B}$ and $x \in E$ we have

$$\begin{split} m_{y'}(A)(x) &= m(A)(x)(y') = \tilde{T}(\mathbb{1}_A \otimes x)(y') \\ &= T''(\pi(\mathbb{1}_A \otimes x))(y') = \pi(\mathbb{1}_A \otimes x)(T'(y')) \\ &= \pi(\mathbb{1}_A \otimes x)(y' \circ T) = \int_X (\mathbb{1}_A \otimes x)d\mu_{y' \circ T} = \mu_{y' \circ T}(A)(x). \end{split}$$

It follows that $m_{y'} = \mu_{y' \circ T} \in M(X, E')$ and

$$(y' \circ T)(f) = \int_X f dm_{y'}$$
 for $f \in C_{rc}(X, E)$.

This means that (i) and (iii) hold. Since the mapping $T': F' \to C_{rc}(X, E)'$ is $(\sigma(F', F), \sigma(C_{rc}(X, E)', C_{rc}(X, E)))$ -continuous, the mapping $F' \ni y' \mapsto m_{y'} \in M(X, E')$ is $(\sigma(F', F), \sigma(M(X, E'), C_{rc}(X, E)))$ -continuous, i.e., (ii) holds.

Note that using (4.1) we have $T(f) = j_F(\hat{T}(f)) = j_F(\int_X f dm)$ for $f \in C_{rc}(X, E)$, i.e., (iv) holds. Using (iii) we get

$$||T|| = ||T'|| = \sup\{||T'(y')|| : y' \in B_{F'}\}$$

= sup{ $||y' \circ T|| : y' \in B_{F'}\}$
= sup{ $|m_{y'}|(X) : y' \in B_{F'}\}$

i.e., (v) holds.

Conversely, let $m : \mathcal{B} \to \mathcal{L}(E, F'')$ be a vector measure satisfying (i) and (ii). Then $m_{y'} \in M(X, E')$ and the mapping $F' \ni y' \mapsto m_{y'} \in M(X, E')$ is $(\sigma(F', F), \sigma(M(X, E'), C_{rc}(X, E)))$ -continuous.

For $f \in C_{rc}(X, E)$ define a linear mapping $\Psi_f : F' \to \mathbb{R}$ by

$$\Psi_f(y') = \int_X f dm_{y'}$$
 for all $y' \in F'$

Then by (ii) Ψ_f is a $\sigma(F', F)$ -continuous linear functional, so there exists a unique $y_f \in F$ such that $\Psi_f = i_F(y_f)$, i.e., $\Psi_f(y') = y'(y_f)$ for each $y' \in F'$. For each $f \in C_{rc}(X, E)$ let us put

$$T(f) = y_f.$$

Then $T: C_{rc}(X, E) \to F$ is a linear mapping and for each $y' \in F'$ we have

$$\sup\{|y'(T(f))| : ||f|| \le 1\} = \sup\{\{|y'(y_f)| : ||f|| \le 1\}$$
$$= \sup\left\{\left|\int_X f dm_{y'}\right| : ||f|| \le 1\right\}$$
$$\le \sup\left\{\int_X ||f|| d|m_{y'}| : ||f|| \le 1\right\}$$
$$\le |m_{y'}|(X) < \infty.$$

This means that $\{T(f) : ||f|| \leq 1\}$ is $\sigma(F, F')$ -bounded, so $\sup\{||T(f)||_F : ||f|| \leq 1\} < \infty$, i.e., T is bounded. Moreover, for each $y' \in F'$ we have

$$y'(T(f)) = y'(y_f) = \Psi_f(y') = \int_X f dm_{y'}$$
 for $f \in C_{rc}(X, E)$,

i.e., T satisfies (iii).

Assume that $S: C_{rc}(X, E) \to F$ is another bounded linear operator such that for each $y' \in F'$,

$$y'(S(f)) = \int_X f dm_{y'} \quad \text{for} \quad f \in C_{rc}(X, E).$$

Then y'(S(f)) = y'(T(f)) for all $f \in C_{rc}(X, E)$, so S = T.

Let $m_o(A)(x) = (T'' \circ \pi)(\mathbb{1}_A \otimes x)$ for all $A \in \mathcal{B}$, $x \in E$. Then by the first part of the proof, for each $y' \in F'$, we get

$$y'(T(f)) = \int_X f d(m_o)_{y'} \quad \text{for } f \in C_{rc}(X, E).$$

Hence $(m_o)_{y'} = m_{y'} \in M(X, E')$. It follows that

$$m(A)(x) = m_o(A)(x) = (T'' \circ \pi)(\mathbb{1}_A \otimes x)$$

Thus the proof is complete.

Definition 4.1. A measure $m : \mathcal{B} \to \mathcal{L}(E, F'')$ is said to be a *representing* measure if it satisfies conditions (i) and (ii) of Theorem 4.1.

5. Continuous operators on $C_{rc}(X, E)$ with strict topologies

First we distinguish two classes of operators on $C_{rc}(X, E)$.

