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MULTIPLICITY OF SOLUTIONS FOR BIHARMONIC

ELLIPTIC SYSTEMS INVOLVING CRITICAL

NONLINEARITY

Dengfeng Lü and Jianhai Xiao

Abstract. In this paper, we consider the biharmonic elliptic systems of
the form







∆2u = Fu(u, v) + λ|u|q−2u, x ∈ Ω,

∆2v = Fv(u, v) + δ|v|q−2v, x ∈ Ω,

u = ∂u
∂n

= 0, v = ∂v
∂n

= 0, x ∈ ∂Ω,

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω, ∆2 is the

biharmonic operator, N ≥ 5, 2 ≤ q < 2∗, 2∗ = 2N
N−4

denotes the critical

Sobolev exponent, F ∈ C1(R2,R+) is homogeneous function of degree
2∗. By using the variational methods and the Ljusternik-Schnirelmann
theory, we obtain multiplicity result of nontrivial solutions under certain
hypotheses on λ and δ.

1. Introduction

The main purpose of this paper is to study the multiplicity of nontrivial
solutions for the following biharmonic elliptic system:

(1.1)







∆2u = Fu(u, v) + λ|u|q−2u, x ∈ Ω,
∆2v = Fv(u, v) + δ|v|q−2v, x ∈ Ω,
u = ∂u

∂n
= 0, v = ∂v

∂n
= 0, x ∈ ∂Ω,

where Ω ⊂ R
N (N ≥ 5) is a bounded domain with smooth boundary ∂Ω,

∆2 is the biharmonic operator, 2 ≤ q < 2∗, 2∗ = 2N
N−4 denotes the criti-

cal Sobolev exponent, F ∈ C1(R2,R+) is homogeneous function of degree 2∗,
(Fu(u, v), Fv(u, v)) = ∇F , ∂

∂n
is the outer normal derivative, and λ, δ are

positive parameters.
The starting point on the study of the system (1.1) is its scalar version:

(1.2)

{

∆2u = |u|2
∗−2u+ λ|u|q−2u, x ∈ Ω,

u = ∂u
∂n

= 0, x ∈ ∂Ω.
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The interest of problem (1.2) grew from its resemblance to some nonlinear
equations arising from a geometric context and which have extensively been
studied for various q ∈ (1, 2∗) in recent years. Many important results were
obtained in these publications (see [3, 5, 7, 9, 10, 11, 18, 21, 23] and the ref-
erences therein). For example, Edmunds, et al. [7] showed that, if q = 2,
the equation (1.2) has a nontrivial solution provided N ≥ 8 and 0 < λ < λ1,
where λ1 is the first eigenvalue of the operator (∆2, H2

0 (Ω)). Recently, Zhang
[23] obtained the existence of one positive solution of equation (1.2) with the
sublinear perturbation of 1 < q < 2 and under the Navier boundary condition.

In recent years, more and more attention has been paid to the elliptic sys-
tems. In particular, Hsu and Lin in [13] concerned the case F (u, v) = 2|u|α|v|β ,
α > 1, β > 1 satisfying α+ β = 2N

N−2 , i.e., the following elliptic system

(1.3)







−∆u = 2α
α+β

|u|α−2u|v|β + λ|u|q−2u, x ∈ Ω,

−∆v = 2β
α+β

|u|α|v|β−2v + δ|v|q−2v, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

Using the Nehari manifold method, the authors in [13] obtained the existence of
two positive solutions of system (1.3) with the sublinear perturbation of 1 < q <
2. Han in [12] using the variational theory and the Ljusternik-Schnirelmann
category theory has proved that system (1.3) has at least catΩ(Ω) positive
solutions if λ, δ ∈ (0, λ∗), where 0 < λ∗ < λ1, and λ1 is the first eigenvalue of
(−∆, H1

0 (Ω)). Furthermore, Ding and Xiao [6] extended the result in [12] to
the p-Laplacian case and obtained similar result.

In this paper, we complement and extend the results of [6, 12, 13] to the
biharmonic critical case and 2 ≤ q < 2∗. Considering the multiplicity of non-
trivial solutions of problem (1.1), we show that problem (1.1) has at least
catΩ(Ω) nontrivial solutions when the pair of parameters λ, δ satisfied a cer-
tain condition. Our main tool here is the Ljusternik-Schnirelmann category
theory (see [1, 19]), but we had to overcome several technical difficulties that
appeared, for example, when treating a more general critical term like F (u, v).
To the best of our knowledge, problem (1.1) has not been considered before.
Thus it is necessary for us to investigate the critical biharmonic elliptic sys-
tem (1.1) deeply. We also refer to more related systems, which can be seen in
[2, 8, 14, 15, 16, 17, 20] and references therein.

Before stating our results, we need the following assumptions:
(F0) F ∈ C1(R2,R+) and F (tu, tv) = t2

∗

F (u, v)(t > 0) holds for all (u, v) ∈ R
2;

(F1) F (u, 0) = F (0, v) = Fu(u, 0) = Fv(0, v) = 0, where u, v ∈ R;
(F2) Fu(u, v), Fv(u, v) are strictly increasing functions about u and v for all
(u, v) ∈ R

2.
If Y is a closed set of a topological space X , we denote by catX(Y ) the

Ljusternik-Schnirelmann category of Y in X , namely the least number of closed
and contractible sets in X which cover Y . The main result we get is the
following:
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Theorem 1.1. Assume that (F0)-(F2) hold. In addition, suppose either N ≥ 8
and 2 < q < 2∗ or N ≥ 5 and q = 2. Then there exists Λ > 0 such that the

problem (1.1) has at least catΩ(Ω) distinct nontrivial solutions for λ, δ ∈ (0,Λ).

