STRICT TOPOLOGIES AND OPERATORS ON SPACES OF VECTOR-VALUED CONTINUOUS FUNCTIONS

Marian Nowak

Abstract

Let X be a completely regular Hausdorff space, and E and F be Banach spaces. Let $C_{r c}(X, E)$ be the Banach space of all continuous functions $f: X \rightarrow E$ such that $f(X)$ is a relatively compact set in E. We establish an integral representation theorem for bounded linear operators $T: C_{r c}(X, E) \rightarrow F$. We characterize continuous operators from $C_{r c}(X, E)$, provided with the strict topologies $\beta_{z}(X, E)(z=\sigma, \tau)$ to F, in terms of their representing operator-valued measures.

1. Introduction and terminology

Throughout the paper let $\left(E,\|\cdot\|_{E}\right)$ and $\left(F,\|\cdot\|_{F}\right)$ be real Banach spaces, and let E^{\prime} and F^{\prime} denote the Banach duals of E and F, respectively. By $B_{F^{\prime}}$ and B_{E} we denote the closed unit ball in F^{\prime} and E, respectively. By $\mathcal{L}(E, F)$ we denote the Banach space of all bounded linear operators $U: E \rightarrow F$, provided with the uniform norm $\|\cdot\|$. Given a locally convex space (L, ξ) by $(L, \xi)^{\prime}$ we will denote its topological dual. We denote by $\sigma(L, K)$ the weak topology on L with respect to a dual pair $\langle L, K\rangle$.

Assume that X is a completely regular Hausdorff space. Let $C_{r c}(X, E)$ (resp. $C_{b}(X, E)$) stand for the Banach space of all continuous functions $f: X \rightarrow$ E such that $f(X)$ is a relatively compact set in E (resp. bounded continuous functions $f: X \rightarrow E$) provided with the uniform norm $\|\cdot\|$. By $C_{r c}(X, E)^{\prime}$ and $C_{r c}(X, E)^{\prime \prime}$ we denote the Banach dual and the Banach bidual of $C_{r c}(X, E)$, respectively. Let

$$
B_{C_{r c}}=\left\{f \in C_{r c}(X, E):\|f\| \leq 1\right\} .
$$

We write $C_{b}(X)$ instead of $C_{r c}(X, \mathbb{R})$. For $f \in C_{r c}(X, E)$ let

$$
\widetilde{f}(t)=\|f(t)\|_{E} \text { for } t \in X
$$

Let \mathcal{B} (resp. $\mathcal{B} a$) be the algebra (resp. σ-algebra) of Baire sets in X, which is the algebra (resp. σ-algebra) generated by the class \mathcal{Z} of all zero sets of

[^0]functions of $C_{b}(X)$. Let $M(X)$ stand for the space of all Baire measures on \mathcal{B}. Then $M(X)$ with the norm $\|\nu\|=|\nu|(X)$ ($=$ the total variation of ν), is a Dedekind complete Banach lattice (see [21]).

Due to the Alexandrov representation theorem (see [21, Theorem 5.1]) $C_{b}(X)^{\prime}$ can be identified with $M(X)$ through the lattice isomorphism $M(X) \ni$ $\nu \mapsto \varphi_{\nu} \in C_{b}(X)^{\prime}$, where

$$
\varphi_{\nu}(u)=\int_{X} u d \nu \text { for } u \in C_{b}(X)
$$

and $\left\|\varphi_{\nu}\right\|=\|\nu\|$.
By $M\left(X, E^{\prime}\right)$ we denote the set of all finitely additive measures $\mu: \mathcal{B} \rightarrow E^{\prime}$ with the following properties:
(i) For each $x \in E$, the function $\mu_{x}: \mathcal{B} \rightarrow \mathbb{R}$ defined by $\mu_{x}(A)=\mu(A)(x)$, belongs to $M(X)$,
(ii) $|\mu|(X)<\infty$, where $|\mu|(A)$ stands for the variation of μ on $A \in \mathcal{B}$.

In view of [11, Theorem 2.5] $C_{r c}(X, E)^{\prime}$ can be identified with $M\left(X, E^{\prime}\right)$ through the linear mapping $M\left(X, E^{\prime}\right) \ni \mu \mapsto \Phi_{\mu} \in C_{r c}(X, E)^{\prime}$, where

$$
\Phi_{\mu}(f)=\int_{X} f d \mu \text { for } f \in C_{r c}(X, E)
$$

and $\left\|\Phi_{\mu}\right\|=|\mu|(X)$.
In the topological measure theory the so-called strict topologies on $C_{b}(X)$ and $C_{r c}(X, E)$ are of importance (see [12], [13], [14], [15], [21] for definitions and more details). In this paper we will consider the strict topologies $\beta_{z}(X, E)$ on $C_{r c}(X, E)$ and $\beta_{z}(X)$ on $C_{b}(X)$, where $z=\sigma, \tau$.

Let $M_{\sigma}(X)$ and $M_{\tau}(X)$ denote the subspaces of $M(X)$ of all σ-additive and τ-additive Baire measures, respectively. Then $M_{\tau}(X) \subset M_{\sigma}(X)$. It is known that (see $[21, \S 6]$):

$$
\begin{equation*}
\left(C_{b}(X), \beta_{z}(X)\right)^{\prime}=\left\{\varphi_{\nu}: \nu \in M_{z}(X)\right\}=L_{z}\left(C_{b}(X)\right) \tag{1.1}
\end{equation*}
$$

for $z=\sigma, \tau$, where $L_{\sigma}\left(C_{b}(X)\right)$ and $L_{\tau}\left(C_{b}(X)\right)$ are spaces of all σ-additive and τ-additive functionals on $C_{b}(X)$.

For $z=\sigma, \tau$ let

$$
M_{z}\left(X, E^{\prime}\right):=\left\{\mu \in M\left(X, E^{\prime}\right): \mu_{x} \in M_{z}(X) \text { for each } x \in E\right\}
$$

Then for $z=\sigma, \tau$ we have

$$
\begin{equation*}
\left(C_{r c}(X, E), \beta_{z}(X, E)\right)^{\prime}=\left\{\Phi_{\mu}: \mu \in M_{z}\left(X, E^{\prime}\right)\right\} \tag{1.2}
\end{equation*}
$$

(see [12, Theorems 4.6 and 4.7]).
The theory of linear operators from $C_{r c}(X, E)$ and $C_{b}(X, E)$ to a locally convex Hausdorff space F (in particular, a Banach space) has been developed by Katsaras and Liu [15], Aguayo and Sanchez [2], Aguayo and Nova-Yanèz [3] and Khurana [17]. Locally solid topologies on the space $C_{b}(X, E)$ have been studied in [16], [18], [19]. It is known that the natural strict topologies $\beta_{z}(X, E)$ on $C_{b}(X, E)$, where $z=\sigma, \infty, p, g, \tau, t$ are locally solid.

In Section 2 we study locally solid topologies on $C_{r c}(X, E)$. Section 3 is devoted to the study of linear functionals on $C_{r c}(X, E)$. In Section 4 we state an integral representation of bounded linear operators $T: C_{r c}(X, E) \rightarrow F$. In Section 5 we characterize continuous operators from $C_{r c}(X, E)$, equipped with the strict topologies $\beta_{z}(X, E), z=\sigma, \tau$ to F, in terms of the corresponding operator measures.

2. Locally solid topologies on $C_{r c}(X, E)$

Following [16, Section 8] we can introduce the concepts of solidness and locally solid topologies on $C_{r c}(X, E)$.
$\underset{\sim}{\text { Definition 2.1. (i) A subset } H}$ of $C_{r c}(X, E)$ is said to be solid whenever $\tilde{f}_{1} \leq \widetilde{f}_{2}, f_{1} \in C_{r c}(X, E), f_{2} \in H$ imply $f_{1} \in H$.
(ii) A linear Hausdorff topology τ on $C_{r c}(X, E)$ is said to be locally solid if it has a local base at 0 consisting of solid sets.

