IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG $\mathcal L$ SANG KI LEE AND JOO HO KANG* **Abstract.** Let \mathcal{H} be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,\cdots\}$. Let \mathcal{L} be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],\cdots\}$ and let $\mathrm{Alg}\mathcal{L}$ be the algebra of bounded operators which leave invariant all projections in \mathcal{L} . Let p and q be natural numbers $(p \leq q)$. Let $\mathcal{B}_{p,q} = \{ T \in \mathrm{Alg}\mathcal{L} \mid T_{(p,q)} = 0 \}$. Let \mathcal{A} be a linear manifold in $\mathrm{Alg}\mathcal{L}$ such that $\{0\} \subsetneq \mathcal{A} \subset \mathcal{B}_{p,q}$. If \mathcal{A} is an ideal in $\mathrm{Alg}\mathcal{L}$, then $T_{(i,j)} = 0, p \leq i \leq q$ and $i \leq j \leq q$ for all T in \mathcal{A} . #### 1. Introduction Let \mathcal{H} be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1, e_2, \cdots\}$ and let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded operators on \mathcal{H} . If x_1, x_2, \cdots, x_k are vectors in \mathcal{H} , we denote by $[x_1, x_2, \cdots, x_k]$ the closed subspace spanned by the vectors x_1, x_2, \cdots, x_k . We denote by \mathcal{L} the subspace lattice generated by the subspaces $\{[e_1], [e_1, e_2], \cdots, [e_1, e_2, \cdots, e_n], \cdots\}$. We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. By $Alg\mathcal{L}$, we mean the algebra of bounded operators which leave invariant all subspaces in \mathcal{L} . It is easy to see that all such operators have the following matrix form Received November 8, 2016. Accepted December 16, 2017. ²⁰¹⁰ Mathematics Subject Classification. 47L35. Key words and phrases. Linear manifold, Lie ideal, Ideal, The upper triangular operator algebra. This work was supported by Daegu University Grant (2016). ^{*}Corresponding author where all non-starred entries are zero. We call the algebra $Alg\mathcal{L}$ by the upper triangular operator algebra. ## 2. Examples of ideals in $Alg \mathcal{L}$ Let \mathcal{A} be a linear manifold in Alg \mathcal{L} . We say that \mathcal{A} is a left ideal in $Alg\mathcal{L}$ if $AT \in \mathcal{A}$ for all A in $Alg\mathcal{L}$ and T in \mathcal{A} . A is called a right ideal in $Alg\mathcal{L}$ if $TA \in \mathcal{A}$ for all A in $Alg\mathcal{L}$ and T in \mathcal{A} . A is said to be an ideal in Alg \mathcal{L} if \mathcal{A} is a left ideal in Alg \mathcal{L} and a right ideal in Alg \mathcal{L} . \mathcal{A} is called a prime ideal in $Alg\mathcal{L}$ if and only if $AB \in \mathcal{A}$ for A in $Alg\mathcal{L}$ and B in Alg \mathcal{L} , then $A \in \mathcal{A}$ or $B \in \mathcal{A}$. \mathcal{A} is called a maximal ideal in Alg \mathcal{L} if and only if $A \neq \text{Alg}\mathcal{L}$ and if there does not exist an ideal \mathcal{M} in $\text{Alg}\mathcal{L}$ such that A in $\mathcal{A} \subseteq \mathcal{M} \subset \text{Alg}\mathcal{L}$, then $\mathcal{M} = \text{Alg}\mathcal{L}$. Let I be the identity operator on \mathcal{H} in this paper. Let \mathbb{C} be the set of all complex numbers and let $\mathbb{N} = \{1, 2, \cdots\}$. If we know the