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STRICT TOPOLOGIES AND OPERATORS ON SPACES OF
VECTOR-VALUED CONTINUOUS FUNCTIONS

MARIAN NOWAK

ABSTRACT. Let X be a completely regular Hausdorff space, and F and F
be Banach spaces. Let Cr.c(X, E) be the Banach space of all continuous
functions f : X — E such that f(X) is a relatively compact set in E.
We establish an integral representation theorem for bounded linear op-
erators T : Crc(X, E) — F. We characterize continuous operators from
Cre(X, E), provided with the strict topologies 5. (X, E) (z = 0,7) to F,
in terms of their representing operator-valued measures.

1. Introduction and terminology

Throughout the paper let (E,| - ||g) and (F,| - ||r) be real Banach spaces,
and let E' and F’ denote the Banach duals of E and F, respectively. By Bp-
and Bg we denote the closed unit ball in F” and F, respectively. By L(E, F) we
denote the Banach space of all bounded linear operators U : E — F, provided
with the uniform norm || - ||. Given a locally convex space (L,&) by (L,&)" we
will denote its topological dual. We denote by o(L, K) the weak topology on
L with respect to a dual pair (L, K).

Assume that X is a completely regular Hausdorff space. Let C.,.(X, E)
(resp. Cp(X, E)) stand for the Banach space of all continuous functions f : X —
E such that f(X) is a relatively compact set in E (resp. bounded continuous
functions f : X — E) provided with the uniform norm |- ||. By Cy.(X, E)" and
Cre(X, E)" we denote the Banach dual and the Banach bidual of C..(X, E),
respectively. Let

Be,, = 1 € Co(X,B) : 1] < 1}.
We write Cp(X) instead of Cy.(X,R). For f € Cyc(X, F) let
f@&) =lf®))e for teX.

Let B (resp. Ba) be the algebra (resp. o-algebra) of Baire sets in X, which

is the algebra (resp. o-algebra) generated by the class Z of all zero sets of
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functions of Cy(X). Let M(X) stand for the space of all Baire measures on
B. Then M(X) with the norm ||v|| = |v|(X) (= the total variation of v), is a
Dedekind complete Banach lattice (see [21]).

Due to the Alexandrov representation theorem (see [21, Theorem 5.1])
Cy(X)’ can be identified with M (X) through the lattice isomorphism M (X) >
v @, € Cp(X)', where

gp,j(u):/ udv for w e Cy(X),
p's

and [, = ]
By M(X, E’) we denote the set of all finitely additive measures p: B — E’
with the following properties:
(i) For each x € E, the function u, : B — R defined by pz(A) = u(A)(x),
belongs to M (X),
(ii) |p|(X) < oo, where |u|(A) stands for the variation of p on A € B.
In view of [11, Theorem 2.5] Cyo(X, E)" can be identified with M (X, E’)
through the linear mapping M (X, E’') 5 p— @, € Cro(X, E)’, where

@M(f):/xfd,u for feCr(X,E),

and [, = |12](X).

In the topological measure theory the so-called strict topologies on Cp(X)
and Cy.(X, E) are of importance (see [12], [13], [14], [15], [21] for definitions
and more details). In this paper we will consider the strict topologies 3, (X, E)
on Cre(X, E) and 8,(X) on Cp(X), where z = o, 7.

Let M,(X) and M,(X) denote the subspaces of M (X) of all o-additive and
7-additive Baire measures, respectively. Then M, (X) C M,(X). It is known
that (see [21, §6]):

(1'1) (Cb(X)’ﬁz(X))/ = {901/ Ve MZ(X)} = Lz(cb(X))

for z = 0,7, where L,(Cy(X)) and L. (Cy(X)) are spaces of all o-additive and
T-additive functionals on Cy(X).
For z = o, 7 let

M.(X,E):={pe M(X,E') : py € M,(X) for each z € E}.
Then for z = 0,7 we have
(12) (Cre(X, B), B-(X, B))' = {8, : p € M.(X, B')}

(see [12, Theorems 4.6 and 4.7]).