The following lemma will be of importance for the study of locally solid topologies on $C_{r c}(X, E)$.

Lemma 2.1. Assume that $f \in C_{r c}(X, E)$ and $\widetilde{f} \leq \sum_{i=1}^{m} u_{i}$, where $u_{i} \in$ $C_{b}(X)^{+}, i=1, \ldots, m$. Then there exist $f_{i} \in C_{r c}(X, E)$ such that $f=\sum_{i=1}^{m} f_{i}$ and $\widetilde{f}_{i} \leq u_{i}, i=1, \ldots, m$.
Proof. Assume that $f_{i}(t)=u_{i}(t)\left(\sum_{j=1}^{m} u_{j}(t)\right)^{-1} f(t)$ if $\sum_{j=1}^{m} u_{j}(t)>0$ and $f_{i}(t)=0$ if $\sum_{j=1}^{m} u_{j}(t)=0, i=1,2, \ldots, m$. Note that f_{i} are continuous and $f=\sum_{i=1}^{m} f_{i}$ and $\widetilde{f}_{i} \leq u_{i}, i=1,2, \ldots, m$. To show that $f_{i} \in C_{r c}(X, E)$, we prove that $\left\{f_{i}(t): t \in X\right\}$ is a relatively sequentially compact set in E. Indeed, let $\left(t_{n}\right)$ be a sequence in X. Then there exists a subsequence $\left(t_{k_{n}}\right)$ of $\left(t_{n}\right)$ such that $f\left(t_{k_{n}}\right) \rightarrow x$ for some $x \in E$ and $u_{i}\left(t_{k_{n}}\right) \rightarrow a_{i}$, where $a_{i} \geq 0$ for $i=1,2, \ldots, m$.

Assume first that $\sum_{j=1}^{m} a_{j}>0$. Then $f_{i}\left(t_{k_{n}}\right) \rightarrow a_{i}\left(\sum_{j=1}^{m} a_{j}\right)^{-1} x \in E$.
Now assume that $\sum_{j=1}^{m} a_{j}=0$, i.e., $u_{i}\left(t_{k_{n}}\right) \rightarrow 0$ for $i=1,2, \ldots, m$. We have $\tilde{f}_{i} \leq \widetilde{f}$ and $\widetilde{f}\left(t_{k_{n}}\right) \rightarrow 0$. Hence $\tilde{f}_{i}\left(t_{k_{n}}\right) \rightarrow 0$, i.e., $f_{i} \in C_{r c}(X, E)$ for $i=1,2, \ldots, m$.

Using Lemma 2.1 and arguing as in the proofs of [20, Theorems 1.2 and 2.1] we obtain the following results.

Proposition 2.2. The convex hull $\mathrm{co} H$ of a solid subset H of $C_{r c}(X, E)$ is solid.

Proposition 2.3. Let τ be a locally solid topology on $C_{r c}(X, E)$. Then the τ-closure of a solid subset H of $C_{r c}(X, E)$ is solid.

Definition 2.2. A linear topology τ on $C_{r c}(X, E)$ that at the some time is locally solid and locally convex will be called a locally convex-solid topology.

In view of Propositions 2.2 and 2.3 we see that for a locally convex-solid topology on $C_{r c}(X, E)$ the collection of all τ-closed and solid τ-neighborhoods of 0 forms a local base at 0 for τ.

Definition 2.3. A seminorm ρ on $C_{r c}(X, E)$ is said to be solid whenever $\rho\left(f_{1}\right) \leq \rho\left(f_{2}\right)$ if $f_{1}, f_{2} \in C_{r c}(X, E)$ and $\widetilde{f}_{1} \leq \widetilde{f}_{2}$.

Arguing as in the proof of [20, Theorem 2.2] we get:
Proposition 2.4. For a locally convex topology τ on $C_{r c}(X, E)$ the following statements are equivalent:
(i) τ is generated by the family of solid seminorms.
(ii) τ is a locally convex-solid topology.

Now we establish a mutual relationship between locally convex-solid topologies on $C_{r c}(X, E)$ and the vector lattice $C_{b}(X)$.

Given a Riesz seminorm p on $C_{b}(X)$ let us set

$$
p^{\vee}(f):=p(\tilde{f}) \quad \text { for all } f \in C_{r c}(X, E)
$$

Clearly p^{\vee} is a solid seminorm on $C_{r c}(X, E)$.
Let $x_{0} \in S_{E}=\left\{x \in E:\|x\|_{E}=1\right\}$. Given a solid seminorm ρ on $C_{r c}(X, E)$, let

$$
\rho^{\wedge}(u):=\rho\left(u \otimes x_{0}\right) \quad \text { for } \quad u \in C_{b}(X) .
$$

It is seen that ρ^{\wedge} is well defined because $\rho\left(u \otimes x_{0}\right)$ does not depend on the choice of $x_{0} \in S_{E}$, due to solidness of ρ. Clearly ρ^{\wedge} is a Riesz seminorm on $C_{b}(X)$.

One can easily show the following results (see [20, Lemma 3.1]).
Proposition 2.5. (i) If ρ is a solid seminorm on $C_{r c}(X, E)$, then $\left(\rho^{\wedge}\right)^{\vee}(f)=$ $\rho(f)$ for all $f \in C_{r c}(X, E)$.
(ii) If p is a Riesz seminorm on $C_{b}(X)$, then $\left(p^{\vee}\right)^{\wedge}(u)=p(u)$ for all $u \in$ $C_{b}(X)$.

Let τ be a locally convex-solid topology on $C_{r c}(X, E)$. Then in view of Theorem 2.4τ is generated by some family $\left\{\rho_{\alpha}: \alpha \in \mathcal{A}\right\}$ of solid seminorms on $C_{r c}(X, E)$. By τ^{\wedge} we will denote the locally convex-solid topology on $C_{b}(X)$ generated by the family $\left\{\rho_{\alpha}^{\wedge}: \alpha \in \mathcal{A}\right\}$ of Riesz seminorms on $C_{b}(X)$. One can check that τ^{\wedge} does not depend on the choice of a family $\left\{\rho_{\alpha}: \alpha \in \mathcal{A}\right\}$ of solid seminorms on $C_{r c}(X, E)$ generating τ.

Next, let ξ be a locally convex-solid topology on $C_{b}(X)$. Then ξ is generated by some family $\left\{p_{\alpha}: \alpha \in \mathcal{A}\right\}$ of Riesz seminorms on $C_{b}(X)$ (see [1, Theorem $6.3])$. By ξ^{\vee} we will denote the locally convex-solid topology on $C_{r c}(X, E)$ generated by the family $\left\{p_{\alpha}^{\vee}: \alpha \in \mathcal{A}\right\}$ of solid seminorms on $C_{r c}(X, E)$. One can verify that ξ^{\vee} does not depend on the choice of a family $\left\{p_{\alpha}: \alpha \in \mathcal{A}\right\}$ of Riesz seminorms on $C_{b}(X)$ that generates ξ.

In view of Proposition 2.5 we can easily get:

Theorem 2.6. (i) For a locally convex-solid topology τ on $C_{r c}(X, E)$ we have: $\left(\tau^{\wedge}\right)^{\vee}=\tau$.
(ii) For a locally convex-solid topology ξ on $C_{b}(X)$ we have: $\left(\xi^{\vee}\right)^{\wedge}=\xi$.

Now we recall definitions of strict topologies $\beta_{z}(X, E)$ on $C_{r c}(X, E)$ for $z=$ σ, τ (see [12], [13] and [14] for more details). Let βX stand for the Stone-Čech compactification of X. For a compact subset Q of $\beta X \backslash X$ let $C_{Q}(X)=\{v \in$ $\left.C_{b}(X):\left.\bar{v}\right|_{Q} \equiv 0\right\}$, where \bar{v} denotes the unique extension of $v \in C_{b}(X)$ on βX. For each $v \in C_{Q}(X)$ let $\rho_{v}(f):=\sup _{t \in X}|v(t)| \widetilde{f}(t)$ for $f \in C_{r c}(X, E)$, and let $\beta_{Q}(X, E)$ be the locally convex-solid topology on $C_{r c}(X, E)$ defined by $\left\{\rho_{v}: v \in C_{Q}(X)\right\}$.