Definition 5.1. A bounded linear operator $T : C_{rc}(X, E) \to F$ is said to be:

- (i) σ -additive, if $||T(u_ng)||_F \to 0$ uniformly for $g \in B_{C_{rc}}$ whenever (u_n) is a sequence in $C_b(X)$ such that $u_n(t) \downarrow 0$ for $t \in X$.
- (ii) τ -additive, if $||T(u_{\alpha}g)||_F \to 0$ uniformly for $g \in B_{C_{rc}}$ whenever (u_{α}) is a net in $C_b(X)$ such that $u_{\alpha}(t) \downarrow 0$ for $t \in X$.

We characterize $(\beta_z(X, E), \|\cdot\|_F)$ -continuous linear operators $T: C_{rc}(X, E) \to F$ for $z = \sigma, \tau$.

Theorem 5.1. Let $T : C_{rc}(X, E) \to F$ be a bounded linear operator, and $m : \mathcal{B} \to \mathcal{L}(E, F'')$ its representing measure. Then the following statements are equivalent:

- (i) T is $(\beta_{\sigma}(X, E), \|\cdot\|_F)$ -continuous.
- (ii) T is σ -additive.
- (iii) $\widetilde{m}(Z_n)$ whenever $Z_n \downarrow \emptyset$, $(Z_n) \subset \mathcal{Z}$.

Proof. (i) ⇒(ii) Assume that *T* is $(\beta_{\sigma}(X, E), \|\cdot\|_F)$ -continuous. Let (u_n) be a sequence in $C_b(X)$ such that $u_n(t) \downarrow 0$ for $t \in X$, and let $\varepsilon > 0$ be given. Then there exists a solid neighborhood *V* of 0 for $\beta_{\sigma}(X, E)$ such that $\|T(f)\|_F \leq \varepsilon$ for all $f \in V$ (see Proposition 2.7). Choose $n_{\varepsilon} \in \mathbb{N}$ such that $u_n \otimes x_0 \in V$ for $n \geq n_{\varepsilon}$, where $x_0 \in S_E$ (see Corollary 2.9). Hence $u_ng \in V$ for all $g \in B_{C_{rc}}$ and $n \geq n_{\varepsilon}$, and it follows that $\sup_{g \in B_{C_{rc}}} \|T(u_ng)\|_F \leq \varepsilon$ for $n \geq n_{\varepsilon}$.

(ii) \Longrightarrow (iii) Assume that T is σ -additive. Then for $y' \in F'$ we have

$$(y' \circ T)(f) = \int_X f dm_{y'} \quad \text{for} \quad f \in C_{rc}(X, E)$$

and by Corollary 3.3, $m_{y'} \in M_{\sigma}(X, E')$, and hence $|m_{y'}| \in M_{\sigma}(X)$. In view of Corollary 3.2 we have

$$y' \circ T|(u) = \int_X u d|m_{y'}|$$
 for $u \in C_b(X)$.

Let (u_n) be a sequence in $C_b(X)$ such that $u_n(t) \downarrow 0$ for $t \in X$. We shall show that $\sup_{y' \in B_{F'}} |y' \circ T|(u_n) \to 0$. For each $y' \in F'$ there exists a sequence $(h_{y',n})$ in $C_{rc}(X, E)$ with $\tilde{h}_{y',n} \leq u_n$ and such that

$$|y' \circ T|(u_n) \le \left| \int_X h_{y',n} dm_{y'} \right| + \frac{1}{n}.$$

Let $g_{y',n}(t) = \frac{h_{y',n}(t)}{u_n(t)}$ for $t \in X$. Then $g_{y',n} \in B_{C_{rc}}$ for $n \in \mathbb{N}$. Hence for each $y' \in B_{F'}$, we get

$$|y' \circ T|(u_n) \leq \left| \int_X h_{y',n} dm_{y'} \right| + \frac{1}{n} = \left| \int_X u_n g_{y',n} dm_{y'} \right| + \frac{1}{n}$$
$$\leq \sup_{g \in B_{Crc}} \left| \int_X u_n g dm_{y'} \right| + \frac{1}{n} = \sup_{g \in B_{Crc}} |y'(T(u_n g))| + \frac{1}{n}$$
$$\leq \sup_{g \in B_{Crc}} ||T(u_n g)||_F + \frac{1}{n}.$$

Hence $\sup_{y' \in B_{F'}} |y' \circ T|(u_n) \to 0$, as desired. By [21, Theorem 11.14] the family $\{|m_{y'}| : y' \in B_{F'}\}$ in $M_{\sigma}(X)$ is uniformly σ -additive, i.e.,

$$\widetilde{m}(Z_n) = \sup\{|m_{y'}|(Z_n): y' \in B_{F'}\} \to 0 \quad \text{whenever} \ Z_n \downarrow \emptyset, \ (Z_n) \subset \mathcal{Z}.$$