The theory of linear operators from C,.(X, F) and Cy(X, E) to a locally
convex Hausdorff space F' (in particular, a Banach space) has been developed
by Katsaras and Liu [15], Aguayo and Sanchez [2], Aguayo and Nova-Yanez [3]
and Khurana [17]. Locally solid topologies on the space Cy(X, E) have been
studied in [16], [18], [19]. It is known that the natural strict topologies 3, (X, E)
on Cy(X, E), where z = 0,00, p, g, 7, t are locally solid.
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In Section 2 we study locally solid topologies on C,.(X, E). Section 3 is
devoted to the study of linear functionals on Cy.(X, E). In Section 4 we state
an integral representation of bounded linear operators T : Cy..(X, E) — F. In
Section 5 we characterize continuous operators from C,..(X, F), equipped with
the strict topologies (,(X,E), z = 0,7 to F, in terms of the corresponding
operator measures.

2. Locally solid topologies on C,.(X, E)

Following [16, Section 8] we can introduce the concepts of solidness and
locally solid topologies on C...(X, F).

Definition 2.1. (i) A subset H of C,.(X, E) is said to be solid whenever

fL < fo f1 € Cro( X, E), fo € H imply f1 € H.
(ii) A linear Hausdorff topology 7 on C,.(X, E) is said to be locally solid if
it has a local base at 0 consisting of solid sets.

The following lemma will be of importance for the study of locally solid
topologies on Cr.(X, E).

Lemma 2.1. Assume that f € Cr.(X,E) and f < 3wy, where u; €
Co(X)t,i=1,...,m. Then there exist f; € Cr.(X, E) such that f =", f;

andﬁgui,izl,...,m.

Proof. Assume that fi(t) = wi(t)( )L, uj(t))_lf(t) if D700 ui(t) > 0 and
fi(t) =0 if Z;":l uj(t) = 0,4 =1,2,...,m. Note that f; are continuous and
f=X" fi and ﬁ < w; i =1,2,...,m. To show that f; € C..(X, E), we
prove that {f;(t) : t € X} is a relatively sequentially compact set in F. Indeed,
let (t,) be a sequence in X. Then there exists a subsequence (tg,) of (¢,)

such that f(tg,) — « for some = € E and w;(tx,) — a;, where a; > 0 for
i=1,2,...,m.

Assume first that 37" | a; > 0. Then fi(ty,) — ai( 37", aj)_lac € FE.

Now assume that 7", a; = 0, ie., u;(ty,) — 0 for i = 1,2,...,m. We
have f; < f and ]?(ﬁkn) — 0. Hence ﬁ-(tkn) — 0, ie., fi € Cre(X,E) for
1=1,2,...,m. (I

Using Lemma 2.1 and arguing as in the proofs of [20, Theorems 1.2 and 2.1]
we obtain the following results.

Proposition 2.2. The convex hull coH of a solid subset H of Cro.(X, E) is
solid.

Proposition 2.3. Let 7 be a locally solid topology on C,.(X,FE). Then the
T-closure of a solid subset H of Cro(X, E) is solid.

Definition 2.2. A linear topology 7 on C,.(X, E) that at the some time is
locally solid and locally convex will be called a locally convez-solid topology.
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In view of Propositions 2.2 and 2.3 we see that for a locally convex-solid
topology on C..(X, F) the collection of all 7-closed and solid T-neighborhoods
of 0 forms a local base at 0 for 7.

Definition 2.3. A seminorm p on C,.(X, F) is said to be solid whenever
p(f1) < p(f2) if f1, f2 € Cre(X, E) and f1 < fs.
Arguing as in the proof of [20, Theorem 2.2] we get:

Proposition 2.4. For a locally convex topology T on Cr.(X, E) the following
statements are equivalent:

(i) 7 is generated by the family of solid seminorms.
(ii) 7 is a locally convez-solid topology.

Now we establish a mutual relationship between locally convex-solid topolo-
gies on Cr.(X, E) and the vector lattice Cp(X).
Given a Riesz seminorm p on C,(X) let us set

pv(f) = p(f) forall f € Crc(Xa E)
Clearly p¥ is a solid seminorm on C,..(X, E).
Let xg € Sp = {z € F : ||z||g = 1}. Given a solid seminorm p on C,.(X, F),
let
p"(u) == p(u® z0) for u € Cy(X).
It is seen that p” is well defined because p(u ® xg) does not depend on the
choice of g € Sg, due to solidness of p. Clearly p" is a Riesz seminorm on
Cy(X).