Now let \mathcal{C} be some family of compact subsets of $\beta X \backslash X$. The strict topology $\beta_{\mathcal{C}}(X, E)$ on $C_{r c}(X, E)$ determined by \mathcal{C} is the greatest lower bound (in the class of locally convex Hausdorff topologies) of the topologies $\beta_{Q}(X, E)$, as Q runs over \mathcal{C}.

Proposition 2.7. The strict topology $\beta_{\mathcal{C}}(X, E)$ on $C_{r c}(X, E)$ is locally convexsolid.

Proof. Since $\beta_{\mathcal{C}}(X, E)$ is an inductive limit topology on $C_{r c}(X, E)$, it has a local base at 0 consisting of all sets of the form:

$$
\operatorname{eco}\left(\bigcup\left\{W_{v_{Q}}: Q \in \mathcal{C} \text { and } v_{Q} \in C_{Q}(X)\right\}\right)
$$

where for $v_{Q} \in C_{Q}(X), W_{v_{Q}}=\left\{f \in C_{r c}(X, E): \varrho_{v_{Q}}(f) \leq 1\right\}$ (see [5, Chapter 2.1.4]) (here eco W denotes the balanced convex hull of a set W in $C_{r c}(X, E)$). We shall show that a set $V=\operatorname{eco} W$, where $W=\bigcup\left\{W_{v_{Q}}: Q \in \mathcal{C}\right.$ and $v_{Q} \in$ $\left.C_{Q}(X)\right\}$ is solid.

Indeed, let $f \in C_{r c}(X, E), g \in V$ and $\widetilde{f} \leq \widetilde{g}$. Then $g=\sum_{i=1}^{n} \lambda_{i} g_{i}$, where $\sum_{i=1}^{n}\left|\lambda_{i}\right| \leq 1$ and $g_{i} \in W$ for $i=1,2, \ldots, n$. Hence for each $i=1,2, \ldots, n$, there exist $Q_{i} \in \mathcal{C}$ and $v_{Q_{i}} \in C_{Q_{i}}(X)$ such that $\varrho_{v_{Q_{i}}}\left(g_{i}\right) \leq 1$. By Lemma 2.1 there exist $f_{1}, \ldots, f_{n} \in C_{r c}(X, E)$ such that $f=\sum_{i=1}^{n} f_{i}$ and $\widetilde{f_{i}} \leq \widetilde{\lambda g_{i}}$ for $i=1,2, \ldots, n$. Let $h_{i}=\frac{1}{\lambda_{i}} f_{i}$ for $i=1,2, \ldots, n$. Since $\varrho_{v_{Q_{i}}}$ is a solid seminorm on $C_{r c}(X, E)$ and $\widetilde{h}_{i} \leq \widetilde{g}_{i}$ for $i=1,2, \ldots, n$, we have $\varrho_{v_{Q_{i}}}\left(h_{i}\right) \leq \varrho_{v_{Q_{i}}}\left(g_{i}\right) \leq 1$. Hence $h_{i} \in W_{v_{Q_{i}}}$, so $h_{i} \in W$. Then $f=\sum_{i=1}^{n} \lambda_{i} h_{i} \in V$, as desired.

Let \mathcal{C}_{σ} (resp. \mathcal{C}_{τ}) be the family of all zero subsets (resp. compact subsets) of $\beta X \backslash X$, and let $\beta_{z}(X, E)=\beta_{\mathcal{C}_{z}}(X, E)$, where $z=\sigma, \tau$.

Arguing as in the proof of [20, Theorem 4.2] we get:
Theorem 2.8. For $z=\sigma, \tau$, we have:

$$
\beta_{z}(X, E)=\beta_{z}(X)^{\vee}, \quad \beta_{z}(X, E)^{\wedge}=\beta_{z}(X) .
$$

Now we define two classes of locally convex-solid topologies on $C_{r c}(X, E)$.
Definition 2.4. A locally convex-solid topology τ on $C_{r c}(X, E)$ is said to be:
(i) σ-Dini if $f_{n} \rightarrow 0$ for τ whenever $\left(f_{n}\right)$ is a sequence in $C_{r c}(X, E)$ such that $\widetilde{f}_{n}(t) \downarrow 0$ for $t \in X$.
(ii) Dini if $f_{\alpha} \rightarrow 0$ for τ whenever $\left(f_{\alpha}\right)$ is a net in $C_{r c}(X, E)$ such that $\widetilde{f}_{\alpha}(t) \downarrow 0$ for $t \in X$.

It is known that $\beta_{\sigma}(X)$ is the finest σ-Dini topology on $C_{b}(X)$ and $\beta_{\tau}(X)$ is the finest Dini topology on $C_{b}(X)$ (see [21, Corollaries 11.16 and 11.28]).

Corollary 2.9. (i) $\beta_{\sigma}(X, E)$ is the finest σ-Dini topology on $C_{r c}(X, E)$.
(ii) $\beta_{\tau}(X, E)$ is the finest Dini topology on $C_{r c}(X, E)$.

Proof. (i) Let $\left\{p_{\alpha}: \alpha \in \mathcal{A}\right\}$ be a family of Riesz seminorms on $C_{b}(X)$ that generates $\beta_{\sigma}(X)$. Assume that $\left(f_{n}\right)$ is a sequence in $C_{r c}(X, E)$ such that $\tilde{f}_{n}(t) \downarrow$ 0 for all $x \in X$. Then $p_{\alpha}^{\vee}\left(f_{n}\right)=p_{\alpha}\left(\widetilde{f}_{n}\right) \rightarrow 0$ and this means that $f_{n} \rightarrow 0$ for $\beta_{\sigma}(X)^{\vee}$. In view of Theorem 2.8 we conclude that $f_{n} \rightarrow 0$ for $\beta_{\sigma}(X, E)$.

Now assume that τ is a σ-Dini topology on $C_{r c}(X, E)$. Then $\tau^{\wedge} \subset \beta_{\sigma}(X)$, and hence $\tau=\left(\tau^{\wedge}\right)^{\vee} \subset \beta_{\sigma}(X)^{\vee}=\beta_{\sigma}(X, E)$ (see Theorems 2.6 and 2.8).
(ii) It is similar to (i).

3. Linear functionals on $C_{r c}(X, E)$

Assume that $\mu \in M\left(X, E^{\prime}\right)$. For $u \in C_{b}(X)^{+}$let us put

$$
\left|\Phi_{\mu}\right|(u):=\sup \left\{\left|\Phi_{\mu}(h)\right|: h \in C_{r c}(X, E), \quad \widetilde{h} \leq u\right\} .
$$

Proposition 3.1. For $\mu \in M\left(X, E^{\prime}\right)$, the functional $\left|\Phi_{\mu}\right|: C_{b}(X)^{+} \rightarrow \mathbb{R}^{+}$is additive.

