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WEYL TYPE-THEOREMS FOR DIRECT SUMS

Mohammed Berkani and Hassan Zariouh

Abstract. The aim of this paper is to study the Weyl type-theorems
for the orthogonal direct sum S ⊕ T , where S and T are bounded linear

operators acting on a Banach space X. Among other results, we prove
that if both T and S possesses property (gb) and if Π(T ) ⊂ σa(S), Π(S) ⊂
σa(T ), then S⊕T possesses property (gb) if and only if σ

SBF−
+
(S⊕T ) =

σ
SBF−

+
(S)∪σ

SBF−
+
(T ). Moreover, we prove that if T and S both satisfies

generalized Browder’s theorem, then S⊕T satisfies generalized Browder’s

theorem if and only if σBW (S ⊕ T ) = σBW (S) ∪ σBW (T ).

1. Introduction

Throughout this paper, let L(X) denote the Banach algebra of all bounded
linear operators acting on an infinite-dimensional complex Banach space X.
For T ∈ L(X), let N(T ), R(T ), σ(T ), σa(T ), and σp(T ) denote respectively
the null space, the range, the spectrum, the approximate point spectrum, and
the point spectrum (i.e., the set of all eigenvalues) of T . We denote also by
σ0
p(T ) the set of all eigenvalues of T of finite multiplicity, by ρ(T ) = C\σ(T ) the

usual resolvent set of T , and by ρa(T ) = C \ σa(T ) the approximate resolvent
set of T . Let α(T ) and β(T ) be the nullity and the deficiency of T defined by
α(T ) = dimN(T ) and β(T ) = codimR(T ). Recall that an operator T ∈ L(X)
is called an upper semi-Fredholm operator if α(T ) < ∞ and R(T ) is closed,
while T ∈ L(X) is called a lower semi-Fredholm operator if β(T ) < ∞. If
T ∈ L(X) is either an upper or a lower semi-Fredholm operator, then T is
called a semi-Fredholm operator, and the index of T is defined by ind(T ) =
α(T ) − β(T ). If both α(T ) and β(T ) are finite, then T is called a Fredholm
operator. An operator T ∈ L(X) is called a Weyl operator if it is a Fredholm
operator of index 0. Let SF+(X) denote the class of all upper semi-Fredholm
operators and define SF−

+ (X) = {T ∈ SF+(X) : ind(T ) ≤ 0}. The Weyl
essential approximate spectrum σSF−

+
(T ) of T is defined by σSF−

+
(T ) = {λ ∈
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C : T − λI ̸∈ SF−
+ (X)}, the essential spectrum σe(T ) of T is defined by

σe(T ) = {λ ∈ C : T − λI is not a Fredholm operator} and the Weyl spectrum
σW (T ) of T is defined by σW (T ) = {λ ∈ C : T − λI is not a Weyl operator}.

For T ∈ L(X), let ∆(T ) = σ(T ) \σW (T ) and let ∆a(T ) = σa(T ) \σSF−
+
(T ).

Following Coburn [10], we say that Weyl’s theorem holds for T ∈ L(X) if
∆(T ) = E0(T ), where E0(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λI) < ∞}. Here and
elsewhere in this paper, for A ⊂ C, isoA denotes the set of all isolated points
of A.

According to Rakočević [21], an operator T ∈ L(X) is said to satisfy a-Weyl’s
theorem if ∆a(T ) = E0

a(T ), where E0
a(T ) = {λ ∈ isoσa(T ) : 0 < α(T − λI) <

∞}. It is well known [21] that an operator satisfying a-Weyl’s theorem satisfies
Weyl’s theorem, but not conversely.

Recall that the ascent a(T ), of an operator T , is defined by a(T ) = inf{n ∈
N : c′n(T ) = 0} where c′n(T ) = dim N(Tn+1)

N(Tn) and the descent δ(T ) of T , is defined

by δ(T ) = inf{n ∈ N : cn(T ) = 0} where cn(T ) = dim R(Tn)
R(Tn+1) , with inf ∅ = ∞.

It is well known that T ∈ L(X) is Drazin invertible if and only if it has a finite
ascent and descent, which is also equivalent to the fact that T = U ⊕V , where
U is an invertible operator and V is a nilpotent one (see [18, Corollary 2.2] and
[22, Proposition 6]). The Drazin spectrum σD(T ) of an operator T is defined
by σD(T ) = {λ ∈ C : T − λI is not Drazin invertible}. An operator T ∈ L(X)
is called Browder if it is a Fredholm of finite ascent and descent. The Browder
spectrum σb(T ) of T is defined by σb(T ) = {λ ∈ C : T − λI is not Browder}.

Let Π(T ) be the set of all poles of the resolvent of T and let Π0(T ) be the
set of all poles of the resolvent of T of finite rank, that is Π0(T ) = {λ ∈ Π(T ) :
α(T − λI) < ∞}. According to [16], a complex number λ is a pole of the
resolvent of T if and only if 0 < max (a(T − λI), δ(T − λI)) < ∞. Moreover,
if this is true, then a(T − λI) = δ(T − λI). According also to [16], the space
R((T − λI)a(T−λI)+1) is closed for each λ ∈ Π(T ). An operator T ∈ L(X) is
said to satisfy Browder’s theorem if ∆(T ) = Π0(T ).

