Browse > Article
http://dx.doi.org/10.4134/BKMS.2013.50.5.1693

MULTIPLICITY OF SOLUTIONS FOR BIHARMONIC ELLIPTIC SYSTEMS INVOLVING CRITICAL NONLINEARITY  

Lu, Dengfeng (School of Mathematics and Statistics Hubei Engineering University)
Xiao, Jianhai (School of Mathematics and Statistics Hubei Engineering University)
Publication Information
Bulletin of the Korean Mathematical Society / v.50, no.5, 2013 , pp. 1693-1710 More about this Journal
Abstract
In this paper, we consider the biharmonic elliptic systems of the form $$\{{\Delta}^2u=F_u(u,v)+{\lambda}{\mid}u{\mid}^{q-2}u,\;x{\in}{\Omega},\\{\Delta}^2v=F_v(u,v)+{\delta}{\mid}v{\mid}^{q-2}v,\;x{\in}{\Omega},\\u=\frac{{\partial}u}{{\partial}n}=0,\; v=\frac{{\partial}v}{{\partial}n}=0,\;x{\in}{\partial}{\Omega},$$, where ${\Omega}{\subset}\mathbb{R}^N$ is a bounded domain with smooth boundary ${\partial}{\Omega}$, ${\Delta}^2$ is the biharmonic operator, $N{\geq}5$, $2{\leq}q$ < $2^*$, $2^*=\frac{2N}{N-4}$ denotes the critical Sobolev exponent, $F{\in}C^1(\mathbb{R}^2,\mathbb{R}^+)$ is homogeneous function of degree $2^*$. By using the variational methods and the Ljusternik-Schnirelmann theory, we obtain multiplicity result of nontrivial solutions under certain hypotheses on ${\lambda}$ and ${\delta}$.
Keywords
biharmonic elliptic system; critical Sobolev exponent; variational method; multiple solutions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. X. Ge, J. C. Wei, and F. Zhou, A critical elliptic problem for polyharmonic operators, J. Funct. Anal. 260 (2011), no. 8, 2247-2282.   DOI   ScienceOn
2 H. Grunau, Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponents, Calc. Var. Partial Differential Equations 3 (1995), no. 2, 243-252.   DOI
3 P. G. Han, The effect of the domain topology on the number of positive solutions of an elliptic systems involving critical Sobolev exponents, Houston J. Math. 32 (2006), no. 4, 1241-1257.
4 T. S. Hsu and H. L. Lin, Multiple positive solutions for a critical elliptic system with concave-convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 6, 1163-1177.   DOI   ScienceOn
5 D. S. Kang and S. J. Peng, Existence and asymptotic properties of solutions to elliptic systems involving multiple critical exponents, Sci.China Math. 54 (2011), no. 2, 243-256.   DOI   ScienceOn
6 D. F. Lu, Multiple solutions for a class of biharmonic elliptic systems with Sobolev critical exponent, Nonlinear Anal. 74 (2011), no. 17, 6371-6382.   DOI   ScienceOn
7 D. F. Lu and J. H. Xiao, Multiple solutions for weighted nonlinear elliptic system in-volving critical exponents, Math. Comput. Modelling 55 (2012), no. 3-4, 816-827.   DOI   ScienceOn
8 M. Montenegro, On nontrivial solutions of critical polyharmonic elliptic systems, J. Differential Equations 247 (2009), no. 3, 906-916.   DOI   ScienceOn
9 E. S. Noussair, C. A. Swanson, and J. Yang, Critical semilinear biharmonic equations in $R^N$, Proc. Roy. Soc. Edinburgh Sect. A 121 (1992), no. 1-2, 139-148.   DOI
10 O. Rey, A multiplicity results for a variational problem with lack of compactness, Nonlinear Anal. 13 (10) (1989), no. 10, 1241-1249.   DOI   ScienceOn
11 Y. Shen and J. H. Zhang, Multiplicity of positive solutions for a semilinear p-Laplacian system with Sobolev critical exponent, Nonlinear Anal. 74 (2011), no. 4, 1019-1030.   DOI   ScienceOn
12 C. O. Alves and Y. H. Ding, Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity, J. Math. Anal. Appl. 279 (2003), no. 2, 508-521.   DOI   ScienceOn
13 T. Bartsch and Y. Guo, Existence and nonexistence results for critical growth polyhar- monic elliptic systems, J. Differential Equations 220 (2006), no. 2, 531-543.   DOI   ScienceOn
14 F. Bernis, J. Garcia-Azorero, and I. Peral, Existence and multiplicity of nontrivial so- lutions in semilinear critical problems of fourth order, Adv. Differential Equations 1 (1996), no. 2, 219-240.
15 H. Brezis and E. Lieb, A relation between pointwise convergence of functions and con- vergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486-490.   DOI
16 J. Chabrowski and J. Marcos do O, On some fourth-order semilinear elliptic problems in RN, Nonlinear Anal. 49 (2002), no. 6, 861-884.   DOI   ScienceOn
17 F. Gazzola, H.C. Grunau, and M. Squassina, Existence and nonexistence results for critical growth biharmonic elliptic equations, Calc. Var. Partial Differential Equations 18 (2003), no. 2, 117-143.   DOI
18 L. Ding and S. W. Xiao, Multiple positive solutions for a critical quasilinear elliptic system, Nonlinear Anal. 72 (2010), no. 5, 2592-2607.   DOI   ScienceOn
19 D. E. Edmunds, D. Fortunato, and E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal. 112 (1990), no. 3, 269-289.   DOI
20 D. C. de Morais Filho and M. A. S. Souto, Systems of p-Laplacian equations involv- ing homogeneous nonlinearities with critical Sobolev exponent degrees, Comm. Partial Differential Equations 24 (1999), no. 7-8, 1537-1553.   DOI
21 Y. J. Zhang, Positive solutions of semilinear biharmonic equations with critical Sobolev exponents, Nonlinear Anal. 75 (2012), no. 1, 55-67.   DOI   ScienceOn
22 Y. J. Wang and Y. T. Shen, Multiple and sign-changing solutions for a class of semi-linear biharmonic equation, J. Differential Equations 246 (2009), no. 8, 3109-3125.   DOI   ScienceOn
23 M. Willem, Minimax Theorems, Birkhauser, Boston, 1996.