One can easily show the following results (see [20, Lemma 3.1]).

Proposition 2.5. (i) If p is a solid seminorm on Cr.(X, E), then (p™)V(f) =
p(f) for all f € Cro(X, E).

(i) If p is a Riesz seminorm on Cp(X), then (p¥)"(u) = p(u) for all u €
Cp(X).

Let 7 be a locally convex-solid topology on Cy..(X,E). Then in view of
Theorem 2.4 7 is generated by some family {p, : @ € A} of solid seminorms on
Cre(X, E). By 7" we will denote the locally convex-solid topology on Cp(X)
generated by the family {p/ : @ € A} of Riesz seminorms on C,(X). One can
check that 7" does not depend on the choice of a family {p, : a € A} of solid
seminorms on C.(X, F) generating 7.

Next, let € be a locally convex-solid topology on Cp,(X). Then £ is generated
by some family {p, : @ € A} of Riesz seminorms on C,(X) (see [1, Theorem
6.3]). By &Y we will denote the locally convex-solid topology on Ci.(X, E)
generated by the family {p) : « € A} of solid seminorms on C,.(X, E). One
can verify that £V does not depend on the choice of a family {p, : @ € A} of
Riesz seminorms on Cy(X) that generates &.

In view of Proposition 2.5 we can easily get:



STRICT TOPOLOGIES AND OPERATORS 181

Theorem 2.6. (i) For a locally convez-solid topology T on Cr.(X, E) we have:
(M) =rT.

(i) For a locally convez-solid topology & on Cyp(X) we have: (£¥V)" = €.

Now we recall definitions of strict topologies 8. (X, E) on C..(X, F) for z =
o, 7 (see [12], [13] and [14] for more details). Let BX stand for the Stone-Cech
compactification of X. For a compact subset @ of X \ X let Co(X) ={v €
Cy(X) : Tlg = 0}, where T denotes the unique extension of v € Cy(X) on
BX. For each v € Cg(X) let py(f) := supseyx lw(t)|f(t) for f € Cpo(X, E),
and let S (X, E) be the locally convex-solid topology on Ci.(X, E) defined by
{pu:v € Co(X)).

Now let C be some family of compact subsets of BX \ X. The strict topology
Be(X, E) on C.(X, F) determined by C is the greatest lower bound (in the
class of locally convex Hausdorff topologies) of the topologies 8o (X, E), as Q
runs over C.

Proposition 2.7. The strict topology fc(X, E) on Cro(X, E) is locally convex-
solid.

Proof. Since fB¢(X, E) is an inductive limit topology on C,.(X, F), it has a
local base at 0 consisting of all sets of the form:

eco(U{WvQ :Q€eC and vg € CQ(X)})a

where for vg € Co(X), Wy, = {f € Cre(X, E) : 0u,(f) < 1} (see [5, Chapter
2.1.4]) (here ecoWW denotes the balanced convex hull of a set W in Cy.(X, E)).
We shall show that a set V' = ecoW, where W = (J{W,, : Q € C and vg €
Co(X)} is solid.

Indeed, let f € Cro(X,E), g € V and f<G. Then g = i, Aigi, where
Sr il <land g; € Wfori =1,2,...,n. Hence for each i = 1,2,...,n,
there exist Q; € C and vg, € Cq,(X) such that g, (9;) < 1. By Lemma
2.1 there exist fi,..., fn € Cre(X, E) such that f =>"" | fi and fi < )\AgjZ for
i=1,2,...,n. Let h; = ,\%fi fori=1,2,...,n. Since gy, is a solid seminorm
on C,.(X,E) and iNLZ <yg; fori=1,2,...,n, we have ngi(hi) < 0ug, (9;) < 1.
Hence h; € W, , so h; € W. Then f =>"" | \;h; € V, as desired. O

Q;?