Proof. Let $u_{1}, u_{2} \in C_{b}(X)^{+}$. First we shall show that

$$
\left|\Phi_{\mu}\right|\left(u_{1}+u_{2}\right) \leq\left|\Phi_{\mu}\right|\left(u_{1}\right)+\left|\Phi_{\mu}\right|\left(u_{2}\right) .
$$

Indeed, let $\varepsilon>0$. Then there exists $h_{0} \in C_{r c}(X, E)$ such that $\widetilde{h}_{0} \leq u_{1}+u_{2}$ and $\left|\Phi_{\mu}\right|\left(u_{1}+u_{2}\right) \leq\left|\Phi_{\mu}\left(h_{0}\right)\right|+\varepsilon$. Then by Lemma 2.1 there exist $h_{1}, h_{2} \in$ $C_{r c}(X, E)$ such that $h_{0}=h_{1}+h_{2}$ and $\widetilde{h}_{i} \leq u_{i}, i=1,2$. Hence

$$
\begin{aligned}
\left|\Phi_{\mu}\right|\left(u_{1}+u_{2}\right) \leq\left|\Phi_{\mu}\left(h_{1}+h_{2}\right)\right|+\varepsilon & \leq\left|\Phi_{\mu}\left(h_{1}\right)\right|+\left|\Phi_{\mu}\left(h_{2}\right)\right|+\varepsilon \\
& \leq\left|\Phi_{\mu}\right|\left(u_{1}\right)+\left|\Phi_{\mu}\right|\left(u_{2}\right)+\varepsilon .
\end{aligned}
$$

Now we shall show that

$$
\left|\Phi_{\mu}\right|\left(u_{1}\right)+\left|\Phi_{\mu}\right|\left(u_{2}\right) \leq\left|\Phi_{\mu}\right|\left(u_{1}+u_{2}\right) .
$$

Indeed, let $\varepsilon>0$ be given. Then there exist $h_{1}, h_{2} \in C_{r c}(X, E)$ such that $\widetilde{h}_{i} \leq u_{i}$ and $\left|\Phi_{\mu}\right|\left(u_{i}\right) \leq\left|\Phi_{\mu}\left(h_{i}\right)\right|+\frac{\varepsilon}{2}, i=1,2$. Let $g_{i}=\operatorname{sign} \Phi_{\mu}\left(h_{i}\right) h_{i}$ for $i=1,2$. Then $\widetilde{g}_{i} \leq \widetilde{h}_{i}$ and $\widetilde{g_{1}+g_{2}} \leq u_{1}+u_{2}$, and hence

$$
\begin{aligned}
\left|\Phi_{\mu}\right|\left(u_{1}\right)+\left|\Phi_{\mu}\right|\left(u_{2}\right) & \leq \Phi_{\mu}\left(g_{1}\right)+\Phi_{\mu}\left(g_{2}\right)+\varepsilon=\Phi_{\mu}\left(g_{1}+g_{2}\right)+\varepsilon \\
& \leq\left|\Phi_{\mu}\right|\left(u_{1}+u_{2}\right)+\varepsilon
\end{aligned}
$$

In view of $\left[1\right.$, Theorem 1.7] we obtain that $\left|\Phi_{\mu}\right|: C_{b}(X)^{+} \rightarrow \mathbb{R}^{+}$has a unique linear extension (denoted by $\left|\Phi_{\mu}\right|$ again)

$$
\left|\Phi_{\mu}\right|: C_{b}(X) \rightarrow \mathbb{R}
$$

defined by

$$
\left|\Phi_{\mu}\right|(u):=\left|\Phi_{\mu}\right|\left(u^{+}\right)-\left|\Phi_{\mu}\right|\left(u^{-}\right) \text {for all } u \in C_{b}(X) .
$$

Hence for $u \in C_{b}(X)$,

$$
\left|\left|\Phi_{\mu}\right|(u)\right| \leq\left|\Phi_{\mu}\right|(u) .
$$

Corollary 3.2. Let $\mu \in M_{\sigma}\left(X, E^{\prime}\right)$. Then for $u \in C_{b}(X)$ we have

$$
\left|\Phi_{\mu}\right|(u)=\int_{X} u d|\mu|=\varphi_{|\mu|}(u) .
$$

Proof. In view of [16, Theorem 2.1] for $u \in C_{b}(X)^{+}$we have,

$$
\int_{X} u d|\mu|=\sup \left\{\left|\int_{X} g d \mu\right|: g \in C_{b}(X) \otimes E, \widetilde{g} \leq u\right\}
$$

and

$$
\left|\Phi_{\mu}\right|(u)=\sup \left\{\left|\int_{X} h d \mu\right|: h \in C_{r c}(X, E), \widetilde{h} \leq u\right\} .
$$

Since $C_{b}(X) \otimes E \subset C_{r c}(X, E)$, we get $\int_{X} u d|\mu| \leq\left|\Phi_{\mu}\right|(u)$.
Now let $h \in C_{r c}(X, E)$ and $\widetilde{h} \leq u$. Then

$$
\left|\int_{X} h d \mu\right| \leq \int_{X} \widetilde{h} d|\mu| \leq \int_{X} u d|\mu|
$$

and hence $\left|\Phi_{\mu}\right|(u) \leq \int_{X} u d|\mu|$, as desired.
Corollary 3.3. For $\mu \in M\left(X, E^{\prime}\right)$ the following statements are equivalent:
(i) $\mu \in M_{\sigma}\left(X, E^{\prime}\right)$.
(ii) $\Phi_{\mu} \in\left(C_{r c}(X, E), \beta_{\sigma}(X, E)\right)^{\prime}$.
(iii) $\left|\Phi_{\mu}\right| \in\left(C_{b}(X), \beta_{\sigma}(X)\right)^{\prime}$.
(iv) $\Phi_{\mu}\left(u_{n} g\right) \rightarrow 0$ uniformly for $g \in B_{C_{r c}}$ whenever $\left(u_{n}\right)$ is a sequence in $C_{b}(X)$ such that $u_{n}(t) \downarrow 0$ for $t \in X$.

Proof. (i) \Longleftrightarrow (ii) It follows from (1.2).
(i) \Longrightarrow (iii) Assume that $\mu \in M_{\sigma}\left(X, E^{\prime}\right)$. Then $|\mu| \in M_{\sigma}(X)$ (see [10, Proposition 3.9]) and by Corollary 3.2 and (1.1), we get $\left|\Phi_{\mu}\right| \in\left(C_{b}(X), \beta_{\sigma}(X)\right)^{\prime}$.
(iii) \Longrightarrow (iv) Assume that (iii) holds. Let $\left(u_{n}\right)$ be a sequence in $C_{b}(X)$ such that $u_{n}(t) \downarrow 0$ for $t \in X$. Then for $g \in B_{C_{r c}}$, by Corollary 3.2 we get

$$
\left|\Phi_{\mu}\left(u_{n} g\right)\right| \leq \int_{X} u_{n} d|\mu|=\left|\Phi_{\mu}\right|\left(u_{n}\right)
$$

Since $\left|\Phi_{\mu}\right| \in L_{\sigma}\left(C_{b}(X)\right)\left(\right.$ see (1.1)), we get $\Phi_{\mu}\left(u_{n} g\right) \rightarrow 0$, as desired.
(iv) \Longrightarrow (i) Assume that (iv) holds. Let $\left(u_{n}\right)$ be a sequence in $C_{b}(X)$ such that $u_{n}(t) \downarrow 0$ for $t \in X$. Then for $x \in E$ we get

$$
\Phi_{\mu}\left(u_{n} \otimes x\right)=\int_{X}\left(u_{n} \otimes x\right) d \mu=\int_{X} u_{n} d \mu_{x} \rightarrow 0
$$

Hence by (1.1) $\mu_{x} \in M_{\sigma}(X)$, i.e., $\mu \in M_{\sigma}\left(X, E^{\prime}\right)$.
Arguing similarly as in the proof of Corollary 3.3 and using [10, Proposition 3.9] we get:

Corollary 3.4. For $\mu \in M\left(X, E^{\prime}\right)$ the following statements are equivalent:
(i) $\mu \in M_{\tau}\left(X, E^{\prime}\right)$.
(ii) $\Phi_{\mu} \in\left(C_{r c}(X, E), \beta_{\tau}(X, E)\right)^{\prime}$.
(iii) $\left|\Phi_{\mu}\right| \in\left(C_{b}(X), \beta_{\tau}(X)\right)^{\prime}$.
(iv) $\Phi_{\mu}\left(u_{\alpha} g\right) \rightarrow 0$ uniformly for $g \in B_{C_{r c}}$ whenever $\left(u_{\alpha}\right)$ is a sequence in $C_{b}(X)$ such that $u_{\alpha}(t) \downarrow 0$ for $t \in X$.

