• Title/Summary/Keyword: bounded operator

Search Result 279, Processing Time 0.028 seconds

LIE IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • LEE, SANG KI;KANG, JOO HO
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.237-244
    • /
    • 2018
  • Let ${\mathcal{H}}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let L be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in ${\mathcal{L}}$. Let p and q be natural numbers (p < q). Let ${\mathcal{A}}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $T_{(p,q)}=0$ for all T in ${\mathcal{A}}$. If ${\mathcal{A}}$ is a Lie ideal, then $T_{(p,p)}=T_{(p+1,p+1)}={\cdots}=T_{(q,q)}$ and $T_{(i,j)}=0$, $p{\eqslantless}i{\eqslantless}q$ and i < $j{\eqslantless}q$ for all T in ${\mathcal{A}}$.

ON n-TUPLES OF TENSOR PRODUCTS OF p-HYPONORMAL OPERATORS

  • Duggal, B.P.;Jeon, In-Ho
    • The Pure and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.287-292
    • /
    • 2004
  • The operator $A \; {\in} \; L(H_{i})$, the Banach algebra of bounded linear operators on the complex infinite dimensional Hilbert space $\cal H_{i}$, is said to be p-hyponormal if $(A^\ast A)^P \geq (AA^\ast)^p$ for $p\; \in \; (0,1]$. Let (equation omitted) denote the completion of (equation omitted) with respect to some crossnorm. Let $I_{i}$ be the identity operator on $H_{i}$. Letting (equation omitted), where each $A_{i}$ is p-hyponormal, it is proved that the commuting n-tuple T = ($T_1$,..., $T_{n}$) satisfies Bishop's condition ($\beta$) and that if T is Weyl then there exists a non-singular commuting n-tuple S such that T = S + F for some n-tuple F of compact operators.

  • PDF

SOME INEQUALITIES OF WEIGHTED SHIFTS ASSOCIATED BY DIRECTED TREES WITH ONE BRANCHING POINT

  • KIM, BO GEON;SEO, MINJUNG
    • East Asian mathematical journal
    • /
    • v.31 no.5
    • /
    • pp.695-706
    • /
    • 2015
  • Let ${\mathcal{H}}$ be an infinite dimensional complex Hilbert space, and let $B({\mathcal{H}})$ be the algebra of all bounded linear operators on ${\mathcal{H}}$. Recall that an operator $T{\in}B({\mathcal{H})$ has property B(n) if ${\mid}T^n{\mid}{\geq}{\mid}T{\mid}^n$, $n{\geq}2$, which generalizes the class A-operator. We characterize the property B(n) of weighted shifts $S_{\lambda}$ over (${\eta},\;{\kappa}$)-type directed trees which appeared in the study of subnormality of weighted shifts over directed trees recently. In addition, we discuss the property B(n) of weighted shifts $S_{\lambda}$ over (2, 1)-type directed trees with nonzero weights are being distinct with respect to $n{\geq}2$. And we give some properties of weighted shifts $S_{\lambda}$ over (2, 1)-type directed trees with property B(2).

Convolution-based Desired Trajectory Generation Method Considering System Specifications (시스템 사양을 고려한 컨볼루션 기반 목표궤적 생성 방법)

  • Lee, Geon;Choi, Young-Jin;Kim, Jin-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.997-1005
    • /
    • 2010
  • Most motion control systems consist of a desired trajectory generator, a motion controller such as a conventional PID controller, and a plant to be controlled. The desired trajectory generator as well as the motion controller is very important to achieve a good tracking performance. Especially, if the desired trajectory is generated actively utilizing the maximum velocity, acceleration, jerk and snap as given system specifications, the tracking performance would be better. For this, we make use of the properties of convolution operator in order to generate a smooth (S-curve) trajectory satisfying the system specifications. Also, the proposed trajectory generation method is extended to more general cases with arbitrary initial and terminal conditions. In addition, the suggested trajectory generator can be easily realized for real-time implementation. Finally, the effectiveness of the suggested method is shown through numerical simulations.

WEYL'S TYPE THEOREMS FOR ALGEBRAICALLY (p, k)-QUASIHYPONORMAL OPERATORS

  • Rashid, Mohammad Hussein Mohammad;Noorani, Mohd Salmi Mohd
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.77-95
    • /
    • 2012
  • For a bounded linear operator T we prove the following assertions: (a) If T is algebraically (p, k)-quasihyponormal, then T is a-isoloid, polaroid, reguloid and a-polaroid. (b) If $T^*$ is algebraically (p, k)-quasihyponormal, then a-Weyl's theorem holds for f(T) for every $f{\in}Hol({\sigma}T))$, where $Hol({\sigma}(T))$ is the space of all functions that analytic in an open neighborhoods of ${\sigma}(T)$ of T. (c) If $T^*$ is algebraically (p, k)-quasihyponormal, then generalized a-Weyl's theorem holds for f(T) for every $f{\in}Hol({\sigma}T))$. (d) If T is a (p, k)-quasihyponormal operator, then the spectral mapping theorem holds for semi-B-essential approximate point spectrum $\sigma_{SBF_+^-}(T)$, and for left Drazin spectrum ${\sigma}_{lD}(T)$ for every $f{\in}Hol({\sigma}T))$.