Let C, (resp. C;) be the family of all zero subsets (resp. compact subsets) of
BX ~ X, and let 8,(X,E) = ¢, (X, E), where z = o, 7.
Arguing as in the proof of [20, Theorem 4.2] we get:

Theorem 2.8. For z = 0,7, we have:
ﬂz(X7E>:ﬂz(X)vv ﬂz(XvE)/\:ﬂz(X)
Now we define two classes of locally convex-solid topologies on Cr.(X, E).

Definition 2.4. A locally convex-solid topology 7 on C...(X, F) is said to be:
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(i) o-Dini if f,, — 0 for 7 whenever (f,) is a sequence in C,.(X, E) such

that f,(t) | 0 for t € X.
(ii) Dint if f, — 0 for 7 whenever (fy) is a net in C,..(X, E) such that

falt) LOfort e X.

It is known that 5,(X) is the finest o-Dini topology on Cy(X) and £,(X)
is the finest Dini topology on Cp(X) (see [21, Corollaries 11.16 and 11.28]).

Corollary 2.9. (i) 8,(X, E) is the finest o-Dini topology on Cro(X, E).
(i) B+ (X, E) is the finest Dini topology on Cr.(X, E).

Proof. (i) Let {po : @ € A} be a family of Riesz seminorms on Cp(X) that

generates 8,(X). Assume that (f,,) is a sequence in C,..(X, E) such that f,(t) |
0 for all z € X. Then pJ(fn) = pa(fn) — 0 and this means that f, — 0 for
By (X)V. In view of Theorem 2.8 we conclude that f,, — 0 for 8,(X, E).
Now assume that 7 is a o-Dini topology on C,.(X, E). Then 7" C §,(X),
and hence 7 = (7)Y C B,(X)Y = ,(X, E) (see Theorems 2.6 and 2.8).
(ii) It is similar to (i). O
3. Linear functionals on C,.(X, E)
Assume that p € M (X, E'). For u € Cp(X)™ let us put
|®|(u) := sup{|®,,(h)] : h € Cre(X, E), h<u}.

Proposition 3.1. For yu € M(X,E'), the functional |®,] : Cp(X)T — RT is
additive.

Proof. Let uy,uz € Cp(X)™. First we shall show that
1Pyl (ur + u2) < [Pp(ur) + [@pl(u2).

Indeed, let e > 0. Then there exists hg € Cro(X, E) such that 7L0 < uy + us
and |®,|(u1 + u2) < [®u(ho)| +¢e. Then by Lemma 2.1 there exist hy, ho €
Cyre(X, E) such that hg = hy + he and h; < w;, i = 1,2. Hence

|pf(ur +u2) <[Pu(h1 + ho)[ +& < [Pu(ha)] +[Ppulho)| + ¢
<|®ul(u1) + |Ppul(u2) + €.

Now we shall show that

[l (1) + 9] (2) < [@,] (1 + o).

Indeed, let € > 0 be given. Then there exist hi, ha € C,.(X, E) such that
hi < wugand |®,[(u;) < |@u(hi)|+5, 1= 1,2. Let g; = sign®,,(h;)h; for i = 1,2.
Then g; < El and gfﬁg < uj + ug, and hence

|@#|(u1) + |(I)#|(u2) < (I),u(gl) + (I),u(g2) +e= (I),u(gl +92) +e€
<@, (w1 + u2) +e. O
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In view of [1, Theorem 1.7] we obtain that [®,,| : C4(X)™ — R* has a unique
linear extension (denoted by |®,,| again)

|D,]: Cp(X) = R
defined by
|@,|(u) := @, (ut) — |@,|(u) forall ue Cy(X).

Hence for u € Cp(X),
@] ()| < @] ().

Corollary 3.2. Let u € My(X,E"). Then for u € Cy(X) we have
B,0) = [ udlel = ).