Proposition 3.5. Let \mathcal{M} be a subset of $M_{\sigma}\left(X, E^{\prime}\right)$. Then the following statements are equivalent:
(i) $\left\{\Phi_{\mu}: \mu \in \mathcal{M}\right\}$ is $\beta_{\sigma}(X, E)$-equicontinuous.
(ii) $\left\{\left|\Phi_{\mu}\right|: \mu \in \mathcal{M}\right\}$ is uniformly σ-additive, i.e., $\sup \left\{\left|\Phi_{\mu}\right|\left(u_{n}\right): \mu \in \mathcal{M}\right\} \rightarrow$ 0 whenever $\left(u_{n}\right)$ is a sequence in $C_{b}(X)$ such that $u_{n}(t) \downarrow 0$ for $t \in X$.
(iii) $\left\{\left|\Phi_{\mu}\right|: \mu \in \mathcal{M}\right\}$ is $\beta_{\sigma}(X)$-equicontinuous.

Proof. (i) \Longrightarrow (ii) Assume that $\left\{\Phi_{\mu}: \mu \in \mathcal{M}\right\}$ is $\beta_{\sigma}(X, E)$-equicontinuous. To show that $\left\{\left|\Phi_{\mu}\right|: \mu \in \mathcal{M}\right\}$ is uniformly σ-additive, let $\left(u_{n}\right)$ be a sequence in $C_{b}(X)$ such that $u_{n}(t) \downarrow 0$ for $t \in X$. Let $\varepsilon>0$ be given. Then there exists a convex and solid neighborhood V of 0 for $\beta_{\sigma}(X, E)$ such that $\sup _{\mu \in \mathcal{M}}\left|\Phi_{\mu}(f)\right| \leq$ ε for all $f \in V$ (see Proposition 2.7). Since $\beta_{\sigma}(X, E)$ is a σ-Dini topology (see Corollary 2.9), there exists $n_{\varepsilon} \in \mathbb{N}$ such that $u_{n} \otimes x_{0} \in V\left(x_{0} \in S_{E}\right)$ for $n \geq n_{\varepsilon}$. Hence $\left|\Phi_{\mu}\left(u_{n} \otimes x_{0}\right)\right| \leq \varepsilon$ for $n \geq n_{\varepsilon}$. Let $n_{0} \geq n_{\varepsilon}$ be fixed and let $h \in C_{r c}(X)$ with $\widetilde{h} \leq u_{n_{0}}$. Then $h \in V$ because V is solid, and hence $\sup _{\mu \in \mathcal{M}}\left|\Phi_{\mu}(h)\right| \leq \varepsilon$. It follows that $\sup _{\mu}\left|\Phi_{\mu}\right|\left(u_{n}\right) \leq \varepsilon$ for $n \geq n_{\varepsilon}$, as desired.
(ii) \Longleftrightarrow (iii) See [21, Theorem 11.14].
(iii) \Longrightarrow (i) Assume that $\left\{\left|\Phi_{\mu}\right|: \mu \in \mathcal{M}\right\}$ is $\beta_{\sigma}(X)$-equicontinuous. Let $\left\{\rho_{\alpha}: \alpha \in \mathcal{A}\right\}$ be the family of solid seminorms that generates $\beta_{\sigma}(X, E)$ (see Propositions 2.4 and 2.7). Given $\varepsilon>0$ there exist $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{A}$ and $\eta>0$ such that $\sup \left\{\left|\Phi_{\mu}\right|(u): \mu \in \mathcal{M}\right\} \leq \varepsilon$ for $u \in C_{b}(X)$ with $\max _{1 \leq i \leq n} \hat{\rho}_{\alpha_{i}}(u) \leq \eta$. Let $f \in C_{r c}(X, E)$ with $\max _{1 \leq i \leq n} \rho_{\alpha_{i}}(f) \leq \eta$. Since $\hat{\rho}_{\alpha_{i}}(\widetilde{f})=\rho_{\alpha_{i}}\left(\tilde{f} \otimes x_{0}\right)=$ $\rho_{\alpha_{i}}(f)(i=1,2, \ldots, n)$, we obtain that $\sup \left\{\left|\Phi_{\mu}\right|(\widetilde{f}): \mu \in \mathcal{M}\right\} \leq \varepsilon$. But $\left|\Phi_{\mu}(f)\right| \leq\left|\Phi_{\mu}\right|(\widetilde{f})$, so $\sup \left\{\left|\Phi_{\mu}(f)\right|: \mu \in \mathcal{M}\right\} \leq \varepsilon$, and this means that the family $\left\{\Phi_{\mu}: \mu \in \mathcal{M}\right\}$ is $\beta_{\sigma}(X, E)$-equicontinuous.

Using [21, Theorem 11.24] we can prove an analogous result for $\beta_{\tau}(X, E)$ with a similar proof.

Proposition 3.6. Let \mathcal{M} be a subset of $M_{\tau}\left(X, E^{\prime}\right)$. Then the following statements are equivalent:
(i) $\left\{\Phi_{\mu}: \mu \in \mathcal{M}\right\}$ is $\beta_{\tau}(X, E)$-equicontinuous.
(ii) $\left\{\left|\Phi_{\mu}\right|: \mu \in \mathcal{M}\right\}$ is uniformly τ-additive, i.e., $\sup \left\{\left|\Phi_{\mu}\right|\left(u_{\alpha}\right): \mu \in \mathcal{M}\right\} \rightarrow$ 0 whenever $\left(u_{\alpha}\right)$ is a net in $C_{b}(X)$ such that $u_{\alpha}(t) \downarrow 0$ for $t \in X$.
(iii) $\left\{\left|\Phi_{\mu}\right|: \mu \in \mathcal{M}\right\}$ is $\beta_{\tau}(X)$-equicontinuous.

4. Integral representation of bounded linear operators on $C_{r c}(X, E)$

By $B(\mathcal{B}, E)$ we denote the Banach space of all totally \mathcal{B}-measurable functions $g: X \rightarrow E$ (the uniform limits of sequences of E-valued \mathcal{B}-simple functions), provided with the uniform norm $\|\cdot\|$ (see [7], [8]).

It is known that $C_{r c}(X, E) \subset B(\mathcal{B}, E)$ (see [16]), and one can embed $B(\mathcal{B}, E)$ into $C_{r c}(X, E)^{\prime \prime}$ by the mapping $\pi: B(\mathcal{B}, E) \rightarrow C_{r c}(X, E)^{\prime \prime}$, where for $g \in$ $B(\mathcal{B}, E)$,

$$
\pi(g)\left(\Phi_{\mu}\right)=\int_{X} g d \mu \text { for } \mu \in M\left(X, E^{\prime}\right)
$$

Let $i_{F}: F \rightarrow F^{\prime \prime}$ stand for the canonical embedding, i.e., $i_{F}(y)\left(y^{\prime}\right)=y^{\prime}(y)$ for $y \in F, y^{\prime} \in F^{\prime}$. Moreover, let $j_{F}: i_{F}(F) \rightarrow F$ denote the left inverse of i_{F}, that is, $j_{F} \circ i_{F}=i d_{F}$. Note that j_{F} is $\left(\sigma\left(i_{F}(F), F^{\prime}\right), \sigma\left(F, F^{\prime}\right)\right)$-continuous.