EIGENVALUES FOR THE SEMI-CIRCULANT PRECONDITIONING OF ELLIPTIC OPERATORS WITH THE VARIABLE COEFFICIENTS

  • Kim, Hoi-Sub;Kim, Sang-Dong;Lee, Yong-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.627-645
    • /
    • 2007
  • We investigate the eigenvalues of the semi-circulant preconditioned matrix for the finite difference scheme corresponding to the second-order elliptic operator with the variable coefficients given by $L_vu\;:=-{\Delta}u+a(x,\;y)u_x+b(x,\;y)u_y+d(x,\;y)u$, where a and b are continuously differentiable functions and d is a positive bounded function. The semi-circulant preconditioning operator $L_cu$ is constructed by using the leading term of $L_vu$ plus the constant reaction term such that $L_cu\;:=-{\Delta}u+d_cu$. Using the field of values arguments, we show that the eigenvalues of the preconditioned matrix are clustered at some number. Some numerical evidences are also provided.

IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • Lee, Sang Ki;Kang, Joo Ho
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.93-100
    • /
    • 2017
  • Let $\mathcal{H}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let $\mathcal{L}$ be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in $\mathcal{L}$. Let p and q be natural numbers($p{\leqslant}q$). Let $\mathcal{B}_{p,q}=\{T{\in}Alg\mathcal{L}{\mid}T_{(p,q)}=0\}$. Let $\mathcal{A}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $\{0\}{\varsubsetneq}{\mathcal{A}}{\subset}{\mathcal{B}}_{p,q}$. If $\mathcal{A}$ is an ideal in $Alg{\mathcal{L}}$, then $T_{(i,j)}=0$, $p{\leqslant}i{\leqslant}q$ and $i{\leqslant}j{\leqslant}q$ for all T in $\mathcal{A}$.

BIHARMONIC-KIRCHHOFF TYPE EQUATION INVOLVING CRITICAL SOBOLEV EXPONENT WITH SINGULAR TERM

  • Tahri, Kamel;Yazid, Fares
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.247-256
    • /
    • 2021
  • Using variational methods, we show the existence of a unique weak solution of the following singular biharmonic problems of Kirchhoff type involving critical Sobolev exponent: $$(\mathcal{P}_{\lambda})\;\{\begin{array}{lll}{\Delta}^2u-(a{\int}_{\Omega}{\mid}{\nabla}u{\mid}^2dx+b){\Delta}u+cu=f(x){\mid}u{\mid}^{-{\gamma}}-{\lambda}{\mid}u{\mid}^{p-2}u&&\text{ in }{\Omega},\\{\Delta}u=u=0&&\text{ on }{\partial}{\Omega},\end{array}$$ where Ω is a smooth bounded domain of ℝn (n ≥ 5), ∆2 is the biharmonic operator, and ∇u denotes the spatial gradient of u and 0 < γ < 1, λ > 0, 0 < p ≤ 2# and a, b, c are three positive constants with a + b > 0 and f belongs to a given Lebesgue space.

BOUNDED FUNCTION ON WHICH INFINITE ITERATIONS OF WEIGHTED BEREZIN TRANSFORM EXIST

  • Jaesung Lee
    • Korean Journal of Mathematics
    • /
    • v.31 no.3
    • /
    • pp.305-311
    • /
    • 2023
  • We exhibit some properties of the weighted Berezin transform Tαf on L(Bn) and on L1(Bn). As the main result, we prove that if f ∈ L(Bn) with limk→∞ Tkαf exists, then there exist unique M-harmonic function g and $h{\in}{\bar{(I-T_{\alpha})L^{\infty}(B_n)}}$ such that f = g + h. We also show that of the norm of weighted Berezin operator Tα on L1(Bn, ν) converges to 1 as α tends to infinity, where ν is an ordinary Lebesgue measure.

SUMMABILITY IN MUSIELAK-ORLICZ HARDY SPACES

  • Jun Liu;Haonan Xia
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1057-1072
    • /
    • 2023
  • Let 𝜑 : ℝn × [0, ∞) → [0, ∞) be a growth function and H𝜑(ℝn) the Musielak-Orlicz Hardy space defined via the non-tangential grand maximal function. A general summability method, the so-called 𝜃-summability is considered for multi-dimensional Fourier transforms in H𝜑(ℝn). Precisely, with some assumptions on 𝜃, the authors first prove that the maximal operator of the 𝜃-means is bounded from H𝜑(ℝn) to L𝜑(ℝn). As consequences, some norm and almost everywhere convergence results of the 𝜃-means, which generalizes the well-known Lebesgue's theorem, are then obtained. Finally, the corresponding conclusions of some specific summability methods, such as Bochner-Riesz, Weierstrass and Picard-Bessel summations, are also presented.