Proof. In view of [16, Theorem 2.1] for u € C,(X)™ we have,
/ ud|p| = sup{‘/ gdﬂ‘ geCHX)®E, g< u}
b X

D] (u) zsup{‘/ hdu‘ theCo(X,E), h< u}
X

Since Cy(X) ® E C Cro(X, E), we get [y ud|p| < || (u).
Now let h € Cpo(X, E) and h < u. Then

‘ /. hd#‘ [ Ryl < [
X

and hence |®,,|(u) < [y ud|u|, as desired. O

and

Corollary 3.3. For u € M(X,E') the following statements are equivalent:
(i) u € Mo (X, E).
i) ©, € (Cre(X, E), B,(X, E))".
) |(I)u| € (Co(X), Bo(X))'".
) @.(ung) — 0 uniformly for g € Be,, whenever (uy) is a sequence in

C’b( ) such that u,(t) L 0 fort e X.

(i
(iii

(iv

Proof. (1)<=>(ii) It follows from (1.2).
(i)==(iii) Assume that u € M, (X, E’). Then |u| € M,(X) (see [10, Propo-
sition 3.9]) and by Corollary 3.2 and (1.1), we get |®,| € (Cp(X), Bo(X))".
(iii)==-(iv) Assume that (iii) holds. Let (u,) be a sequence in Cj(X) such
that u,(t) L 0 for t € X. Then for g € Bg,_, by Corollary 3.2 we get

rc)

1B, (ung)| < /X tndljt] = (B, (n).

Since |®,] € Ly (Cy(X)) (see (1.1)), we get @,,(ung) — 0, as desired.
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(iv)=(i) Assume that (iv) holds. Let (u,) be a sequence in Cy(X) such
that u,(t) L 0 for t € X. Then for z € E we get

P, (u, @) = / (Up, @ z)dp = / Undptz — 0.
b'e p'e
Hence by (1.1) py € My (X), e, p € M, (X, E'). O

Arguing similarly as in the proof of Corollary 3.3 and using [10, Proposition
3.9] we get:

Corollary 3.4. For uy € M(X,E') the following statements are equivalent:
(i) 8 € M(X, E').
(ii) @, € (Cre(X, E), B-(X, E))'.
(iif) |(I)u| € (Gy(X), B-(X))".
(iv) @,(uag) — 0 uniformly for g € Be,, whenever (u,) is ¢ sequence in

Cb( ) such that u(t) L0 forte X.

Proposition 3.5. Let M be a subset of M,(X,E"). Then the following state-
ments are equivalent:
(i) {®,: p € M} is Bo(X, E)-equicontinuous.
(ii) {|®u|: p € M} is uniformly o-additive, i.e., sup{|®,|(u,) : p € M} —
0 whenever (uy) is a sequence in Cy(X) such that un(t) 1 0 fort e X.
(ill) {|®p|: p e M} is Bs(X)-equicontinuous.

Proof. (i)==(ii) Assume that {®, : p € M} is 3,(X, E)-equicontinuous. To
show that {|®,| : p € M} is uniformly o-additive, let (u,) be a sequence in
Cy(X) such that u,(t) | 0 for t € X. Let € > 0 be given. Then there exists a
convex and solid neighborhood V' of 0 for 3, (X, E) such that sup,,c ¢ [.(f)] <
e for all f € V (see Proposition 2.7). Since S,(X, E) is a o-Dini topology (see
Corollary 2.9), there exists n. € N such that u, ®xg € V (20 € Sg) for n > n..
Hence |®,(u, ® xo)| < € for n > n.. Let ng > n. be fixed and let h € Cpo(X)
with A < tn,. Then h € V because V is solid, and hence sup, e |Pu(h)| <e.
It follows that sup,, [®,|(un) <€ for n > n., as desired.

(ii)«<=(iii) See [21, Theorem 11.14].