Now assume that $T: C_{r c}(X, E) \rightarrow F$ is a bounded linear operator. Let $T^{\prime}: F^{\prime} \rightarrow C_{r c}(X, E)^{\prime}$ and $T^{\prime \prime}: C_{r c}(X, E)^{\prime \prime} \rightarrow F^{\prime \prime}$ stand for the conjugate and biconjugate operators of T, respectively. Let

$$
\hat{T}:=T^{\prime \prime} \circ \pi: B(\mathcal{B}, E) \rightarrow F^{\prime \prime}
$$

Then \hat{T} is a bounded operator. For $A \in \mathcal{B}$ let us put

$$
m(A)(x):=\hat{T}\left(\mathbb{1}_{A} \otimes x\right) \text { for } x \in E
$$

Then $m: \mathcal{B} \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ will be called a representing measure of T.
We define the semivariation $\widetilde{m}(A)$ of m on $A \in \mathcal{B}$ by

$$
\widetilde{m}(A)=\sup \left\|\sum m\left(A_{i}\right)\left(x_{i}\right)\right\|_{F^{\prime \prime}}
$$

where the supremum is taken over all finite \mathcal{B}-partitions $\left(A_{i}\right)$ of A and $x_{i} \in$ B_{E} for each i. For $y^{\prime} \in F^{\prime}$ let $m_{y^{\prime}}: \mathcal{B} \rightarrow E^{\prime}$ be vector measures defined by $m_{y^{\prime}}(A)(x):=m(A)(x)\left(y^{\prime}\right)$ for $A \in \mathcal{B}, x \in E$. Let $\left|m_{y^{\prime}}\right|(A)$ stand for the variation of $m_{y^{\prime}}$ on A. Then for $A \in \mathcal{B}$ (see [7, $\S 4$, Proposition 5]),

$$
\widetilde{m}(A)=\sup \left\{\left|m_{y^{\prime}}\right|(A): y^{\prime} \in B_{F^{\prime}}\right\} .
$$

Since $\hat{T}: B(\mathcal{B}, E) \rightarrow F^{\prime \prime}$ is bounded, we have

$$
\hat{T}(g)=\int_{X} g d m \quad \text { for } \quad g \in B(\mathcal{B}, E)
$$

$\|\hat{T}\|=\widetilde{m}(X)$, and for each $y^{\prime} \in F^{\prime}$ we have,

$$
\hat{T}(g)\left(y^{\prime}\right)=\int_{X} g d m_{y^{\prime}} \quad \text { for } g \in B(\mathcal{B}, E)
$$

(see $[7, \S 6],[8, \S 1, G-H])$. Moreover, from the general properties of the operator \hat{T} it follows immediately that

$$
\begin{equation*}
\hat{T}\left(C_{r c}(X, E)\right) \subset i_{F}(F) . \tag{4.1}
\end{equation*}
$$

For each $x \in E$ we can define a vector measure $m_{x}: \mathcal{B} \rightarrow F^{\prime \prime}$ by

$$
m_{x}(A)\left(y^{\prime}\right):=m(A)(x)\left(y^{\prime}\right) \quad \text { for } \quad A \in \mathcal{B}, y^{\prime} \in F^{\prime}
$$

For $x \in E$ and $y^{\prime} \in F^{\prime}$ let

$$
m_{x, y^{\prime}}(A):=m(A)(x)\left(y^{\prime}\right) \quad \text { for } \quad A \in \mathcal{B}
$$

An integral representation of weakly compact operators $T: C_{r c}(X, E) \rightarrow F$ was established by Katsaras and Liu (see [15, Theorem 3]). Now we state a general Riesz representation theorem for bounded linear operators $T: C_{r c}(X, E) \rightarrow$ F.

Theorem 4.1. Let $T: C_{r c}(X, E) \rightarrow F$ be a bounded linear operator, and $m: \mathcal{B} \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ its representing measure. Then the following statements hold:
(i) $m_{y^{\prime}} \in M\left(X, E^{\prime}\right)$ for each $y^{\prime} \in F^{\prime}$.
(ii) The mapping $F^{\prime} \ni y^{\prime} \mapsto m_{y^{\prime}} \in M\left(X, E^{\prime}\right)$ is $\left(\sigma\left(F^{\prime}, F\right), \sigma\left(M\left(X, E^{\prime}\right)\right.\right.$, $\left.\left.C_{r c}(X, E)\right)\right)$-continuous.
(iii) For each $y^{\prime} \in F^{\prime}, y^{\prime}(T(f))=\int_{X} f d m_{y^{\prime}}$ for $f \in C_{r c}(X, E)$.
(iv) $T(f)=j_{F}\left(\int_{X} f d m\right)$ for $f \in C_{r c}(X, E)$.
(v) $\|T\|=\widetilde{m}(X)$.

Conversely, let $m: \mathcal{B} \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ be a vector measure satisfying (i) and (ii). Then there exists a unique bounded linear operator $T: C_{r c}(X, E) \rightarrow F$ such that (iii) holds and $m(A)(x)=\left(T^{\prime \prime} \circ \pi\right)\left(\mathbb{1}_{A} \otimes x\right)$ for all $A \in \mathcal{B}, x \in E$. In consequence, the vector measure $m: \mathcal{B} \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ satisfying (i), (ii) and (iii) is uniquely determined by a bounded linear operator $T: C_{r c}(X, E) \rightarrow F$.

Proof. Let $y^{\prime} \in F^{\prime}$. Since $y^{\prime} \circ T \in C_{r c}(X, E)^{\prime}$, there exists a unique $\mu_{y^{\prime} \circ T} \in$ $M\left(X, E^{\prime}\right)$ such that

$$
\left(y^{\prime} \circ T\right)(f)=\int_{X} f d \mu_{y^{\prime} \circ T} \quad \text { for } \quad f \in C_{r c}(X, E)
$$

For $A \in \mathcal{B}$ and $x \in E$ we have

$$
\begin{aligned}
m_{y^{\prime}}(A)(x) & =m(A)(x)\left(y^{\prime}\right)=\hat{T}\left(\mathbb{1}_{A} \otimes x\right)\left(y^{\prime}\right) \\
& =T^{\prime \prime}\left(\pi\left(\mathbb{1}_{A} \otimes x\right)\right)\left(y^{\prime}\right)=\pi\left(\mathbb{1}_{A} \otimes x\right)\left(T^{\prime}\left(y^{\prime}\right)\right) \\
& =\pi\left(\mathbb{1}_{A} \otimes x\right)\left(y^{\prime} \circ T\right)=\int_{X}\left(\mathbb{1}_{A} \otimes x\right) d \mu_{y^{\prime} \circ T}=\mu_{y^{\prime} \circ T}(A)(x) .
\end{aligned}
$$

It follows that $m_{y^{\prime}}=\mu_{y^{\prime} \circ T} \in M\left(X, E^{\prime}\right)$ and

$$
\left(y^{\prime} \circ T\right)(f)=\int_{X} f d m_{y^{\prime}} \quad \text { for } \quad f \in C_{r c}(X, E)
$$

This means that (i) and (iii) hold. Since the mapping $T^{\prime}: F^{\prime} \rightarrow C_{r c}(X, E)^{\prime}$ is $\left(\sigma\left(F^{\prime}, F\right), \sigma\left(C_{r c}(X, E)^{\prime}, C_{r c}(X, E)\right)\right)$-continuous, the mapping $F^{\prime} \ni y^{\prime} \mapsto m_{y^{\prime}} \in$ $M\left(X, E^{\prime}\right)$ is $\left(\sigma\left(F^{\prime}, F\right), \sigma\left(M\left(X, E^{\prime}\right), C_{r c}(X, E)\right)\right)$-continuous, i.e., (ii) holds.

Note that using (4.1) we have $T(f)=j_{F}(\hat{T}(f))=j_{F}\left(\int_{X} f d m\right)$ for $f \in$ $C_{r c}(X, E)$, i.e., (iv) holds. Using (iii) we get

$$
\begin{aligned}
\|T\|=\left\|T^{\prime}\right\| & =\sup \left\{\left\|T^{\prime}\left(y^{\prime}\right)\right\|: y^{\prime} \in B_{F^{\prime}}\right\} \\
& =\sup \left\{\left\|y^{\prime} \circ T\right\|: y^{\prime} \in B_{F^{\prime}}\right\} \\
& =\sup \left\{\left|m_{y^{\prime}}\right|(X): y^{\prime} \in B_{F^{\prime}}\right\}
\end{aligned}
$$

i.e., (v) holds.