For T ∈ L(X) and a nonnegative integer n, define T[n] to be the restriction of
T to R(Tn) viewed as a map from R(Tn) into R(Tn) (in particular T[0] = T ). If
for some integer n the range space R(Tn) is closed and T[n] is an upper (resp.
a lower) semi-Fredholm operator, then T is called an upper (resp. a lower)
semi-B-Fredholm operator, see [7]. In this case and by [7, Proposition 2.1],
R(Tm) is closed, T[m] is a semi-Fredholm operator, and ind(T[m]) = ind(T[n])
for each m ≥ n. This enables us to define the index of the semi-B-Fredholm
T as the index of the semi-Fredholm operator T[n]. Moreover, if T[n] is a
Fredholm operator, then T is called a B-Fredholm operator, see [3]. A semi-
B-Fredholm operator is an upper or a lower semi-B-Fredholm operator. An
operator T is said to be a B-Weyl operator if it is a B-Fredholm operator of
index zero. The B-Weyl spectrum σBW (T ) of T is defined by σBW (T ) = {λ ∈
C : T − λI is not a B-Weyl operator}, and the B-Fredholm spectrum σBF (T )
of T is defined by σBF (T ) = {λ ∈ C : T − λI is not a B-Fredholm operator}.
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For T ∈ L(X), let ∆g(T ) = σ(T ) \ σBW (T ). According to [6], an operator
T ∈ L(X) is said to satisfy generalized Browder’s theorem if ∆g(T ) = Π(T ),
and is said to satisfy generalized Weyl’s theorem if ∆g(T ) = E(T ), where
E(T ) = {λ ∈ isoσ(T ) : α(T − λI) > 0}. It is proved in [6] that an operator
satisfying generalized Weyl’s theorem satisfies Weyl’s theorem, but the converse
does not hold in general.

Let SBF+(X) be the class of all upper semi-B-Fredholm operators,

SBF−
+ (X) = {T ∈ SBF+(X) : ind(T ) ≤ 0}.

The essential semi-B-Fredholm spectrum σSBF−
+
(T ) of T is defined by

σSBF−
+
(T ) = {λ ∈ C : T − λI ̸∈ SBF−

+ (X)}.

Let Πa(T ) be the set of all left poles of T and Π0
a(T ) be the set of all left poles

of T of finite multiplicity, that is Π0
a(T ) = {λ ∈ Πa(T ) : α(T − λI) < ∞}.

According to [6], a complex number λ ∈ σa(T ) is a left pole of T if a(T −
λI) < ∞ and R((T − λI)a(T−λI)+1) is closed. Hence we have always Π(T ) ⊂
Πa(T ) and Π0(T ) ⊂ Π0

a(T ). For T ∈ L(X), let ∆g
a(T ) = σa(T ) \ σSBF−

+
(T ).

According also to [6], an operator T ∈ L(X) is said to satisfy generalized a-
Browder’s theorem if ∆g

a(T ) = Πa(T ) and is said to satisfy a-Browder’s theorem
if ∆a(T ) = Π0

a(T ). It is proved in [6] that if T ∈ L(X) satisfies generalized
a-Weyl’s theorem ∆g

a(T ) = Ea(T ), where Ea(T ) = {λ ∈ isoσa(T ) : α(T−λI) >
0}, then it satisfies a-Weyl’s theorem, but the converse is not true in general.

Definition 1.1. A bounded linear operator T ∈ L(X) is called polaroid if all
isolated points of the spectrum are poles of the resolvent of T , i.e., isoσ(T ) =
Π(T ), and is called isoloid if all isolated points of the spectrum are eigenvalues
of T , i.e., isoσ(T ) = E(T ).

Definition 1.2 (See [17]). We will say that T ∈ L(X) has the single valued
extension property at λ0, (SVEP for short) if for an arbitrary open neighbor-
hood U of λ0, f = 0 is the only analytic function f : U −→ X such that
(T − λI)f(λ) = 0 for all λ ∈ U . We will say that T has the SVEP if T has this
property at every point λ ∈ C.

Following [1] and [20], we say that T ∈ L(X) possesses property (w) if
∆a(T ) = E0(T ). We say that T ∈ L(X) possesses property (gw) if ∆g

a(T ) =
E(T ). The property (gw) has been introduced and studied in [2], which is an
extension to the context of B-Fredholm theory of the property (w). It is shown
[2, Theorem 2.3] that an operator possessing property (gw) possesses property
(w), but not conversely.

Following [8, Definition 2.1], we say that T possesses property (b) if ∆a(T ) =
Π0(T ) and that T possesses property (gb) if ∆g

a(T ) = Π(T ). It is proved in [8,
Theorem 2.3] that an operator possessing property (gb) possesses property (b)
but not conversely and it is proved in [8] that properties (w) and (gw) imply
properties (b) and (gb) respectively, but the converses do not hold in general.
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Several authors [12, 19] considered Weyl’s theorem for operator matrices, and
in particular it is proved that Weyl’s theorem is not transmitted from the direct
summands S and T to the (orthogonal) direct sum S ⊕ T . Nonetheless, they
provided certain sufficient conditions on S and T which insures that Weyl’s
theorem lolds for S ⊕ T . More recently, generalized Weyl’s and generalized
a-Weyl’s theorem for orthogonal direct sums had been also examined in [13].

As it had been shown by S. V. Djordjević and Y. M. Han in [11], [14]
and by R. E. Harte and W. Y. Lee in [15], the essential (resp. Browder)
spectrum of a direct sum is the union of the essential (resp. Browder) spectra
of its components and the Weyl (resp. Weyl essential approximate) spectrum
of a direct sum is included in the union of the Weyl (resp. Weyl essential
approximate) spectra of the summands. Then it is natural to ask if similar
properties are valid in the B-Fredholm context. As we have expected the answer
is yes and the results we obtain can be summarized as follows. So in the
second section, we show that if T and S are bounded linear operators acting
on a Banach space X, then σBF (S ⊕ T ) = σBF (S) ∪ σBF (T ), σD(S ⊕ T ) =
σD(S) ∪ σD(T ), σBW (S ⊕ T ) ⊆ σBW (S) ∪ σBW (T ), and σSBF−

+
(S ⊕ T ) ⊆

σSBF−
+
(S)∪σSBF−

+
(T ), but the two last inclusions are proper in general. After

proving these results, we study the property (gb) for direct sums. We give
an example of operators S ∈ L(X) and T ∈ L(X) possessing (gb) while their
direct sum S⊕T does not possess property (gb). Moreover, we explore certain
sufficient conditions under which property (gb) will be transferred from the
direct summands to the direct sum. Thus in Theorem 2.6, we show that if
T and S are Banach space operators possessing property (gb), and if Π(T ) ⊂
σa(S) and Π(S) ⊂ σa(T ), then S ⊕ T possesses property (gb) if and only if
σSBF−

+
(S ⊕ T ) = σSBF−

+
(S) ∪ σSBF−

+
(T ). As a consequence, we show that if

T and S are quasisimilar hyponormal operators possessing property (gb), then
S⊕T possesses property (gb). Similarly, we show in Theorem 2.10 that if T and
S both possesses property (b), and if Π0(T ) ⊂ σa(S) and Π0(S) ⊂ σa(T ), then
S⊕T possesses property (b) if and only if σSF−

+
(S⊕T ) = σSF−

+
(S)∪σSF−

+
(T ).