This paper is organized as follows. In Section 2, we show that some notations
and Palais-Smale condition are established. We present some technical lemmas
which are crucial in the proof of the main result in Section 3. Theorem 1.1 is
proved in Section 4.

2. Preliminaries and Palais-Smale condition

Notations. Throughout this paper, we make use of the following notations.
• C,Ci will denote various positive constants which can change from line to

line.
• → (respectively ⇀) denotes strong (respectively weak) convergence.
• O(εt) denote |O(εt)|/εt ≤ C, om(1) denote om(1) → 0 as m → ∞.
• Ls(Ω)(1 ≤ s < +∞) denote Lebesgue spaces, the norm Ls is denoted by

| · |s for 1 ≤ s < +∞.
• Br(x) denote a ball centered at x with radius r.
• The dual space of a Banach space E will be denoted by E−1.
• The product space E := H2

0 (Ω)×H2
0 (Ω) endowed with the norm ‖(u, v)‖E

=
(

‖u‖2
H2

0(Ω)
+ ‖v‖2

H2
0 (Ω)

)
1
2 , and the norm ‖u‖H2

0(Ω) =
(

∫

Ω |∆u|2 dx
)

1
2

.

• S is the best Sobolev constant defined by

(2.1) S = inf
u∈H2

0 (Ω)\{0}

∫

Ω
|∆u|2dx

(
∫

Ω
|u|2∗dx)

2
2∗

.

From [18], we know that S is achieved when Ω = R
N by function

(2.2) Uε(x) =
(

N(N − 4)(N2 − 4)ε2
)

N−4
8

(

1

ε+ |x|2

)

N−4
2

for all ε > 0. Moreover, the function Uε(x) solves the equation ∆2u = |u|2
∗−2u

in R
N with N ≥ 5 and

(2.3) |∆Uε(x)|
2
2 = |Uε(x)|

2∗

2∗ = S
N
4 .

Now, we point out some important properties of homogeneous functions.
Let α ≥ 1 and H be a differentiable α-homogeneous function, then

(i) for all s, t ∈ R, sHs(s, t) + tHt(s, t) = αH(s, t);
(ii) there exists MH > 0 such that |H(s, t)| ≤ MH(|s|α+ |t|α) for all s, t ∈ R,

where MH = max{H(s, t) : s, t ∈ R, |s|α + |t|α = 1};
(iii) the maximumMH is attained for some (s0, t0) ∈ R

2, i.e., |s0|
α+|t0|

α = 1
and H(s0, t0) = MH ;

(iv) Hs(s, t), Ht(s, t) are (α− 1) homogeneous.
By (F0) and the properties of homogeneous functions, we have

(2.4) Fu(u, v)u+ Fv(u, v)v = 2∗F (u, v)
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and

(2.5) F (u, v) ≤
(

MF (|u|
2 + |v|2)

)
2∗

2 ,

where

(2.6) MF = max
{

(

F (u, v)
)

2
2∗ : (u, v) ∈ R

2, |u|2 + |v|2 = 1
}

.

A pair of functions (u, v) ∈ E is said to be a weak solution of problem (1.1)
if

∫

Ω

∆u∆ϕ1 +∆v∆ϕ2dx −

∫

Ω

Fu(u, v)ϕ1dx−

∫

Ω

Fv(u, v)ϕ2dx

− λ

∫

Ω

|u|q−2uϕ1dx− δ

∫

Ω

|v|q−2vϕ2dx = 0, ∀ (ϕ1, ϕ2) ∈ E.

The corresponding energy functional of problem (1.1) is defined on E by

Eλ,δ(u, v) =
1

2

∫

Ω

|∆u|2 + |∆v|2dx−

∫

Ω

F (u, v)dx−
λ

q

∫

Ω

|u|qdx−
δ

q

∫

Ω

|v|qdx.

Using assumptions (F0)-(F2), we can verify Eλ,δ(u, v) ∈ C1(E,R) (the proof is
almost the same as that in [20]). It is well known that the weak solutions of
problem (1.1) are the critical points of the energy functional Eλ,δ.

As the energy functional Eλ,δ is not bounded below on E, we need to study
Eλ,δ on the Nehari manifold

Nλ,δ =
{

(u, v) ∈ E \ {(0, 0)} : 〈E ′
λ,δ(u, v), (u, v)〉 = 0

}

,

where E ′
λ,δ(u, v) denotes the Fréchet derivative of Eλ,δ at (u, v), and 〈·, ·〉 is

the duality product between E and its dual space E−1. A direct computation
shows that for all (u, v) ∈ E\{(0, 0)}, there exists a unique t∗ > 0 such that
t∗(u, v) ∈ Nλ,δ. The maximum of the function t 7→ Eλ,δ(t(u, v)), for t ≥ 0,
is achieved at t = t∗ (see Lemma 4.1 in [22]). Note that Nλ,δ contains every
nonzero solution of problem (1.1), and define the minimax cλ,δ as

cλ,δ = inf
(u,v)∈Nλ,δ

Eλ,δ(u, v).

Moreover, we note that there exists ρ > 0, such that

(2.7) ‖(u, v)‖E ≥ ρ > 0, ∀ (u, v) ∈ Nλ,δ.