Conversely, let $m: \mathcal{B} \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ be a vector measure satisfying (i) and (ii). Then $m_{y^{\prime}} \in M\left(X, E^{\prime}\right)$ and the mapping $F^{\prime} \ni y^{\prime} \mapsto m_{y^{\prime}} \in M\left(X, E^{\prime}\right)$ is $\left(\sigma\left(F^{\prime}, F\right), \sigma\left(M\left(X, E^{\prime}\right), C_{r c}(X, E)\right)\right)$-continuous.

For $f \in C_{r c}(X, E)$ define a linear mapping $\Psi_{f}: F^{\prime} \rightarrow \mathbb{R}$ by

$$
\Psi_{f}\left(y^{\prime}\right)=\int_{X} f d m_{y^{\prime}} \quad \text { for all } y^{\prime} \in F^{\prime}
$$

Then by (ii) Ψ_{f} is a $\sigma\left(F^{\prime}, F\right)$-continuous linear functional, so there exists a unique $y_{f} \in F$ such that $\Psi_{f}=i_{F}\left(y_{f}\right)$, i.e., $\Psi_{f}\left(y^{\prime}\right)=y^{\prime}\left(y_{f}\right)$ for each $y^{\prime} \in F^{\prime}$. For each $f \in C_{r c}(X, E)$ let us put

$$
T(f)=y_{f}
$$

Then $T: C_{r c}(X, E) \rightarrow F$ is a linear mapping and for each $y^{\prime} \in F^{\prime}$ we have

$$
\begin{aligned}
\sup \left\{\left|y^{\prime}(T(f))\right|:\|f\| \leq 1\right\} & =\sup \left\{\left\{\left|y^{\prime}\left(y_{f}\right)\right|:\|f\| \leq 1\right\}\right. \\
& =\sup \left\{\left|\int_{X} f d m_{y^{\prime}}\right|:\|f\| \leq 1\right\} \\
& \leq \sup \left\{\int_{X}\|f\| d\left|m_{y^{\prime}}\right|:\|f\| \leq 1\right\} \\
& \leq \mid m_{y^{\prime}}(X)<\infty
\end{aligned}
$$

This means that $\{T(f):\|f\| \leq 1\}$ is $\sigma\left(F, F^{\prime}\right)$-bounded, so $\sup \left\{\|T(f)\|_{F}\right.$: $\|f\| \leq 1\}<\infty$, i.e., T is bounded. Moreover, for each $y^{\prime} \in F^{\prime}$ we have

$$
y^{\prime}(T(f))=y^{\prime}\left(y_{f}\right)=\Psi_{f}\left(y^{\prime}\right)=\int_{X} f d m_{y^{\prime}} \quad \text { for } \quad f \in C_{r c}(X, E)
$$

i.e., T satisfies (iii).

Assume that $S: C_{r c}(X, E) \rightarrow F$ is another bounded linear operator such that for each $y^{\prime} \in F^{\prime}$,

$$
y^{\prime}(S(f))=\int_{X} f d m_{y^{\prime}} \quad \text { for } \quad f \in C_{r c}(X, E)
$$

Then $y^{\prime}(S(f))=y^{\prime}(T(f))$ for all $f \in C_{r c}(X, E)$, so $S=T$.

Let $m_{o}(A)(x)=\left(T^{\prime \prime} \circ \pi\right)\left(\mathbb{1}_{A} \otimes x\right)$ for all $A \in \mathcal{B}, x \in E$. Then by the first part of the proof, for each $y^{\prime} \in F^{\prime}$, we get

$$
y^{\prime}(T(f))=\int_{X} f d\left(m_{o}\right)_{y^{\prime}} \quad \text { for } \quad f \in C_{r c}(X, E) .
$$

Hence $\left(m_{o}\right)_{y^{\prime}}=m_{y^{\prime}} \in M\left(X, E^{\prime}\right)$. It follows that

$$
m(A)(x)=m_{o}(A)(x)=\left(T^{\prime \prime} \circ \pi\right)\left(\mathbb{1}_{A} \otimes x\right) .
$$

Thus the proof is complete.
Definition 4.1. A measure $m: \mathcal{B} \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ is said to be a representing measure if it satisfies conditions (i) and (ii) of Theorem 4.1.

5. Continuous operators on $C_{r c}(X, E)$ with strict topologies

First we distinguish two classes of operators on $C_{r c}(X, E)$.
Definition 5.1. A bounded linear operator $T: C_{r c}(X, E) \rightarrow F$ is said to be:
(i) σ-additive, if $\left\|T\left(u_{n} g\right)\right\|_{F} \rightarrow 0$ uniformly for $g \in B_{C_{r c}}$ whenever $\left(u_{n}\right)$ is a sequence in $C_{b}(X)$ such that $u_{n}(t) \downarrow 0$ for $t \in X$.
(ii) τ-additive, if $\left\|T\left(u_{\alpha} g\right)\right\|_{F} \rightarrow 0$ uniformly for $g \in B_{C_{r c}}$ whenever $\left(u_{\alpha}\right)$ is a net in $C_{b}(X)$ such that $u_{\alpha}(t) \downarrow 0$ for $t \in X$.

We characterize $\left(\beta_{z}(X, E),\|\cdot\|_{F}\right)$-continuous linear operators $T: C_{r c}(X, E) \rightarrow$ F for $z=\sigma, \tau$.

Theorem 5.1. Let $T: C_{r c}(X, E) \rightarrow F$ be a bounded linear operator, and $m: \mathcal{B} \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ its representing measure. Then the following statements are equivalent:
(i) T is $\left(\beta_{\sigma}(X, E),\|\cdot\|_{F}\right)$-continuous.
(ii) T is σ-additive.
(iii) $\widetilde{m}\left(Z_{n}\right)$ whenever $Z_{n} \downarrow \emptyset,\left(Z_{n}\right) \subset \mathcal{Z}$.

Proof. (i) \Longrightarrow (ii) Assume that T is $\left(\beta_{\sigma}(X, E),\|\cdot\|_{F}\right)$-continuous. Let $\left(u_{n}\right)$ be a sequence in $C_{b}(X)$ such that $u_{n}(t) \downarrow 0$ for $t \in X$, and let $\varepsilon>0$ be given. Then there exists a solid neighborhood V of 0 for $\beta_{\sigma}(X, E)$ such that $\|T(f)\|_{F} \leq \varepsilon$ for all $f \in V$ (see Proposition 2.7). Choose $n_{\varepsilon} \in \mathbb{N}$ such that $u_{n} \otimes x_{0} \in V$ for $n \geq n_{\varepsilon}$, where $x_{0} \in S_{E}$ (see Corollary 2.9). Hence $u_{n} g \in V$ for all $g \in B_{C_{r c}}$ and $n \geq n_{\varepsilon}$, and it follows that $\sup _{g \in B_{C_{r c}}}\left\|T\left(u_{n} g\right)\right\|_{F} \leq \varepsilon$ for $n \geq n_{\varepsilon}$.
(ii) \Longrightarrow (iii) Assume that T is σ-additive. Then for $y^{\prime} \in F^{\prime}$ we have

$$
\left(y^{\prime} \circ T\right)(f)=\int_{X} f d m_{y^{\prime}} \quad \text { for } \quad f \in C_{r c}(X, E)
$$

and by Corollary 3.3, $m_{y^{\prime}} \in M_{\sigma}\left(X, E^{\prime}\right)$, and hence $\left|m_{y^{\prime}}\right| \in M_{\sigma}(X)$. In view of Corollary 3.2 we have

$$
\left|y^{\prime} \circ T\right|(u)=\int_{X} u d\left|m_{y^{\prime}}\right| \quad \text { for } \quad u \in C_{b}(X)
$$

Let $\left(u_{n}\right)$ be a sequence in $C_{b}(X)$ such that $u_{n}(t) \downarrow 0$ for $t \in X$. We shall show that $\sup _{y^{\prime} \in B_{F^{\prime}}}\left|y^{\prime} \circ T\right|\left(u_{n}\right) \rightarrow 0$. For each $y^{\prime} \in F^{\prime}$ there exists a sequence ($h_{y^{\prime}, n}$) in $C_{r c}(X, E)$ with $\widetilde{h}_{y^{\prime}, n} \leq u_{n}$ and such that

$$
\left|y^{\prime} \circ T\right|\left(u_{n}\right) \leq\left|\int_{X} h_{y^{\prime}, n} d m_{y^{\prime}}\right|+\frac{1}{n}
$$