In the third section, we prove in Theorem 3.1 that if T ∈ L(X) and S ∈ L(X)
both possess property (gw) and if σp(S) = σp(T ), then S⊕T possesses property
(gw) if and only if σSBF−

+
(S⊕T ) = σSBF−

+
(S)∪σSBF−

+
(T ). We obtain a similar

result in the case of property (w).

2. Preservation of properties (b) and (gb) under direct sums

Let T ∈ L(X) and S ∈ L(X). In the first step we prove that the Drazin
spectrum of a direct sum is the union of the Drazin spectra of its components.
For this, we begin with the following auxiliary result that will be applied in the
sequel.

Definition 2.1. Let T ∈ L(X) and S ∈ L(X). We will say that T and S
are of stable sign index if for each λ ̸∈ σSBF (T ) and µ ̸∈ σSBF (S), ind(T −



WEYL TYPE-THEOREMS FOR DIRECT SUMS 1031

λI) and ind(S − µI) have the same sign, where σSBF (T ) = {λ ∈ C : T −
λI is not a semi-B-Fredholm operator}.

Lemma 2.2. Let T ∈ L(X) and S ∈ L(X). Then
(i) σBF (S ⊕ T ) = σBF (S) ∪ σBF (T ),
(ii) σBW (S ⊕ T ) ⊆ σBW (S) ∪ σBW (T ),
(iii) σSBF−

+
(S ⊕ T ) ⊆ σSBF−

+
(S) ∪ σSBF−

+
(T ).

Proof. (i) Let λ ̸∈ σBF (S) ∪ σBF (T ). Then T − λI and S − λI are both B-
Fredholm operators. From [3, Theorem 2.7], each of T −λI and S− λI can be
written as the direct sum of a Fredholm operator and a nilpotent operator, and
the same is therefore true for the direct sum S⊕T−λ(I⊕I) = (T−λI)⊕(S−λI).
Hence S⊕T −λ(I ⊕ I) is a B-Fredholm operator and σBF (S⊕T ) ⊂ σBF (S)∪
σBF (T ). Now if λ ̸∈ σBF (S⊕T ), we can assume without loss of generality that
λ = 0. Then S ⊕ T is a B-Fredholm operator. So there exists n ∈ N such that
R(Sn)⊕R(Tn) is closed and S[n]⊕T[n] : R(Sn)⊕R(Tn) −→ R(Sn)⊕R(Tn) is a
Fredholm operator. Consequently, α(T[n]) < ∞, β(T[n]) < ∞ and α(S[n]) < ∞,
β(S[n]) < ∞. From [4, Theorem 3.1], T and S are B-Fredholm operators. Thus
0 ̸∈ σBF (S) ∪ σBF (T ). Hence σBF (S ⊕ T ) = σBF (S) ∪ σBF (T ).

(ii) If λ ̸∈ σBW (S) ∪ σBW (T ), without loss of generality we can assume
that λ = 0. Then T and S are both B-Weyl operators. Therefore there exists
n such that R(Tm) and R(Sm) are closed, T[m] and S[m] are Weyl operators
for each m ≥ n. Let P : R(Sm) ⊕ R(Tm) −→ R(Sm) be the linear projection
along R(Tm) onto R(Sm). Then P is continuous and this implies that R(Sm)⊕
R(Tm) = P−1(R(Sm)) is closed. Since α(T[m]) < ∞ and α(S[m]) < ∞, we have

α(S[m]⊕T[m]) < ∞. Since R(Tm+1)⊕R(Sm+1) is closed, S[m]⊕T[m] is an upper
semi-Fredholm operator. It follows that S ⊕ T is an upper semi-B-Fredholm
operator and ind(S⊕T ) = ind(S)+ind(T ) = 0. So S⊕T is a B-Weyl operator
and 0 ̸∈ σBW (S ⊕ T ). Finally, we have σBW (S ⊕ T ) ⊆ σBW (S) ∪ σBW (T ).

(iii) Follows in the same way as in (ii). □
Generally, the inclusions (ii) and (iii) of Lemma 2.2 are proper (see example

defined in Remark 2.7). Nonetheless, we give in the following proposition a
sufficient condition under which the two inclusions become equalities.

Proposition 2.3. If T ∈ L(X) and S ∈ L(X) are of stable sign index, then
(i) σBW (S ⊕ T ) = σBW (S) ∪ σBW (T ),
(ii) σSBF−

+
(S ⊕ T ) = σSBF−

+
(S) ∪ σSBF−

+
(T ).