It is standard to check that Eλ,δ satisfies Mountain Pass geometry, so we can
use the homogeneity of F to prove that cλ,δ can be alternatively characterized
by

(2.8) cλ,δ = inf
γ∈Γ

max
t∈[0,1]

Eλ,δ(γ(t)) = inf
(u,v)∈E\{(0,0)}

max
t≥0

Eλ,δ(t(u, v)) > 0,

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, Eλ,δ(γ(1)) < 0}. Its proofs can be done
as Theorem 4.2 in [22].
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In this section, we will find the range of c where the (PS)c condition holds
for the functional Eλ,δ. First let us define

(2.9) SF := inf
u,v∈H2

0 (Ω)\{0}

{

∫

Ω
|∆u|2 + |∆v|2dx

(
∫

Ω
F (u, v)dx)

2
2∗

:

∫

Ω

F (u, v)dx > 0

}

.

Lemma 2.1. If N ≥ 5 and F satisfies (F0)-(F2), then the functional Eλ,δ sat-

isfies the (PS)c condition for all c < 4
N−4

(

SF

2∗

)
N
4

, provide one of the following

conditions holds

(i) 2 < q < 2∗ and λ, δ > 0;
(ii) q = 2, and λ, δ ∈ (0,Λ1), where Λ1 > 0 denotes the first eigenvalue of

(∆2, H2
0 (Ω)).

Proof. Let {(um, vm)} ⊂ E such that E ′
λ,δ(um, vm) → 0 and Eλ,δ(um, vm) →

c < 4
N−4

(

SF

2∗

)
N
4

. Now, we firstly prove that {(um, vm)} is bounded in E. If

the above item (i) is true it suffices to use the definition of Iλ,δ to obtain C1 > 0
such that

c+ C1‖(um, vm)‖E + om(1)

≥ Eλ,δ(um, vm)−
1

q
〈E ′

λ,δ(um, vm), (um, vm)〉

=
(1

2
−

1

q

)

‖(um, vm)‖2E +
(2∗

q
− 1

)

∫

Ω

F (um, vm)dx

≥
q − 2

2q
‖(um, vm)‖2E .

The above expression implies that {(um, vm)} ⊂ E is bounded. In the case (ii),
it follows that

∫

Ω

(λ|um|2 + δ|vm|2)dx ≤ max{λ, δ}

∫

Ω

(|um|2 + |vm|2)dx

≤
max{λ, δ}

Λ1
‖(um, vm)‖2E ,

and therefore we get

c+ C1‖(um, vm)‖E + om(1)

≥ Eλ,δ(um, vm)−
1

2∗
〈E ′

λ,δ(um, vm), (um, vm)〉

=
(1

2
−

1

2∗

)

‖(um, vm)‖2E +
( 1

2∗
−

1

2

)

∫

Ω

(λ|um|2 + δ|vm|2)dx

≥
2

N

(

1−
max{λ, δ}

Λ1

)

‖(um, vm)‖2E .

Since λ, δ ∈ (0,Λ1), the boundedness of {(um, vm)} follows as the first case.
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So, {(um, vm)} is bounded in E. Going if necessary to a subsequence, we
can assume that







(um, vm) ⇀ (u, v), in E,
(um, vm) → (u, v), a.e. in Ω,
(um, vm) → (u, v), in Ls(Ω)× Ls(Ω), 1 ≤ s < 2∗,

as m → ∞. Clearly, we have

(2.10)

∫

Ω

(λ|um|q + δ|vm|q)dx =

∫

Ω

(λ|u|q + δ|v|q)dx + om(1).

Moreover, a standard argument shows that E ′
λ,δ(u, v) = 0. Thus we get

Eλ,δ(u, v) =
1

2
‖(u, v)‖2E −

∫

Ω

F (u, v)dx −
1

q

∫

Ω

(λ|u|q + δ|v|q)dx

=
(1

2
−

1

q

)

‖(u, v)‖2E +
(2∗

q
− 1

)

∫

Ω

F (u, v)dx

≥ 0.(2.11)

Let (ũm, ṽm) = (um − u, vm − v). Then by the Brezis-Lieb Lemma [4], we
have

(2.12) ‖(um, vm)‖2E = ‖(u, v)‖2E + ‖(ũm, ṽm)‖2E + om(1).

By the same method of Lemma 8 in [8] (or Lemma 3.4 in [20]), we obtain

(2.13)

∫

Ω

F (um, vm)dx =

∫

Ω

F (u, v)dx+

∫

Ω

F (ũm, ṽm)dx+ om(1).

By (2.10)-(2.13) and the weak convergence of (um, vm), we have

c+ om(1) = Eλ,δ(u, v) +
1

2
‖(ũm, ṽm)‖2E −

∫

Ω

F (ũm, ṽm)dx

≥
1

2
‖(ũm, ṽm)‖2E −

∫

Ω

F (ũm, ṽm)dx.(2.14)

By using E ′
λ,δ(um, vm) → 0 and (2.10), (2.12)-(2.13), we get

om(1) = 〈E ′
λ,δ(um, vm), (um, vm)〉

= ‖(um, vm)‖2E − 2∗
∫

Ω

F (um, vm)dx −

∫

Ω

(λ|um|q + δ|vm|q)dx

= 〈E ′
λ,δ(u, v), (u, v)〉+ ‖(ũm, ṽm)‖2E − 2∗

∫

Ω

F (ũm, ṽm)dx.

Recalling that E ′
λ,δ(u, v) = 0, we can use the above equality to obtain

(2.15) lim
m→∞

‖(ũm, ṽm)‖2E = k = 2∗ lim
m→∞

∫

Ω

F (ũm, ṽm)dx,

where k ≥ 0.
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In view of the definition of SF , we have that

‖(ũm, ṽm)‖2E ≥ SF

(

∫

Ω

F (ũm, ṽm)dx
)

2
2∗

.