(iil)==(1) Assume that {|®,| : p € M} is S,(X)-equicontinuous. Let
{pa : @ € A} be the family of solid seminorms that generates 5,(X, E) (see
Propositions 2.4 and 2.7). Given ¢ > 0 there exist a1,...,a, € Aand n > 0
such that sup{|®,|(u) : p € M} < ¢ for u € Cp(X) with maxi<i<p pa, (u) <.
Let f € Cre(X, E) with maxi<i<n pa; (f) < 1. Since pa,(f) = po,; (f @ x0) =
Pa;(f) (i = 1,2,...,n), we obtain that sup{|<1)#|(f) € M} < e But
|2,(f) < |<I>#|(f), so sup{|®,(f)| : p € M} < ¢, and this means that the
family {®,, : p € M} is B,(X, E)-equicontinuous. O

Using [21, Theorem 11.24] we can prove an analogous result for 8, (X, E)
with a similar proof.
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Proposition 3.6. Let M be a subset of M. (X, E"). Then the following state-
ments are equivalent:
(i) {®,: pe M} is B (X, E)-equicontinuous.
(i) {|®u|: p € M} is uniformly T-additive, i.e., sup{|®,|(ua) : p € M} —
0 whenever (ug) is a net in Cp(X) such that ua(t) L 0 fort € X.
(ili) {|®p|: p e M} is B (X)-equicontinuous.

4. Integral representation of bounded linear operators on C,.(X, F)

By B(B, E) we denote the Banach space of all totally B-measurable functions
g : X — E (the uniform limits of sequences of E-valued B-simple functions),
provided with the uniform norm || - || (see [7], [8]).

It is known that C,..(X, E) C B(B, E) (see [16]), and one can embed B(5, E)
into Cy(X, E)” by the mapping 7 : B(B,E) — C,.(X, E)"”, where for g €
B(B, E),

w(0)(®,) = [ odu for e MY, ).

Let ip : F — F” stand for the canonical embedding, i.e., ir(y)(y’") = ¥'(v)
for y € F, 3y’ € F'. Moreover, let jp : ip(F) — F denote the left inverse of i,
that is, jp o ip = idp. Note that jp is (o(ip(F), F’),o(F, F’))-continuous.

Now assume that T : Cp.(X,FE) — F is a bounded linear operator. Let
T : F' — Cre(X,E) and T" : Cpo(X, E)” — F” stand for the conjugate and
biconjugate operators of T', respectively. Let

T:=T"or:B(B,E)— F".
Then 7 is a bounded operator. For A € B let us put
m(A)(z) :==T(la ®@z) for =€ E.

Then m : B — L(E, F") will be called a representing measure of T.
We define the semivariation m(A) of m on A € B by

m(A) = sup || Y m(A) (i) rr,
where the supremum is taken over all finite B-partitions (A;) of A and z; €
Bg for each i. For y' € F’ let my : B — E’ be vector measures defined
by my/ (A)(z) = m(A)(z)(y’) for A € B,z € E. Let |m,|(A) stand for the
variation of m, on A. Then for A € B (see [7, §4, Proposition 5]),

7(A4) = sup{|my|(4) : ¢/ € Brr}.

Since T': B(B, E) — F" is bounded, we have
T(g) = / gdm for g€ B(B,E),
X
| 7|l = m(X), and for each 3’ € F' we have,

T(g)(y’):/xgdmy/ for g € B(B, E),
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(see [7, §6], [8, §1, G-H]). Moreover, from the general properties of the operator

T it follows immediately that

(4.1) T(Cre(X,E)) Cip(F).
For each x € FE we can define a vector measure m, : B — F" by
maz(A)(y') :=m(A)(z)(y') for AeB, y € F'.
For x € E and y' € F’ let
Mgy (A) :=m(A)(z)(y") for Ae€B.

An integral representation of weakly compact operators T : Cy.o.(X, E) = F
was established by Katsaras and Liu (see [15, Theorem 3]). Now we state a gen-
eral Riesz representation theorem for bounded linear operators T : Cy..(X, E) —
F.

Theorem 4.1. Let T : C.o.(X,E) — F be a bounded linear operator, and
m : B — L(E,F") its representing measure. Then the following statements
hold:

(i) my € M(X,E") for each y' € F'.

(ii) The mapping F' > y' +— my € M(X,E') is (o(F',F), o(M(X,E’),

Cre(X, E)))-continuous.

(iii) For eachy’ € F', y'(T(f)) = [y fdmy for f € Cro(X, E).

() T(f) = jr(fy fdm) for f € Cru(X, E).

) 7] = m(X).