Proof. (i) Let α ̸∈ σBW (S ⊕ T ) be arbitrary. Then S ⊕ T − α(I ⊕ I) is a
B-Fredholm operator and ind(S ⊕ T −α(I ⊕ I)) = 0. From the assertion (i) of
Lemma 2.2, S − αI and T − αI are B-Fredholm operators with ind(S − αI) +
ind(T − αI) = 0. As T and S are of stable sign index, then ind(S − αI) =
ind(T−αI) = 0 and so α ̸∈ σBW (S)∪σBW (T ). Therefore σBW (S)∪σBW (T ) ⊂
σBW (S ⊕ T ) and since from Lemma 2.2 σBW (S) ∪ σBW (T ) ⊃ σBW (S ⊕ T ) is
always true, it then follows that σBW (S ⊕ T ) = σBW (S) ∪ σBW (T ).
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(ii) Let λ ̸∈ σSBF−
+
(S ⊕ T ) be arbitrary. We can assume without loss of

generality that λ = 0. Then S ⊕ T is an upper semi-B-Fredholm operator
and ind(S ⊕ T ) ≤ 0. So there exists an integer n for which R(Sn) ⊕ R(Tn)
is closed and S[n] ⊕ T[n] : R(Sn) ⊕ R(Tn) −→ R(Sn) ⊕ R(Tn) is an upper
semi-Fredholm operator. Hence R(Sn) and R(Tn) are closed and S[n] and
T[n] are upper semi-Fredholm operators. Thus T and S are upper semi-B-
Fredholm operators with ind(S ⊕ T ) = ind(S) + ind(T ) ≤ 0. As T and S
are of stable sign index, ind(S) ≤ 0 and ind(T ) ≤ 0. This implies that 0 ̸∈
σSBF−

+
(S) ∪ σSBF−

+
(T ). Hence σSBF−

+
(S) ∪ σSBF−

+
(T ) ⊂ σSBF−

+
(S ⊕ T ) and

as it is always true that σSBF−
+
(S) ∪ σSBF−

+
(T ) ⊃ σSBF−

+
(S ⊕ T ), we have

σSBF−
+
(S ⊕ T ) = σSBF−

+
(S) ∪ σSBF−

+
(T ). □

Theorem 2.4. Let T ∈ L(X) and S ∈ L(X). Then σD(T ⊕ S) = σD(T ) ∪
σD(S).

Proof. If λ ̸∈ σD(T ) ∪ σD(S), then T − λI and S − λI are Drazin invertible.
Hence each of T−λI and S−λI can be written as the direct sum of an invertible
operator and a nilpotent operator, and the same is therefore true for the direct
sum (T − λI)⊕ (S − λI) = T ⊕ S − λ(I ⊕ I). Thus λ ̸∈ σD(T ⊕ S), and hence
σD(T ⊕ S) ⊂ σD(T ) ∪ σD(S). Conversely, suppose that λ ̸∈ σD(T ⊕ S). Then
T⊕S−λ(I⊕I) is a B-Fredholm operator of index 0 and λ ∈ isoσ(T⊕S). From
Lemma 2.2, T − λI and S − λI are both B-Fredholm operators. If λ ̸∈ σ(T ),
then λ ̸∈ σD(T ). As λ ∈ isoσ(T ⊕ S), then λ ∈ isoσ(S). By [4, Theorem 4.2],
we deduce that S−λI is also Drazin invertible. Therefore λ ̸∈ σD(T )∪σD(S).
If λ ∈ σ(T ) \ σ(S), then λ ∈ isoσ(T ) and again by [4, Theorem 4.2], T − λI
is Drazin invertible. As λ ̸∈ σ(S), then λ ̸∈ σD(S). It then follows that
λ ̸∈ σD(T ) ∪ σD(S). If λ ∈ σ(T ) ∩ σ(S), then λ ∈ isoσ(T ) ∩ isoσ(S). Hence
λ ̸∈ σD(T ) ∪ σD(S). In the two cases we have σD(T ) ∪ σD(S) ⊂ σD(T ⊕ S).
Hence σD(T ⊕ S) = σD(T ) ∪ σD(S). □

Generally, if T ∈ L(X) and S ∈ L(X) both possess property (gb), then it is
not guaranteed that their (orthogonal) direct sum S⊕T ∈ L(X⊕X) possesses
property (gb), as shown by the following example.

Example 2.5. Let S = 0 and R be the unilateral right shift operator defined
on the Hilbert space ℓ2(N). Then σ(S) = σa(S) = {0}, σSBF−

+
(S) = ∅, Π(S) =

{0}. Thus σa(S) \σSBF−
+
(S) = Π(S) and S possesses property (gb). Moreover,

σ(R) = D(0, 1) is the closed unit disc in C, σa(R) = C(0, 1) is the unit circle of
C, σSBF−

+
(R) = C(0, 1), and Π(R) = ∅. Therefore σa(R) \ σSBF−

+
(R) = Π(R)

and R possesses property (gb). But the operator T defined on the Banach
space ℓ2(N) ⊕ ℓ2(N) by T = S ⊕ R does not possess property (gb), because
σa(T ) = C(0, 1) ∪ {0}, σSBF−

+
(T ) = C(0, 1), and Π(T ) = ∅.

However, we provide, in the following result, certain conditions on T and S
to ensure that their orthogonal direct sum S ⊕ T possesses property (gb).
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Theorem 2.6. Suppose that T ∈ L(X) and S ∈ L(X) be such that Π(T ) ⊂
σa(S) and Π(S) ⊂ σa(T ). If T and S both possess property (gb), then the
following statements are equivalent.

(i) S ⊕ T possesses property (gb),
(ii) σSBF−

+
(S ⊕ T ) = σSBF−

+
(S) ∪ σSBF−

+
(T ).

Proof. (ii)⇒(i) Assume that σSBF−
+
(S⊕T ) = σSBF−

+
(S)∪σSBF−

+
(T ). We know

that σ(S ⊕ T ) = σ(S) ∪ σ(T ) for every pair of operators, and from Theorem
2.4, we have σD(S ⊕ T ) = σD(S) ∪ σD(T ). Hence

Π(S ⊕ T ) = σ(S ⊕ T ) \ σD(S ⊕ T )

= [σ(S) ∪ σ(T )] \ [σD(S) ∪ σD(T )]

= [Π(S) ∩ ρ(T )] ∪ [Π(T ) ∩ ρ(S)] ∪ [Π(S) ∩Π(T )].(2.1)

By hypothesis Π(T ) ⊂ σa(S) and Π(S) ⊂ σa(T ), Π(T ) ∩ ρ(S) = ∅ and Π(S) ∩
ρ(T ) = ∅. Hence Π(S ⊕ T ) = Π(S) ∩Π(T ). On the other hand, since T and S
both possess property (gb), then

[σa(S) ∪ σa(T )] \ [σSBF−
+
(S) ∪ σSBF−

+
(T )]

= [Π(S) ∩ ρa(T )] ∪ [Π(T ) ∩ ρa(S)] ∪ [Π(S) ∩Π(T )].