Taking the limit we get k ≥ SF (
k
2∗ )

2
2∗ . So, if k > 0, we conclude that k ≥

2∗
(

SF

2∗

)
N
4

, therefore from (2.14) and (2.15), we get

c ≥
(1

2
−

1

2∗

)

k ≥
4

N − 4

(SF

2∗

)
N
4

,

which contradicts c < 4
N−4

(

SF

2∗

)
N
4

. Hence k = 0 and therefore (um, vm) →

(u, v) strongly in E. �

Before presenting our next result we remark that, using Lemma 3 in [8] we
have

(2.16) SF =
1

MF

S,

where S is the best constant defined in (2.1), MF defined in (2.6).
We define a cut-off function φ(x) ∈ C∞

0 (RN ) such that φ(x) = 1 if |x| ≤ R;

φ(x) = 0 if |x| ≥ 2R and 0 ≤ φ(x) ≤ 1, where B2R(0) ⊂ Ω, set uε = φ(x)Uε

|φUε|2∗
,

where Uε was defined in (2.2). So that |uε|2∗ = 1. Then we can get the following
results from Lemma 7.3 in [3]:

(2.17) ‖uε‖
2
H2

0(Ω) = S +O(εN−4),

(2.18)

∫

Ω

|uε|
ξdx ≈











ε
N−4

2 ξ, if ξ < N
N−4 ,

ε
2N−(N−4)ξ

2 | ln ε|, if ξ = N
N−4 ,

ε
2N−(N−4)ξ

2 , if ξ > N
N−4 ,

where A ≈ B means C1B ≤ A ≤ C2B.

Lemma 2.2. Suppose that (F0)-(F2) hold, N ≥ 8, 2 < q < 2∗ and λ > 0, δ > 0,

then cλ,δ < 4
N−4

(

SF

2∗

)
N
4

. The same result holds if N ≥ 5, q = 2 and λ, δ ∈

(0,Λ1), where Λ1 > 0 denotes the first eigenvalue of (∆2, H2
0 (Ω)).

Proof. From the property (iii) of homogeneous functions, there exists (e1, e2) ∈
R

2 such that

(2.19) e21 + e22 = 1 and F (e1, e2) = M
2∗

2

F .

We can use the homogeneity of F to get, for any t ≥ 0,

h(t) := Eλ,δ(te1uε, te2uε) =
t2

2
‖uε‖

2
H2

0 (Ω) − t2
∗

F (e1, e2)−
tq

q
(λeq1 + δeq2)|uε|

q
q.

We shall consider two distinct cases.
Case 1. N ≥ 8, 2 < q < 2∗.
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Note that limt→+∞ h(t) = −∞, h(0) = 0, h(t) > 0 for t → 0+. So supt≥0 h(t)
is attained at some tε > 0 such that

(2.20) h(tε) = max
t≥0

h(t).

Let

g(t) =
t2

2
‖uε‖

2
H2

0 (Ω) − t2
∗

F (e1, e2), t ≥ 0,

and notice that the maximum value of g(t) occurs at the point

tε =

( ‖uε‖2H2
0 (Ω)

2∗F (e1, e2)

)
1

2∗−2

.

So, for each t ≥ 0,

g(t) ≤ g(tε) =
2

N

( ‖uε‖2H2
0(Ω)

(2∗F (e1, e2))
2
2∗

)
N
4

,

and therefore

(2.21) h(tε) ≤
2

N

( ‖uε‖2H2
0 (Ω)

(2∗F (e1, e2))
2
2∗

)
N
4

−
tqε
q
(λeq1 + δeq2)|uε|

q
q.

We claim that, for some C2 > 0, there holds

tqε(λe
q
1 + δeq2) ≥ C2.

Indeed, if this is not the case, we have that tεm → 0 for some sequence εm → 0+,
then,

0 < cλ,δ ≤ sup
t≥0

Eλ,δ(te1uεm , te2uεm) = Eλ,δ(tεme1uεm , tεme2uεm) → 0,

which is a contradiction. So, the claim holds and we infer from (2.21) and
(2.16)-(2.18) that

h(tε) ≤
2

N

(

S +O(εN−4)

(2∗F (e1, e2))
2
2∗

)
N
4

− C3|uε|
q
q

=
2

N
2∗
(

S +O(εN−4)

2∗MF

)
N
4

− C3|uε|
q
q

≤
4

N − 4

(SF

2∗

)
N
4

+O(εN−4)− C3|uε|
q
q(2.22)

≤
4

N − 4

(SF

2∗

)
N
4

+O(εN−4)−O(ε
2N−(N−4)q

2 ),

where C3 = C2

q
. By N ≥ 8, we obtain N − 4 > 2N−(N−4)q

2 . Thus, from the

above inequality we conclude that, for each ε > 0 small, there holds

cλ,δ ≤ sup
t≥0

Eλ,δ(te1uε, te2uε) = h(tε) <
4

N − 4

(SF

2∗

)
N
4

.

Case 2. N ≥ 5, q = 2.
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In this case we have that h′(t) = 0 if and only if,

‖uε‖
2
H2

0 (Ω) − (λe21 + δe22)|uε|
2
2 = 2∗t2

∗−2F (e1, e2).

Since we suppose λ, δ ∈ (0,Λ1), by Poincaré’s inequality and (2.19), we obtain

(λe21 + δe22)|uε|
2
2 ≤ max{λ, δ}(e21 + e22)|uε|

2
2

< Λ1|uε|
2
2 ≤ ‖uε‖

2
H2

0 (Ω).