(iii) \Longrightarrow (i) Assume that (iii) holds. Then $|m_{y'}| \in M_{\sigma}(X)$ for each $y' \in F'$. Note that for $A \in \mathcal{B}$, $x \in E$ we have $|m_{x,y'}(A)| \leq |m_{y'}|(A) \cdot ||x||_E$. It follows that $m_{x,y'} \in M_{\sigma}(X)$ for $x \in E$, i.e., $m_{y'} \in M_{\sigma}(X, E')$, and hence $y' \circ T \in (C_{rc}(X, E), \beta_{\sigma}(X, E))'$ (see (1.2)). In view of [21, Theorem 11.14] the family $\{|y' \circ T| : y' \in B_{F'}\}$ is $\beta_{\sigma}(X)$ -equicontinuous, and hence by Proposition 3.5 the family $\{y' \circ T : y' \in B_{F'}\}$ is $\beta_{\sigma}(X, E)$ -equicontinuous. This means that T is $(\beta_{\sigma}(X, E), || \cdot ||_F)$ -continuous.

Arguing as in the proof of Theorem 5.1 and using Proposition 3.6 we get:

Theorem 5.2. Let $T : C_{rc}(X, E) \to F$ be a bounded linear operator, and $m : \mathcal{B} \to \mathcal{L}(E, F'')$ its representing measure. Then the following statements are equivalent:

(i) T is $(\beta_{\tau}(X, E), \|\cdot\|_F)$ -continuous.

(iii) $\widetilde{m}(Z_n) \to 0$ whenever $Z_\alpha \downarrow \emptyset$, $(Z_\alpha) \subset \mathcal{Z}$.

Remark. For weakly compact operators $T : C_{rc}(X, E) \to F$, the equivalences (i) \iff (iii) in Theorems 5.1 and 5.2 were derived in a different way in [15, Theorems 4 and 5].

References

- C. D. Aliprantis and O. Burkinshaw, *Positive Operators*, Academic Press, New York, 1985.
- [2] J. Aguayo and J. Sanchez, The Dunford-Pettis property on vector-valued continuous and bounded functions, Bull. Austr. Math. Soc. 48 (1993), no. 2, 303–311.

⁽ii) T is τ -additive.

MARIAN NOWAK

- [3] J. Aguayo-Garrido and M. Nova-Yanèz, Weakly compact operators and u-additive measures, Ann. Math. Blaise Pascal 7 (2000), no. 2, 1–11.
- [4] J. Batt, Applications of the Orlicz-Pettis theorem to operator-valued measures and compact and weakly compact linear transformations on the space of continuous functions, Rev. Roumaine Math. Pures Appl. 14 (1969), 907–935.
- [5] R. Cristescu, Topological Vector Spaces, Ed. Acad. Bucaresti, Noordhoff Inter. Publ., Leyden 1977.
- [6] J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Math. Surveys 15, Providence, RI, 1977.
- [7] N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
- [8] _____, Vector Integration and Stochastic Integration in Banach Spaces, John Wiley and Sons Inc., 2000.
- [9] R. E. Edwards, Functional Analysis, Theory and Applications, Holt, Rinehart and Winston, New York, 1965.
- [10] R. Fontenot, Strict topologies for vector-valued function spaces, Canad. J. Math. 26 (1974), no. 4, 841–853.
- [11] A. Katsaras, Continuous linear functionals on spaces of vector-valued functions, Bull. Soc. Math. Greece 15 (1974), 13–19.
- [12] _____, Spaces of vector measures, Trans. Amer. Math. Soc. 206 (1975), 313–328.
- [13] _____, Locally convex topologies on spaces of continuous vector functions, Math. Nachr. 71 (1976), 211–226.
- [14] _____, Some locally convex spaces of continuous vector-valued functions over a completely regular space and their duals, Trans. Amer. Math. Soc. 216 (1976), 367–387.
- [15] A. Katsaras and D. B. Liu, Integral representation of weakly compact operators, Pacific J. Math. 56 (1975), no. 2, 547–556.
- [16] S. S. Khurana, Topologies on spaces of vector-valued continuous functions, Trans. Amer. Math. Soc. 241 (1978), 195–211.
- [17] _____, Integral representation of a class of operators, J. Math. Anal. Appl. 350 (2009), no. 1, 290–293.
- [18] S. S. Khurana and S. I. Othman, Grothendieck measures, J. London Math. Soc. 39 (1989), no. 3, 481–486.
- [19] S. S. Khurana and J. Vielma, Strict topology and perfect measures, Czechoslovak Math. J. 40(115) (1990), no. 1, 1–7.
- [20] M. Nowak and A. Rzepka, Locally solid topologies on spaces of vector-valued continuous functions, Comment. Math. Univ. Carolinae 43 (2002), no. 3, 473–483.
- [21] R. Wheeler, A survey of Baire measures and strict topologies, Expo. Math. 2 (1983), no. 2, 97–190.

FACULTY OF MATHEMATICS COMPUTER SCIENCE AND ECONOMETRICS UNIVERSITY OF ZIELONA GÓRA UL. SZAFRANA 4A, 65–516 ZIELONA GÓRA, POLAND *E-mail address*: M.Nowak@wmie.uz.zgora.pl