Again by hypothesis we have Π(S) ∩ ρa(T ) = ∅ and Π(T ) ∩ ρa(S) = ∅. Thus,

(2.2) [σa(S) ∪ σa(T )] \ [σSBF−
+
(S) ∪ σSBF−

+
(T )] = Π(S ⊕ T ).

We know that σa(S ⊕ T ) = σa(S) ∪ σa(T ) for any pair of operators and by
assumption, σSBF−

+
(S ⊕ T ) = σSBF−

+
(S) ∪ σSBF−

+
(T ). Hence σa(S ⊕ T ) \

σSBF−
+
(S ⊕ T ) = Π(S ⊕ T ), and S ⊕ T possesses property (gb).

(i)⇒(ii) If S ⊕ T possesses property (gb), then σSBF−
+
(S ⊕ T ) = σa(S ⊕

T ) \ Π(S ⊕ T ). From the equality (2.2) we have σSBF−
+
(S) ∪ σSBF−

+
(T ) =

σa(S ⊕ T ) \Π(S ⊕ T ). So σSBF−
+
(S ⊕ T ) = σSBF−

+
(S) ∪ σSBF−

+
(T ). □

Remark 2.7. The identity σSBF−
+
(S ⊕ T ) = σSBF−

+
(S) ∪ σSBF−

+
(T ) assumed

in Theorem 2.6 plays a central role in establishing conditions for the direct
sum to possess property (gb). For this, define on the Banach space ℓ2(N) ⊕
ℓ2(N) the operator R ⊕ L, where R and L denote the right shift operator
and the left shift operator, respectively, on the Hilbert space ℓ2(N). Then R
possesses property (gb). On the other hand, L possesses property (gb), since
σa(L) = D(0, 1), σSBF−

+
(L) = D(0, 1), and Π(L) = ∅. Moreover, Π(R) ⊂ σa(L)

and Π(L) ⊂ σa(R). But R ⊕ L does not possess property (gb). Indeed, as
α(R ⊕ L) = β(R ⊕ L) = 1, 0 ̸∈ σSBF−

+
(R ⊕ L), and since a(R ⊕ L) = ∞,

it then follows from [5, Theorem 2.5] that R ⊕ L does not have the SVEP
at 0. Consequently, R ⊕ L does not satisfy generalized a-Browder’s theorem.
From [8, Corollary 2.8], R ⊕ L does not possess property (gb). Observe that
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σSBF−
+
(R ⊕ L) ̸= σSBF−

+
(R) ∪ σSBF−

+
(L), because σSBF−

+
(R) ∪ σSBF−

+
(L) =

D(0, 1) and 0 ̸∈ σSBF−
+
(R⊕ L).

The (bounded linear) operator A : X −→ Y is said to be quasi-invertible if
it is injective and has dense range. Two bounded linear operators T ∈ L(X)
and S ∈ L(Y ) on complex Banach spaces X and Y are quasisimilar provided
there exist quasi-invertible operators A : X −→ Y and B : Y −→ X such that
AT = SA and BS = TB. In this case the operators T̃[n] : R(Tn) −→ R(Tn)

and S̃[n] : R(Sn) −→ R(Sn) are also quasisimilar. Indeed, if we consider

P = A/
R(Tn)

: R(Tn) −→ R(Sn) and Q = B/
R(Sn)

: R(Sn) −→ R(Tn), then

it is easily seen that P (R(Tn)) = R(Sn), Q(R(Sn)) = R(Tn), P and Q are

both injective, PT̃[n] = S̃[n]P , and QS̃[n] = T̃[n]Q.
A bounded linear operator T ∈ L(H) on a Hilbert space H is said to be

hyponormal if T ∗T − TT ∗ ≥ 0 (or equivalently ∥T ∗x∥ ≤ ∥Tx∥ for all x ∈ H).

Lemma 2.8. If T ∈ L(H) and S ∈ L(H) are quasisimilar hyponormal opera-
tors, then Π(T ) = Π(S).

Proof. Let α ∈ Π(T ) be arbitrary. Then T − αI is Drazin invertible and
a(T − αI) = δ(T − αI) = n < ∞. Without loss of generality we may assume
that α = 0. Therefore cn(T ) = c′n(T ) = 0 and R(Tn) is closed. As cn(T ) =
c0(T[n]) and c′n(T ) = c′0(T[n]), then T[n] : R(Tn) −→ R(Tn) is invertible. On

the other hand, T[n] : R(Tn) −→ R(Tn) and S̃[n] : R(Sn) −→ R(Sn) are
hyponormal quasisimilar operators. Since T[n] is invertible, from [9, Theorem

1] S̃[n] is invertible. So (S̃[n])
n is invertible and R((S̃[n])

n) = R(Sn). As

R((S̃[n])
n) ⊆ R(Sn), then R(Sn) = R(Sn), i.e., R(Sn) is closed. Therefore

0 ̸∈ σD(S). As we know from [9, Theorem 1] that σ(T ) = σ(S), then 0 ∈ Π(S).
Similarly, we have Π(S) ⊂ Π(T ). Hence Π(T ) = Π(S). □
Corollary 2.9. Let T ∈ L(H) and S ∈ L(H) are quasisimilar hyponormal
operators. If T and S both possesses property (gb), then S⊕T possesses property
(gb).