Thus, there exists tε > 0 satisfying (2.20).
Arguing as the first case, from (2.22) and Lemma 2 in [11], we have

h(tε) ≤
4

N−4

(

SF

2∗

)
N
4

+O(εN−4)− C3|uε|
2
2

= 4
N−4

(

SF

2∗

)
N
4

+O(εN−4)−







Cε4 +O(εN−4), N > 8,
Cε4| ln ε|+O(ε4), N = 8,
CεN−4 +O(ε4), N = 5, 6, 7.

Choosing ε > 0 small enough, we have

cλ,δ ≤ sup
t≥0

Eλ,δ(te1uε, te2uε) = h(tε) <
4

N − 4

(SF

2∗

)
N
4

.

This concludes the proof. �

By Lemmas 2.1 and 2.2, we can obtain the following result.

Theorem 2.3. Suppose that (F0)-(F2) hold, then the problem (1.1) has at least
one nontrivial solution for N ≥ 8, 2 < q < 2∗ and λ, δ > 0, or N ≥ 5, q = 2
and λ, δ ∈ (0,Λ1), where Λ1 is the first eigenvalue of (∆2, H2

0 (Ω)).

Proof. Since Eλ,δ satisfies the geometric conditions of the Mountain Pass Theo-
rem, there exists {(um, vm)}⊂E such that Eλ,δ(um, vm) → cλ,δ, E ′

λ,δ(um, vm) →
0. It follows from Lemmas 2.1 and 2.2 that {(um, vm)} converges, along a subse-
quence, to a nonzero critical point (u, v) ∈ E of Eλ,δ. Theorem 2.3 is proved. �

We finalize this section with the study of the asymptotic behavior of the
minimax level cλ,δ as both the parameters λ, δ approach zero.

Lemma 2.4. lim
λ,δ→0+

cλ,δ = c0,0 = 4
N−4

(

SF

2∗

)
N
4

.

Proof. We first prove the second equality. It follows from λ = δ = 0 that
λ|u|q + δ|v|q ≡ 0. If e1, e2, uε and tε are the same as those in the proof of
Lemma 2.2, we have that (tεe1uε, tεe2uε) ∈ N0,0. Thus

c0,0 ≤ E0,0(tεe1uε, tεe2uε)

=
2

N

( (e21 + e22)‖uε‖2H2
0 (Ω)

(2∗F (e1, e2))
2
2∗

)
N
4

=
2

N

(

S +O
(

εN−4
)

(2∗F (e1, e2))
2
2∗

)
N
4
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=
4

N − 4

(

S +O(εN−4)

2∗MF

)
N
4

.

Taking the limit as ε→0+ and using (2.16), we conclude that c0,0≤
4

N−4

(

SF

2∗

)
N
4

.

In order to obtain the reverse inequality we consider {(um, vm)} ⊂ E such
that E0,0(um, vm) → c0,0 and E ′

0,0(um, vm) → 0. It is easy to show that the
sequence {(um, vm)} is bounded in E and therefore 〈E ′

0,0(um, vm), (um, vm)〉 =

‖(um, vm)‖2E − 2∗
∫

Ω F (um, vm)dx = om(1). It follows that

lim
m→∞

‖(um, vm)‖2E = l = 2∗ lim
m→∞

∫

Ω

F (um, vm)dx.

Taking the limit in the inequality SF (
∫

Ω F (um, vm)dx)
2
2∗ ≤ ‖(um, vm)‖2E , we

conclude that Nc0,0 = l ≥ 2∗(SF

2∗ )
N
4 . Hence,

c0,0 = lim
m→∞

E0,0(um, vm) = lim
m→∞

(1

2
‖(um, vm)‖2E −

∫

Ω

F (um, vm)dx
)

=
2

N
l ≥

4

N − 4

(SF

2∗

)
N
4

,

and therefore c0,0 = 4
N−4

(

SF

2∗

)
N
4

.

We proceed now with the calculation of limλ,δ→0+ cλ,δ. Let {λm}, {δm} ⊂
R

+ such that λm, δm → 0+. Since λm, δm are positive, we have that
∫

Ω
(λm|u|q+

δm|v|q)dx ≥ 0 whenever (u, v) is nonnegative. Thus, for this kind of function,
we have that Eλm,δm(u, v) ≤ E0,0(u, v). Then we have that

cλm,δm = inf
(u,v) 6=(0,0)

max
t≥0

Eλm,δm(t(u, v))

≤ inf
(u,v)6=(0,0),

(u,v)≥0

max
t≥0

Eλm,δm(t(u, v))

≤ inf
(u,v)6=(0,0),

(u,v)≥0

max
t≥0

E0,0(t(u, v)) = c0,0,

in the last equality, we have used the infimum c0,0 which can be attained at a
nonnegative solution. The above inequality implies that

(2.23) lim sup
m→∞

cλm,δm ≤ c0,0.

On the other hand, it follows from Theorem 2.3 that there exists {(um, vm)}
⊂ E such that

Eλm,δm(um, vm) = cλm,δm , E ′
λm,δm

(um, vm) → 0.

Since cλm,δm is bounded, the same argument performed in the proof of Lemma
2.1 implies that {(um, vm)} is bounded in E. Since

(2.24) lim
m→∞

∫

Ω

(λm|um|q + δm|vm|q)dx = 0.
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Let tm > 0 be such that tm(um, vm) ∈ N0,0. Since (um, vm) ∈ Nλm,δm , we
have that

c0,0 ≤ E0,0(tm(um, vm))

= Eλm,δm(tm(um, vm)) +
tqm
q

∫

Ω

(λm|um|q + δm|vm|q)dx

≤ Eλm,δm(um, vm) +
tqm
q

∫

Ω

(λm|um|q + δm|vm|q)dx

= cλm,δm +
tqm
q

∫

Ω

(λm|um|q + δm|vm|q)dx.