Conversely, let m : B — L(E,F") be a vector measure satisfying (i) and
(ii). Then there exists a unique bounded linear operator T : Cro(X,E) — F
such that (iii) holds and m(A)(z) = (T" om)(la®x) for all Ae B,x € E. In
consequence, the vector measure m : B — L(E, F") satisfying (i), (ii) and (iii)
is uniquely determined by a bounded linear operator T : Cy.(X,E) — F.

Proof. Let y' € I'. Since 3y’ o T € Cyo(X, E)’, there exists a unique p,or €
M(X, E’) such that

WoTHN = [ fduyer for f€CrlX.B)

For A € B and x € E we have
my (A)(z) =m(A)(@)(y') = T(1a @) (y')
=T"(r(la®@2))(y) =n(la@z)(T'(y))
=n(la®@a)(y' oT) = / (14 ® x)dpty or = piyror(A)(2).
X

It follows that m, = pyor € M(X, E’) and

W o)) = [ fdmy for f € CrulX.E).
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This means that (i) and (iii) hold. Since the mapping 77 : F’ — Cy.(X, E)’ is
(c(F',F),0(Cre(X, E), Cre(X, E)))-continuous, the mapping F’ 3 ¢ — m,, €
M(X,E')is (oc(F',F),c(M(X,E"),Cr.(X, E)))-continuous, i.e., (ii) holds.

Note that using (4.1) we have T(f) = jr(T(f)) = Jr([x fdm) for f €
Cre(X, E), i.e., (iv) holds. Using (iii) we get

1T = T"| =sap{[IT"(¥")|| : ¥ € B}
=sup{|ly'oT| :y" € B/}
= sup{|my [(X) : ¥’ € Br'}

i.e., (v) holds.

Conversely, let m : B — L(E,F"”) be a vector measure satisfying (i) and
(ii). Then m, € M(X,E’) and the mapping F’ 5 ¢ — m, € M(X,E’) is
(o(F',F),0(M(X,E"), Cr.(X, E)))-continuous.

For f € C,.(X, E) define a linear mapping ¥y : F/ — R by

s(y) :/ fdm, forall y' € F'.
X

Then by (ii) ¥y is a o(F’, F)-continuous linear functional, so there exists a
unique yy € F such that Uy = ip(yy), i.e., ¥r(y') = ¢/(yys) for each y' € F'.
For each f € C,.(X, F) let us put

T(f) = ys-
Then T : C.(X, E) — F is a linear mapping and for each 3’ € F’ we have

sup{ly'(T(f))] : I/l < 1} = sup{{ly'(ys)| - [IF]| < 1}

sup{]/xfdmy/y e s1}
< sup{/X 1 Flldlmy] < 1 £l < 1}

< my |(X) < .

This means that {T(f) : ||f]] < 1} is o(F, F')-bounded, so sup{||T(f)|lr :
I7]l <1} < o0, i.e., T is bounded. Moreover, for each y’ € F' we have

V) =1/ or) = ¥5(0) = [ Fdm, for f € CrulX.B),
i.e., T satisfies (iii).

Assume that S : C..(X,E) — F is another bounded linear operator such
that for each ¢ € F”,

V(S(f)) = /X fdmy for f e Cru(X, E).

Then y'(S(f)) =y (T(f)) for all f € C.o(X,E), 80 S =T.
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Let mo(A)(z) = (T" om)(1a @ ) for all A € B, x € E. Then by the first
part of the proof, for each v’ € F’, we get

y’(T(f)):/de(mo)y/ for fe Cre(X,E).

Hence (mo), = my € M(X, E’). It follows that
m(A)(z) = mo(A)(x) = (T" o)(1a ® 7).
Thus the proof is complete. (I

Definition 4.1. A measure m : B — L(E, F") is said to be a representing
measure if it satisfies conditions (i) and (ii) of Theorem 4.1.

5. Continuous operators on C,.(X, F) with strict topologies
First we distinguish two classes of operators on C,.(X, E).

Definition 5.1. A bounded linear operator T : C.(X, E) — F' is said to be:
(i) o-additive, if |T (ung)||F — 0 uniformly for g € B¢, whenever (u,) is
a sequence in Cp(X) such that u,(¢) | 0 for ¢ € X.
(i) 7-additive, if ||T(uqg)||F — 0 uniformly for g € B¢, whenever (uq) is
a net in Cp(X) such that u,(t) 0 for t € X.