Proof. As it is well known that every hyponormal operator has the SVEP, then
from [5, Theorem 2.5], we conclude that ind(T − λI) ≤ 0 and ind(S − µI) ≤ 0
for each λ ∈ ρSBF (T ) and µ ∈ ρSBF (S). From Proposition 2.3, it follows that
σSBF−

+
(S ⊕ T ) = σSBF−

+
(S) ∪ σSBF−

+
(T ). As Π(T ) = Π(S) (see Lemma 2.8),

then Π(T ) ⊂ σa(S) and Π(S) ⊂ σa(T ) and since T and S both possess property
(gb), then by Theorem 2.6, S ⊕ T possesses property (gb). □

Similarly to Theorem 2.6, we give the following characterization in the case
of property (b).

Theorem 2.10. Suppose that property (b) holds for T ∈ L(X) and S ∈ L(X).
If Π0(T ) ⊂ σa(S) and Π0(S) ⊂ σa(T ), then the following assertions are equiv-
alent.
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(i) S ⊕ T possesses property (b),
(ii) σSF−

+
(S ⊕ T ) = σSF−

+
(S) ∪ σSF−

+
(T ).

Proof. (ii)⇒(i) Suppose that σSF−
+
(S⊕T ) = σSF−

+
(S)∪σSF−

+
(T ). Since T and

S both possess property (b), then

[σa(S) ∪ σa(T )] \ [σSF−
+
(S) ∪ σSF−

+
(T )]

= [Π0(S) ∩ ρa(T )] ∪ [Π0(T ) ∩ ρa(S)] ∪ [Π0(S) ∩Π0(T )].

The assumption Π0(T ) ⊂ σa(S) and Π0(S) ⊂ σa(T ) entails that Π0(T ) ∩
ρa(S) = ∅ and Π0(S) ∩ ρa(T ) = ∅. Therefore [σa(S) ∪ σa(T )] \ [σSF−

+
(S) ∪

σSF−
+
(T )] = Π0(S) ∩Π0(T ). On the other hand, as we know that σb(S ⊕ T ) =

σb(S) ∪ σb(T ) for any pair of operators, then

Π0(S ⊕ T ) = σ(S ⊕ T ) \ σb(S ⊕ T )

= [σ(S) ∪ σ(T )] \ [σb(S) ∪ σb(T )]

= [Π0(S) ∩ ρ(T )] ∪ [Π0(T ) ∩ ρ(S)] ∪ [Π0(S) ∩Π0(T )]

= Π0(S) ∩Π0(T ), since Π0(S) ∩ ρ(T ) = Π0(T ) ∩ ρ(S) = ∅.
Thus

(2.3) Π0(S ⊕ T ) = σa(S) ∪ σa(T )] \ [σSF−
+
(S) ∪ σSF−

+
(T )].

By hypothesis σSF−
+
(S⊕T ) = σSF−

+
(S)∪σSF−

+
(T ), it then follows that Π0(S⊕

T ) = σa(S ⊕ T ) \ σSF−
+
(S ⊕ T ) and S ⊕ T possesses property (b).

(i)⇒(ii) If S ⊕ T possesses property (b), then σSF−
+
(S ⊕ T ) = σa(S ⊕ T ) \

Π0(S⊕T ). From the equality (2.3), it then follows that σSF−
+
(S)∪σSF−

+
(T ) =

σa(S ⊕ T ) \Π0(S ⊕ T ). Hence σSF−
+
(S ⊕ T ) = σSF−

+
(S) ∪ σSF−

+
(T ). □

The following examples show that if S and T are Banach space operators
possessing property (b), then it does not necessarily imply that the direct sum
S ⊕ T possesses property (b). Moreover, the first example (part (1)) shows
that σSF−

+
(S ⊕ T ) = σSF−

+
(S) ∪ σSF−

+
(T ) is not a sufficient condition on the

direct sum to possess property (b), but the second example (part (2)) shows
that the symmetric assumption Π0(S) ⊂ σa(T ), Π

0(T ) ⊂ σa(S) on the direct
summands is not a sufficient condition to ensure that the direct sum possesses
property (b).

Example 2.11. (1) Let us define the operator S on the Hilbert space ℓ2(N) by
S(x1, x2, x3, . . .) = (0, x2, x3, x4, . . .). Then σ(S) = σa(S) = {0, 1}, σSF−

+
(S) =

{1}, and Π0(S) = {0}. Thus σa(S)\σSF−
+
(S) = Π0(S) and S possesses property

(b). Now, we consider the unilateral right shift operator R defined on ℓ2(N),
then R possesses property (b), since σa(R) = C(0, 1), σSF−

+
(R) = C(0, 1), and

Π0(R) = ∅. Define T on the Banach space X = ℓ2(N) ⊕ ℓ2(N) by T = R ⊕ S.
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Then σa(T ) = C(0, 1) ∪ {0}, σSF−
+
(T ) = C(0, 1), and Π0(T ) = ∅. Hence

σa(T ) \ σSF−
+
(T ) ̸= Π0(T ), and T does not possess property (b). Note that

Π0(R) ⊂ σa(S), Π
0(S) ̸⊂ σa(R), and σSF−

+
(R⊕ S) = σSF−

+
(R) ∪ σSF−

+
(S).

(2) In Theorem 2.10, the condition σSF−
+
(S ⊕ T ) = σSF−

+
(S) ∪ σSF−

+
(T ) is

crucial. Indeed, if we consider the operator T = R⊕L defined as in Remark 2.7,
then R possesses property (b) because σa(R) = C(0, 1), σSF−

+
(R) = C(0, 1),

and Π0(R) = ∅. Its adjoint L possesses property (b) because σa(L) = D(0, 1),
σSF−

+
(L) = D(0, 1), and Π0(L) = ∅. Moreover, Π0(R) ⊂ σa(L) and Π0(L) ⊂

σa(R). But, since 0 ̸∈ σSF−
+
(R ⊕ L) and R ⊕ L does not have the SVEP at

0, it then follows that R ⊕ L does not satisfy a-Browder’s theorem. By [8,
Theorem 2.5], R ⊕ L does not possess property (b). Note that the inclusion
σSF−

+
(R ⊕ L) ⊂ σSF−

+
(R) ∪ σSF−

+
(L) is proper, since σSF−

+
(R) ∪ σSF−

+
(L) =

D(0, 1) and 0 ̸∈ σSF−
+
(R⊕ L).