If {tm} is bounded, we can use the above estimate and (2.24) to get

c0,0 ≤ lim inf
m→∞

cλm,δm .

This and (2.23) we get

c0,0 ≤ lim inf
m→∞

cλm,δm ≤ lim sup
m→∞

cλm,δm ≤ c0,0,

that is c0,0 = limm→∞ cλm,δm .
It remains to check that {tm} is bounded. A straightforward calculation

shows that

(2.25) tm =

(

‖(um, vm)‖2E
2∗

∫

Ω
F (um, vm)dx

)
1

2∗−2

.

Since (um, vm) ∈ Nλm,δm , we obtain

‖(um, vm)‖2E = 2∗
∫

Ω

F (um, vm)dx +

∫

Ω

(λm|um|q + δm|vm|q)dx

≤ 2∗S
− 2∗

2

F ‖(um, vm)‖2
∗

E + om(1).

Hence ‖(um, vm)‖2E ≥ C4 > 0, and therefore from the above expression it
follows that

∫

Ω
F (um, vm)dx ≥ C5 > 0. Thus, the boundedness of {(um, vm)}

and (2.25) imply that {tm} is bounded. This completes the proof. �

3. Some technical results

The following lemma is standard, and its proof follows adapting arguments
found in [22].

Lemma 3.1. Suppose {(um, vm)} ⊂ E such that
∫

Ω
F (um, vm)dx = 1 and

limm→∞ ‖(um, vm)‖2E = SF . Then there exist {rm} ⊂ (0,+∞) and {ym} ⊂ R
N

such that

(3.1) ωm(x) = (ω1
m(x), ω2

m(x)) = r
N−4

2
m (um(rmx+ ym), vm(rmx+ ym))

contains a convergent subsequence denoted again by {ωm} such that ωm → ω in

D2,2(RN )×D2,2(RN ). Moreover, as m → ∞, we have rm → 0 and ym → y ∈ Ω.
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Up to translations, we may assume that 0 ∈ Ω, since Ω is a smooth bounded
domain of RN , we can choose r > 0 small enough such that Br = Br(0) = {x ∈
R

N : d(x, 0) < r} ⊂ Ω and the sets

Ω+
r = {x ∈ R

N : dist(x,Ω) < r}, Ω−
r = {x ∈ R

N : dist(x, ∂Ω) > r},

are homotopically equivalent to Ω. Let

H2
0,rad(Br) =

{

u ∈ H2
0 (Br) : u is radial

}

and
Erad(Br) = H2

0,rad(Br)×H2
0,rad(Br).

We define the functional

EBr
(u, v) =

1

2

∫

Br

(|∆u|2 + |∆v|2)dx −

∫

Br

F (u, v)dx −
1

q

∫

Br

(λ|u|q + δ|v|q)dx,

(u, v) ∈ Erad(Br), and set

mλ,δ = inf
(u,v)∈NBr

λ,δ

EBr
(u, v),

where

NBr

λ,δ := {(u, v) ∈ Erad(Br) \ {(0, 0)} : 〈E ′
Br

(u, v), (u, v)〉 = 0}.

Clearly, mλ,δ is nonincreasing in λ, δ. Note that mλ,δ > 0 for all λ, δ > 0.
Arguing as in the proof of Lemma 2.4 and Theorem 2.3, we obtain the

following result.

Lemma 3.2. Suppose that (F0)-(F2) hold, then the infimum mλ,δ is attained

by a positive radial function (uλ,δ, vλ,δ) ∈ Erad whenever N ≥ 8, 2 < q < 2∗

and λ, δ > 0, or N ≥ 5, q = 2 and λ, δ ∈ (0,Λ1,rad), where Λ1,rad > 0 is the

first eigenvalue of the operator (∆2, H2
0,rad(Br)). Moreover,

mλ,δ <
4

N − 4

(SF

2∗

)
N
4

, lim
λ,δ→0+

mλ,δ =
4

N − 4

(SF

2∗

)
N
4

.

We define the barycenter map β : Nλ,δ → R
N by setting

β(u, v) =
(SF

2∗

)−N
4

∫

Ω

F (u, v)xdx.

This map has the following property.

Lemma 3.3. If N ≥ 5, 2 ≤ q < 2∗ and F satisfies (F0)-(F2), then there

exists λ∗ > 0 such that β(u, v) ∈ Ω+
r whenever (u, v) ∈ Nλ,δ, λ, δ ∈ (0, λ∗) and

Eλ,δ(u, v) ≤ mλ,δ.

Proof. We argue by contradiction. Suppose that there exist {λm}, {δm} ⊂ R
+

and {(um, vm)} ⊂ Nλm,δm such that λm, δm → 0+ as m → ∞, Eλm,δm(um, vm)
≤ mλm,δm but β(um, vm) 6∈ Ω+

r . From {(um, vm)} ⊂ Nλm,δm and Eλm,δm(um,
vm) ≤ mλm,δm , we have that {(um, vm)} is bounded in E. Moreover,

0 = 〈E ′
λm,δm

(um, vm), (um, vm)〉
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= ‖(um, vm)‖2E − 2∗
∫

Ω

F (um, vm)dx −

∫

Ω

(λm|um|q + δm|vm|q)dx.