We characterize (8, (X, E), ||-|| r)-continuous linear operators T': Cy.(X, E) —
Ffor z=o0,7.

Theorem 5.1. Let T : C..(X,E) — F be a bounded linear operator, and
m: B — L(E,F") its representing measure. Then the following statements are
equivalent:
(i) T is (Bo (X, E), || - || F)-continuous.
(ii) T is o-additive.
(iii) m(Z,) whenever Z,, | 0, (Z,) C Z.

Proof. (1)==(ii) Assume that T is (8,(X, E), || - || r)-continuous. Let (uy) be a
sequence in Cy(X) such that u,(t) | 0 for ¢t € X, and let € > 0 be given. Then
there exists a solid neighborhood V' of 0 for 8,(X, E) such that ||T(f)||lr < e
for all f € V (see Proposition 2.7). Choose n. € N such that u, ® xg € V for
n > ne, where g € Sg (see Corollary 2.9). Hence u,g € V for all g € B¢,
and n > n., and it follows that sup e, [T (ung)||r < € for n > ne.
(ii)=(iii) Assume that T is o-additive. Then for ' € F’ we have

(y'oT)(f):/demyr for feCr(X,E)

and by Corollary 3.3, m,, € M,(X,E’), and hence |m,/| € M,(X). In view of
Corollary 3.2 we have

|y o T|(u) :/ udlm,/ | for u e Cy(X).
X
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Let (un) be a sequence in Cp(X) such that u,(¢) } 0 for ¢ € X. We shall
show that sup,/cp_, |y o T|(un) — 0. For each y' € I’ there exists a sequence

(hyr ) in Cre(X, E) with Ey/,n < u, and such that
1
ly" o T|(uy,) < ‘/ hyr ndmy | + —.

x n

Let gy n(t) = hqu/T:T(Lt()t) for t € X. Then gy, € Bg,, for n € N. Hence for

each 3y’ € Bps, we get

o Tlwn) < | [ by iy

1
+ o= ‘/Xungyrmdmy/

1 1
mp’/“wmww+—zsw|MUWWﬂ+—
g9€Bo,. '/ X n "

g€Be,..
1
sup || T'(ung)llF + —-
g€Beo,. n

1
4+ =
n

IN

IN

Hence sup,cp,, [y o T'|(un) — 0, as desired. By [21, Theorem 11.14] the
family {|my/| : ¢y’ € Bp/} in M,(X) is uniformly o-additive, i.e.,

m(Zy,) =sup{|my|(Z,) : ¥y € Br} =0 whenever Z, |0, (Z,) C Z.

(iii)==(i) Assume that (iii) holds. Then |m,/| € M,(X) for each y' € F’.
Note that for A € B, z € E we have |my (A4)] < |my|(A) - ||z||g. It follows
that my,» € M,(X) for x € E, ie., my € M,(X,E’), and hence 3y o T €
(Cre(X,E), B-(X,E)) (see (1.2)). In view of [21, Theorem 11.14] the family
{ly'oT|:y € Bp:} is By (X)-equicontinuous, and hence by Proposition 3.5 the
family {y/ o T : 3/ € Bp/} is 8,(X, F)-equicontinuous. This means that T is
(Bs (X, E), || - || p)-continuous. O

Arguing as in the proof of Theorem 5.1 and using Proposition 3.6 we get:

Theorem 5.2. Let T : C.o.(X,E) — F be a bounded linear operator, and
m: B — L(E,F") its representing measure. Then the following statements are
equivalent:
(i) T is (B-(X, E),| - ||r)-continuous.
(il) T is T-additive.
(iii) m(Z,) — 0 whenever Zy | 0, (Zy) C Z.

Remark. For weakly compact operators T : C,.(X, E) — F, the equivalences
(i)<=(iii) in Theorems 5.1 and 5.2 were derived in a different way in [15,
Theorems 4 and 5].
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