As for every quasisimilar hyponormal operators T ∈ L(H) and S ∈ L(H),
we have α(T − λI) = α(S − λI) for all λ ∈ C, then Π0(S) = Π0(T ). From
Theorem 2.10, we obtain immediately the following corollary.

Corollary 2.12. Let T ∈ L(H) and S ∈ L(H) be quasisimilar hyponormal
operators. If T and S both possess property (b), then S ⊕ T possesses property
(b).

The following example shows that there exist T ∈ L(X) and S ∈ L(X) such
that their (orthogonal) direct sum S⊕T does not satisfy generalized Browder’s
theorem, although T and S both satisfy generalized Browder’s theorem. We
consider the operator T = R ⊕ L as defined in Remark 2.7, then σ(R) =
D(0, 1), σBW (R) = D(0, 1), and Π(R) = ∅. So R satisfies generalized Browder’s
theorem. On the other hand, as σ(L) = D(0, 1), σBW (R) = D(0, 1), and
Π(L) = ∅ then L satisfies generalized Browder’s theorem. But T = R⊕L does
not satisfy generalized Browder’s theorem. Indeed, as α(R⊕L) = β(R⊕L) =
1 then 0 ̸∈ σBW (R ⊕ L) and, since R ⊕ L does not have the SVEP at 0,
it then follows that R ⊕ L does not satisfy generalized Browder’s theorem.
Note that the inclusion σBW (R ⊕ L) ⊂ σBW (R) ∪ σBW (L) is proper, because
σBW (R) ∪ σBW (L) = D(0, 1) and 0 ̸∈ σBW (R⊕ L).

In [13, Theorem 3.6], it is established that if S and T are polaroid opera-
tors acting on Hilbert spaces, satisfying generalized Browder’s theorem and if
σBW (S) ∪ σBW (T ) = σBW (S ⊕ T ), then S ⊕ T satisfies generalized Browder’s
theorem. Using Theorem 2.4, we can extend this result as follows.

Theorem 2.13. Let T ∈ L(X) and S ∈ L(X). If generalized Browder’s
theorem holds for T and S, then the following statements are equivalent.

(i) S ⊕ T satisfies generalized Browder’s theorem,
(ii) σBW (S) ∪ σBW (T ) = σBW (S ⊕ T ).
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Proof. (i)⇒(ii) If generalized Browder’s theorem holds for S⊕T , then σBW (S⊕
T ) = σD(S ⊕ T ). As σD(S ⊕ T ) = σD(S) ∪ σD(T ) (see Theorem 2.4), then
σBW (S ⊕ T ) = σD(S) ∪ σD(T ). Since we have always σBW (S) ∪ σBW (T ) ⊂
σD(S) ∪ σD(T ), it then follows that σBW (S) ∪ σBW (T ) ⊂ σBW (S ⊕ T ). By
virtue of Lemma 2.2 we conclude that σBW (S) ∪ σBW (T ) = σBW (S ⊕ T ).

(ii)⇒(i) Assume that σBW (S)∪σBW (T ) = σBW (S⊕T ). Since T and S both
satisfy generalized Browder’s theorem then σBW (T ) = σD(T ) and σBW (S) =
σD(S). Therefore σD(S ⊕ T ) = σD(S) ∪ σD(T ) = σBW (S) ∪ σBW (T ). By
hypothesis σBW (S) ∪ σBW (T ) = σBW (S ⊕ T ), σD(S ⊕ T ) = σBW (S ⊕ T ) and
S ⊕ T satisfies generalized Browder’s theorem. □

3. Preservation of properties (w) and (gw) under direct sums

Theorem 3.1. Suppose that T ∈ L(X) and S ∈ L(X) be such that σp(T ) =
σp(S). If T and S both possess property (gw), then the following assertions are
equivalent.

(i) S ⊕ T possesses property (gw),
(ii) σSBF−

+
(S ⊕ T ) = σSBF−

+
(S) ∪ σSBF−

+
(T ).

Proof. (ii)⇒(i) Suppose that σSBF−
+
(S ⊕ T ) = σSBF−

+
(S) ∪ σSBF−

+
(T ). Since

T and S both possess property (gw), we have

σa(S ⊕ T ) \ σSBF−
+
(S ⊕ T )

= [σa(S) ∪ σa(T )] \ [σSBF−
+
(S) ∪ σSBF−

+
(T )]

= [E(T ) ∩ ρa(S)] ∪ [E(S) ∩ ρa(T )] ∪ [E(S) ∩ E(T )].

(3.1)

As σp(S) = σp(T ), then E(T ) ∩ ρa(S) = ∅ and E(S) ∩ ρa(T ) = ∅. Thus
σa(S ⊕ T ) \ σSBF−

+
(S ⊕ T ) = E(S) ∩ E(T ). On the other hand, we have

E(S ⊕ T )

= isoσ(S ⊕ T ) ∩ σp(S ⊕ T )

= iso[σ(S) ∪ σ(T )] ∩ [σp(S) ∪ σp(T )]

= [E(S) ∩ ρ(T )] ∪ [E(T ) ∩ ρ(S)] ∪ [E(S) ∩ isoσ(T )] ∪ [E(T ) ∩ isoσ(S)]

= E(S) ∩ E(T ), since E(S) ∩ ρ(T ) = ∅ and E(T ) ∩ ρ(S) = ∅.