Since λm, δm → 0+, we can use the boundedness of {(um, vm)} to get

0 ≤

∫

Ω

(λm|um|q + δm|vm|q)dx → 0,

from which it follows that

lim
m→∞

‖(um, vm)‖2E = 2∗ lim
m→∞

∫

Ω

F (um, vm)dx = k ≥ 0.

Notice that

cλm,δm ≤ Eλm,δm(um, vm)

=
1

2
‖(um, vm)‖2E −

∫

Ω

F (um, vm)dx −
1

q

∫

Ω

(λm|um|q + δm|vm|q)dx

≤ mλm,δm .

Recalling that cλm,δm and mλm,δm both converge to 4
N−4

(

SF

2∗

)
N
4

, we can use

the above expression and
∫

Ω
(λm|um|q+δm|vm|q)dx → 0 again to conclude that

k = 2∗(SF

2∗ )
N
4 , that is,

(3.2) lim
m→∞

‖(um, vm)‖2E = 2∗
(SF

2∗

)
N
4

= 2∗ lim
m→∞

∫

Ω

F (um, vm)dx.

Let tm = (
∫

Ω F (um, vm)dx)−
1
2∗ > 0 and notice that tm(um, vm) satisfies the

hypotheses of Lemma 3.1. Using Lemma 3.1, there exist sequences {rm} ⊂
(0,+∞) and {ym} ⊂ R

N satisfying rm → 0, ym → y ∈ Ω we have that ωm → ω
in D2,2(RN )×D2,2(RN ).

Using the definition of β, (3.2), the strong convergence of {ωm} and Lebes-
gue’s Theorem, we get

β(um, vm) = t−2∗

m

(SF

2∗

)−N
4

∫

Ω

F (tm(um, vm))xdx

= (1 + om(1))

∫

Ω

F (tm(um, vm))xdx

= (1 + om(1))

∫

Ω

F (ωm)(rmx+ ym)dx

= (1 + om(1))

(
∫

Ω

F (ω)ȳdx+ om(1)

)

.

Since ȳ ∈ Ω and
∫

Ω F (ω)dx = 1, the above expression implies that

lim
m→∞

dist (β(um, vm),Ω) = 0,

which contradicts β(um, vm) 6∈ Ω+
r . �
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According to Lemma 3.2, for each λ, δ > 0 small the infimummλ,δ is attained

by a nonnegative radial function σλ,δ = (uλ,δ, vλ,δ) ∈ NBr

λ,δ . We consider

E
mλ,δ

λ,δ = {(u, v) ∈ E : Eλ,δ(u, v) ≤ mλ,δ}

and define the function γ : Ω−
r → E

mλ,δ

λ,δ by setting, for each y ∈ Ω−
r ,

(3.3) γ(y) =

{

σλ,δ(x− y), if x ∈ Br(y),
0, otherwise.

A change of variables and straightforward calculations show that the map γ is
well defined. Since (uλ,δ, vλ,δ) is radial, we have that

∫

Br
F (uλ,δ, vλ,δ)xdx = 0.

Hence, for each y ∈ Ω−
r , we obtain

(β ◦ γ)(y) =
(SF

2∗

)−N
4

∫

Ω

F (uλ,δ(x− y), vλ,δ(x− y))xdx

=
(SF

2∗

)−N
4

∫

Ω

F (uλ,δ(t), vλ,δ(t))(t + y)dt

=
(SF

2∗

)−N
4

∫

Ω

F (uλ,δ(t), vλ,δ(t))ydt

= yαλ,δ,

where αλ,δ =
(

SF

2∗

)−N
4 ∫

Ω F (uλ,δ(t), vλ,δ(t))dt.

Along the way of proving Lemma 3.3, we have the following result.

Lemma 3.4. If λ, δ → 0+, αλ,δ → 1.

Proof. By Lemma 3.2, we have that

mλ,δ =
1

2

∫

Br

(|∆uλ,δ|
2 + |∆vλ,δ|

2)dx−

∫

Br

F (uλ,δ, vλ,δ)dx

−
1

q

∫

Br

(λ|uλ,δ|
q + δ|vλ,δ|

q)dx

<
4

N − 4

(SF

2∗

)
N
4

.

As before
∫

Br
(λ|uλ,δ|q + δ|vλ,δ|q)dx → 0. Thus, E ′

Br
(uλ,δ, vλ,δ) = 0, the above

expression and the same arguments used in the proof of Lemma 3.2 imply that
∫

Ω

F (uλ,δ, vλ,δ)dx →
(SF

2∗

)
N
4

.

The above equality and the definition of αλ,δ imply that αλ,δ → 1. �

Next we define Hλ,δ : [0, 1]× (Nλ,δ ∩ E
mλ,δ

λ,δ ) → R
N by

Hλ,δ(t, z) =
(

t+
1− t

αλ,δ

)

β(z).

We have the following:
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Lemma 3.5. If F satisfies (F0)-(F2), then there exists λ∗∗ > 0 such that

(3.4) Hλ,δ

(

[0, 1]× (Nλ,δ ∩ E
mλ,δ

λ,δ )
)

⊂ Ω+
r

for all λ, δ ∈ (0, λ∗∗).

Proof. Arguing by contradiction, we suppose that there exist tm ∈ [0, 1], λm,
δm → 0+ as m → ∞, and (um, vm) ∈ Nλ,δ ∩ E

mλ,δ

λ,δ such that Hλm,δm(tm, um,

vm) 6∈ Ω+
r for all m. Up to a subsequence tm → t0 ∈ [0, 1]. Moreover, the com-

pactness of Ω and Lemma 3.3 imply that, up to a subsequence, β(um, vm) →
y ∈ Ω. From Lemma 3.4 αλm,δm → 1. So, we can use the definition of Hλ,δ

to conclude that Hλm,δm(tm, um, vm) → y ∈ Ω, which is a contradiction. The
lemma is proved. �

4. Proof of main result

In this section we shall prove Theorem 1.1. We begin with the following
lemma.