Let $g_{y^{\prime}, n}(t)=\frac{h_{y^{\prime}, n}(t)}{u_{n}(t)}$ for $t \in X$. Then $g_{y^{\prime}, n} \in B_{C_{r c}}$ for $n \in \mathbb{N}$. Hence for each $y^{\prime} \in B_{F^{\prime}}$, we get

$$
\begin{aligned}
\left|y^{\prime} \circ T\right|\left(u_{n}\right) & \leq\left|\int_{X} h_{y^{\prime}, n} d m_{y^{\prime}}\right|+\frac{1}{n}=\left|\int_{X} u_{n} g_{y^{\prime}, n} d m_{y^{\prime}}\right|+\frac{1}{n} \\
& \left.\leq \sup _{g \in B_{C_{r c}}}\left|\int_{X} u_{n} g d m_{y^{\prime}}\right|+\frac{1}{n}=\sup _{g \in B_{C_{r c}}} \right\rvert\, y^{\prime}\left(T\left(u_{n} g\right) \left\lvert\,+\frac{1}{n}\right.\right. \\
& \leq \sup _{g \in B_{C_{r c}}}\left\|T\left(u_{n} g\right)\right\|_{F}+\frac{1}{n} .
\end{aligned}
$$

Hence $\sup _{y^{\prime} \in B_{F^{\prime}}}\left|y^{\prime} \circ T\right|\left(u_{n}\right) \rightarrow 0$, as desired. By [21, Theorem 11.14] the family $\left\{\left|m_{y^{\prime}}\right|: y^{\prime} \in B_{F^{\prime}}\right\}$ in $M_{\sigma}(X)$ is uniformly σ-additive, i.e.,
$\widetilde{m}\left(Z_{n}\right)=\sup \left\{\left|m_{y^{\prime}}\right|\left(Z_{n}\right): y^{\prime} \in B_{F^{\prime}}\right\} \rightarrow 0 \quad$ whenever $\quad Z_{n} \downarrow \emptyset,\left(Z_{n}\right) \subset \mathcal{Z}$.
(iii) \Longrightarrow (i) Assume that (iii) holds. Then $\left|m_{y^{\prime}}\right| \in M_{\sigma}(X)$ for each $y^{\prime} \in F^{\prime}$. Note that for $A \in \mathcal{B}, x \in E$ we have $\left|m_{x, y^{\prime}}(A)\right| \leq\left|m_{y^{\prime}}\right|(A) \cdot\|x\|_{E}$. It follows that $m_{x, y^{\prime}} \in M_{\sigma}(X)$ for $x \in E$, i.e., $m_{y^{\prime}} \in M_{\sigma}\left(X, E^{\prime}\right)$, and hence $y^{\prime} \circ T \in$ $\left(C_{r c}(X, E), \beta_{\sigma}(X, E)\right)^{\prime}$ (see (1.2)). In view of [21, Theorem 11.14] the family $\left\{\left|y^{\prime} \circ T\right|: y^{\prime} \in B_{F^{\prime}}\right\}$ is $\beta_{\sigma}(X)$-equicontinuous, and hence by Proposition 3.5 the family $\left\{y^{\prime} \circ T: y^{\prime} \in B_{F^{\prime}}\right\}$ is $\beta_{\sigma}(X, E)$-equicontinuous. This means that T is $\left(\beta_{\sigma}(X, E),\|\cdot\|_{F}\right)$-continuous.

Arguing as in the proof of Theorem 5.1 and using Proposition 3.6 we get:
Theorem 5.2. Let $T: C_{r c}(X, E) \rightarrow F$ be a bounded linear operator, and $m: \mathcal{B} \rightarrow \mathcal{L}\left(E, F^{\prime \prime}\right)$ its representing measure. Then the following statements are equivalent:
(i) T is $\left(\beta_{\tau}(X, E),\|\cdot\|_{F}\right)$-continuous.
(ii) T is τ-additive.
(iii) $\widetilde{m}\left(Z_{n}\right) \rightarrow 0$ whenever $Z_{\alpha} \downarrow \emptyset,\left(Z_{\alpha}\right) \subset \mathcal{Z}$.

Remark. For weakly compact operators $T: C_{r c}(X, E) \rightarrow F$, the equivalences (i) \Longleftrightarrow (iii) in Theorems 5.1 and 5.2 were derived in a different way in $[15$, Theorems 4 and 5].

References

[1] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, New York, 1985.
[2] J. Aguayo and J. Sanchez, The Dunford-Pettis property on vector-valued continuous and bounded functions, Bull. Austr. Math. Soc. 48 (1993), no. 2, 303-311.
[3] J. Aguayo-Garrido and M. Nova-Yanèz, Weakly compact operators and u-additive measures, Ann. Math. Blaise Pascal 7 (2000), no. 2, 1-11.
[4] J. Batt, Applications of the Orlicz-Pettis theorem to operator-valued measures and compact and weakly compact linear transformations on the space of continuous functions, Rev. Roumaine Math. Pures Appl. 14 (1969), 907-935.
[5] R. Cristescu, Topological Vector Spaces, Ed. Acad. Bucaresti, Noordhoff Inter. Publ., Leyden 1977.
[6] J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Math. Surveys 15, Providence, RI, 1977.
[7] N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
[8] \qquad , Vector Integration and Stochastic Integration in Banach Spaces, John Wiley and Sons Inc., 2000.
[9] R. E. Edwards, Functional Analysis, Theory and Applications, Holt, Rinehart and Winston, New York, 1965.
[10] R. Fontenot, Strict topologies for vector-valued function spaces, Canad. J. Math. 26 (1974), no. 4, 841-853.
[11] A. Katsaras, Continuous linear functionals on spaces of vector-valued functions, Bull. Soc. Math. Greece 15 (1974), 13-19.
[12] _, Spaces of vector measures, Trans. Amer. Math. Soc. 206 (1975), 313-328.
[13] , Locally convex topologies on spaces of continuous vector functions, Math. Nachr. 71 (1976), 211-226.
[14] , Some locally convex spaces of continuous vector-valued functions over a completely regular space and their duals, Trans. Amer. Math. Soc. 216 (1976), 367-387.
[15] A. Katsaras and D. B. Liu, Integral representation of weakly compact operators, Pacific J. Math. 56 (1975), no. 2, 547-556.
[16] S. S. Khurana, Topologies on spaces of vector-valued continuous functions, Trans. Amer. Math. Soc. 241 (1978), 195-211.
[17] , Integral representation of a class of operators, J. Math. Anal. Appl. 350 (2009), no. 1, 290-293.
[18] S. S. Khurana and S. I. Othman, Grothendieck measures, J. London Math. Soc. 39 (1989), no. 3, 481-486.
[19] S. S. Khurana and J. Vielma, Strict topology and perfect measures, Czechoslovak Math. J. 40(115) (1990), no. 1, 1-7.
[20] M. Nowak and A. Rzepka, Locally solid topologies on spaces of vector-valued continuous functions, Comment. Math. Univ. Carolinae 43 (2002), no. 3, 473-483.
[21] R. Wheeler, A survey of Baire measures and strict topologies, Expo. Math. 2 (1983), no. 2, 97-190.

Faculty of Mathematics
Computer Science and Econometrics
University of Zielona Góra
ul. Szafrana 4A, 65-516 Zielona Góra, Poland
E-mail address: M.Nowak@wmie.uz.zgora.pl

[^0]: Received May 18, 2014.
 2010 Mathematics Subject Classification. 46G10, 46A40, 46A70, 28A33.
 Key words and phrases. spaces of vector-valued continuous functions, strict topologies, vector measures, integration operators.