(3.2)

Hence E(S ⊕ T ) = σa(S ⊕ T ) \ σSBF−
+
(S ⊕ T ) and S ⊕ T possesses property

(gw).
(i)⇒(ii) If S⊕T possesses property (gw), then σa(S⊕T )\σSBF−

+
(S⊕T ) =

E(S ⊕ T ). Since T and S both possess property (gw) and σp(T ) = σp(S), it
then follows from the equality (3.1) that σa(S⊕T )\ [σSBF−

+
(S)∪σSBF−

+
(T )] =

E(S)∩E(T ) and from the equality (3.2) that E(S⊕T ) = E(S)∩E(T ). Hence
σSBF−

+
(S ⊕ T ) = σSBF−

+
(S) ∪ σSBF−

+
(T ). □
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Remark 3.2. If T and S are Banach space operators possessing property (gw),
then it does not necessarily imply that the direct sum S⊕T possesses property
(gw). For example, on the Hilbert space ℓ2(N) we consider the operators S =
0 and U defined by U(x1, x2, x3, . . .) = (0, x1/2, x2/3, . . .). Then σa(S) =
{0}, σSBF−

+
(S) = ∅, and E(S) = {0}. Thus σa(S) \ σSBF−

+
(S) = E(S), and

so S possesses property (gw). On the other hand, we have σa(U) = {0},
σSBF−

+
(U) = {0} and E(U) = ∅. Therefore σa(U) \ σSBF−

+
(U) = E(U) and so

U possesses property (gw). We define T on the Banach space ℓ2(N)⊕ ℓ2(N) by
T = S ⊕ U . Then σa(T ) = {0}, σSBF−

+
(T ) = {0}, and E(T ) = {0}. Therefore

σa(T )\σSBF−
+
(T ) ̸= E(T ) and so T does not possess property (gw). Note that

σp(S) = {0}, σp(U) = ∅, and σSBF−
+
(S ⊕ U) = σSBF−

+
(S) ∪ σSBF−

+
(U).

Similarly in Theorem 3.1, we have the following result in the case of property
(w).

Theorem 3.3. Suppose that T ∈ L(X) and S ∈ L(X) be such that σ0
p(T ) =

σ0
p(S). If T and S both possess property (w), then the following statements are

equivalent.
(i) S ⊕ T possesses property (w),
(ii) σSF−

+
(S ⊕ T ) = σSF−

+
(S) ∪ σSF−

+
(T ).

Proof. (ii)⇒(i) Suppose that σSF−
+
(S⊕T ) = σSF−

+
(S)∪σSF−

+
(T ). Since T and

S both possess property (w), we have

σa(S ⊕ T ) \ σSF−
+
(S ⊕ T )

= [σa(S) ∪ σa(T )] \ [σSF−
+
(S) ∪ σSF−

+
(T )]

= [E0(T ) ∩ ρa(S)] ∪ [E0(S) ∩ ρa(T )] ∪ [E0(S) ∩ E0(T )].

(3.3)

As σ0
p(S) = σ0

p(T ), then E0(T ) ∩ ρa(S) = ∅ and E0(S) ∩ ρa(T ) = ∅. Thus

σa(S⊕T )\σSF−
+
(S⊕T ) = E0(S)∩E0(T ). On the other hand, since σ0

p(S⊕T ) =

{λ ∈ σ0
p(S) ∪ σ0

p(T ) : dimN(S − λI) + dimN(T − λI) < ∞}, we have

E0(S ⊕ T )

= isoσ(S ⊕ T ) ∩ σ0
p(S ⊕ T )

= iso[σ(S) ∪ σ(T )] ∩ [σ0
p(S) ∪ σ0

p(T )]

= iso[σ(S) ∪ σ(T )] ∩ σ0
p(S)

= [E0(S) ∩ ρ(T )] ∪ [E0(T ) ∩ ρ(S)] ∪ [E0(S) ∩ E0(T )]

= E0(S) ∩ E0(T ), since E0(S) ∩ ρ(T ) = ∅ and E0(T ) ∩ ρ(S) = ∅.

(3.4)

Hence σa(S ⊕ T ) \ σSF−
+
(S ⊕ T ) = E0(S ⊕ T ) and S ⊕ T possess property (w).

(i)⇒(ii) Assume that S⊕T possesses property (w), then σa(S⊕T )\σSF−
+
(S⊕

T ) = E0(S ⊕ T ). As T and S both possess property (w) and have the same
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eigenvalues of finite multiplicity, it then follows from the equality (3.3) that
σa(S⊕T )\[σSF−

+
(S)∪σSF−

+
(T )] = E0(S)∩E0(T ) and by the equality (3.4) that

E0(S) ∩ E0(T ) = E0(S ⊕ T ). Hence σSF−
+
(S ⊕ T ) = σSF−

+
(S) ∪ σSF−

+
(T ). □

Remark 3.4. There are Banach space operators T and S both of which possess
property (w), but their direct sum S⊕T does not possess property (w). Indeed,
if we consider the operator T = R⊕S defined as in Example 2.11, then σa(R) =
σSF−

+
(R) = C(0, 1) and E0(R) = ∅. So R possesses property (w). The operator

S also possesses property (w), since σa(S) = {0, 1}, σSF−
+
(S) = {1}, and

E0(S) = {0}. But the direct sum T = R ⊕ S does not possess property (w),
because σa(T ) = C(0, 1) ∪ {0}, σSF−

+
(T ) = C(0, 1), and E0(T ) = ∅. Note that

σ0
p(S) = {0}, σ0

p(R) = ∅, and σSF−
+
(R⊕ S) = σSF−

+
(R) ∪ σSF−

+
(S).
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[11] S. V. Djordjević and Y. M. Han, A note on Weyl’s theorem for operator matrices, Proc.
Amer. Math. Soc. 131 (2003), no. 8, 2543–2547.

[12] B. P. Duggal and C. S. Kubrusly, Weyl’s theorem for direct sums, Studia Sci. Math.
Hungar. 44 (2007), no. 2, 275–290.

[13] A. Gupta and N. Kashyap, Generalized a-Weyl’s theorem for direct sums, Mat. Vesnik

62 (2010), no. 4, 265–270.
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