Lemma 4.1. If (u, v) is a critical point of Eλ,δ on Nλ,δ, then it is a critical

point of Eλ,δ in E.

Proof. The proof is almost the same as that Lemma 3.2 in [15] and is omitted
here. �

Lemma 4.2. Suppose that (F0)-(F2) hold, then any sequence {(um, vm)} ⊂

Nλ,δ such that Eλ,δ(um, vm) → c < 4
N−4

(

SF

2∗

)
N
4

and E ′
λ,δ(um, vm) → 0 contains

a convergent subsequence for λ, δ > 0 if q > 2 and λ, δ ∈ (0, λ∗) if q = 2 for

some small λ∗ > 0.

Proof. By hypothesis there exists a sequence θm ∈ R such that ‖E ′
λ,δ(um, vm)−

θmJ ′
λ,δ(um, vm)‖E → 0 asm → ∞, where Jλ,δ(u, v) = 〈E ′

λ,δ(u, v), (u, v)〉. Thus

E ′
λ,δ(um, vm) = θmJ ′

λ,δ(um, vm) + om(1).

Recall that

〈J ′
λ,δ(um, vm), (um, vm)〉 ≤ 0 for all (um, vm) ∈ Nλ,δ.

If 〈J ′
λ,δ(um, vm), (um, vm)〉 → 0, we have

∫

Ω

(λ|um|q + δ|vm|q)dx → 0,

∫

Ω

F (um, vm)dx → 0.

Consequently ‖(um, vm)‖E → 0.
On the other hand, if (um, vm) ⊂ Nλ,δ it follows that

1 ≤ C(λ‖(um, vm)‖q−2
E + δ‖(um, vm)‖q−2

E + ‖(um, vm)‖2
∗−2

E )

for some C > 0. Hence we arrive at a contradiction if λ, δ > 0 and q > 2
or λ, δ ∈ (0, λ∗) for small λ∗ > 0 when q = 2. Thus we may assume that
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〈J ′
λ,δ(um, vm), (um, vm)〉 → ℓ < 0. Since 〈E ′

λ,δ(um, vm), (um, vm)〉 = 0, we con-

clude that θm = 0 and, consequently, E ′
λ,δ(um, vm) → 0. Using this information

we have

E ′
λ,δ(um, vm) → c <

4

N − 4

(SF

2∗

)
N
4

and E ′
λ,δ(um, vm) → 0,

so by Lemma 2.1 the proof is completed. �

Below we denote by ENλ,δ
the restriction of Eλ,δ on Nλ,δ.

Lemma 4.3. Suppose N ≥ 5, 2 ≤ q < 2∗ and F satisfies (F0)-(F2), let Λ =
min{λ∗, λ∗∗} > 0, λ, δ ∈ (0,Λ), then cat

E
mλ,δ
Nλ,δ

(E
mλ,δ

Nλ,δ
) ≥ catΩ(Ω), where λ∗, λ∗∗

given by Lemmas 3.3 and 3.5, respectively.

Proof. Assume that E
mλ,δ

Nλ,δ
= A1∪A2∪· · ·∪Am, where Aj , j = 1, 2, . . . ,m, are

closed and contractible sets in E
mλ,δ

Nλ,δ
, i.e., there exists hj ∈ C([0, 1]×Aj , E

mλ,δ

Nλ,δ
)

such that

hj(0, z) = z, hj(1, z) = ϑ for all z ∈ Aj ,

where ϑ ∈ Aj is fixed. Consider Bj = γ−1(Aj), 1 ≤ j ≤ m. The sets Bj are
closed and Ω−

r = B1 ∪B2 ∪ · · · ∪Bm. We define the deformation gj : [0, 1]×Bj

by setting

gj(t, y) = Hλ,δ(t, hj(t, γ(y)))

for λ, δ ∈ (0,Λ). Note that

gj(0, y) = Hλ,δ(0, hj(0, γ(y))) =
(β ◦ γ)(y)

αλ,δ

implies

gj(0, y) =
αλ,δy

αλ,δ

= y for all y ∈ Bj ,

and gj(1, y) = Hλ,δ(1, hj(1, γ(y))) = β(hj(1, γ(y))) implies

gj(1, y) = β(ϑ) ∈ Ω+
r .

Thus the sets Bj are contractible in Ω+
r . So catΩ(Ω) = catΩ+

r
(Ω+

r ) ≤ m. �

Proof of Theorem 1.1. Using Lemma 2.1, Lemma 2.2 and Lemma 3.2 we know

that cλ,δ,mλ,δ <
4

N−4

(

SF

2∗

)
N
4

for λ, δ ∈ (0,Λ). Moreover, by Lemma 4.2, ENλ,δ

satisfies the (PS)c condition for all c < 4
N−4

(

SF

2∗

)
N
4

. Therefore, by Lemma 4.3,

a standard deformation argument implies that, for λ, δ ∈ (0,Λ), ENλ,δ
contains

at least catΩ(Ω) critical points of the restriction of Eλ,δ on Nλ,δ. Now Lemma
4.1 implies that ENλ,δ

has at least catΩ(Ω) critical points, and therefore has at
least catΩ(Ω) nontrivial solutions of (1.1). The proof is completed. �
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