following facts, then we can easily prove the following examples. ``` Let A = (a_{ij}) and T = (t_{ij}) be operators in Alg\mathcal{L}. Then ``` - (1) the (p, p)-entry of AT is $a_{pp}t_{pp}$ for all $p = 1, 2, \cdots$ - (2) the (p, p)-entry of TA is $t_{pp}a_{pp}$ for all $p = 1, 2, \cdots$ - (3) the (p,q)-entry of AT is (3) the $$(p,q)$$ -entry of AI is $a_{pp}t_{pq} + a_{p p+1}t_{p+1 q} + \cdots + a_{p q-1}t_{q-1 q} + a_{pq}t_{qq}(p < q)$ (4) the (p,q) -entry of TA is $$t_{pp}a_{pq} + t_{p p+1}a_{p+1}a_{p+1}a_{p+1} + \cdots + t_{p q-1}a_{q-1}a_{q-1}a_{p+1}a_{qq}(p < q)$$ $\begin{array}{l} t_{pp}a_{pq}+t_{p\ p+1}a_{p+1\ q}+\cdots +t_{p\ q-1}a_{q-1\ q}+t_{pq}a_{qq}(p< q)\\ \text{We denote } T_{(i,j)} \text{ by the } (i,j)\text{-component of } T \text{ for an operator } T. \end{array}$ **Example 1.** Let $\mathcal{A}_0 = \{ T \in \text{Alg} \mathcal{L} \mid T_{(i,i)} = 0, i \in \mathbb{N} \}$. Then \mathcal{A}_0 is an ideal in $Alg\mathcal{L}$. **Example 2.** Let Λ be a nonempty subset of \mathbb{N} and let $\mathcal{A}_{\Lambda} = \{ T \in Alg\mathcal{L} \mid T_{(i,i)} = 0, i \in \Lambda \}$. Then \mathcal{A}_{Λ} is an ideal of $Alg\mathcal{L}$. **Example 3.** Let I be the identity operator on \mathcal{H} and let $\mathcal{A}_1 = \{ \alpha I + T \mid T \in \mathcal{A}_0, \alpha \in \mathbb{C} \}$. Then \mathcal{A}_I is not an ideal in $Alg\mathcal{L}$. **Example 4.** Let p and q be natural numbers such that $p \leq q$. Let $\mathcal{B}_{p,q} = \{ T \in \text{Alg} \mathcal{L} \mid T_{(p,q)} = 0 \}$. If p = q, then $\mathcal{B}_{p,q}$ is an ideal of $\text{Alg} \mathcal{L}$. If p < q, then $\mathcal{B}_{p,q}$ is not an ideal of $\text{Alg} \mathcal{L}$. **Example 5.** Let p and q be natural numbers (p < q). - i) Let $\mathcal{B}^{(1)}_{p,q} = \{ T \in \text{Alg} \mathcal{L} \mid T_{(p+k,q)} = 0, k = 0, 1, 2, \cdots, q-p \}$. Then $\mathcal{B}^{(1)}_{p,q}$ is not an ideal in Alg \mathcal{L} . - ii) Let $\mathcal{B}^{(2)}_{p,q} = \{ T \in \text{Alg}\mathcal{L} \mid T_{(p,p+k)} = 0, k = 0, 1, 2, \cdots, q p \}$. Then $\mathcal{B}^{(2)}_{p,q}$ is not an ideal in $\text{Alg}\mathcal{L}$. - iii) Let $\mathcal{B}^{(3)}_{p,q} = \{ T \in \text{Alg}\mathcal{L} \mid T_{(p+k,q)} = 0, T_{(p,p+k)} = 0, k = 0, 1, 2, \dots, q-p \}$. Then $\mathcal{B}^{(3)}_{p,q}$ is not an ideal in $\text{Alg}\mathcal{L}$. - iv) Let $\mathcal{B}^{(4)}_{p,q} = \{ T \in \text{Alg}\mathcal{L} \mid T_{(p+k,q)} = 0, T_{(p,p+k)} = 0, T_{(p+k,p+k)} = 0, k = 0, 1, 2, \dots, q-p \}$. Then $\mathcal{B}^{(4)}_{p,q}$ is not an ideal in Alg \mathcal{L} . **Example 6.** Let p and q be natural numbers (p < q). Let $\mathcal{A}_{p,q} = \{ T \in \text{Alg}\mathcal{L} \mid T_{(i,j)} = 0, p \leq i \leq q \text{ and } i \leq j \leq q \}$. Then $\mathcal{A}_{p,q}$ is an ideal in $\text{Alg}\mathcal{L}$. ### 3. Properties of ideals of $Alg \mathcal{L}$ **Theorem 1.** Let k be a natural number. Then (1) $A_{\{k\}}$ is prime and (2) $A_{\{k\}}$ is maximal. *Proof.* (1) Let $A=(a_{ij})$ and $T=(t_{ij})$ be elements of Alg \mathcal{L} . If $(AT)_{(k,k)}=a_{kk}t_{kk}=0$, then $a_{kk}=0$ or $t_{kk}=0$. So $A\in\mathcal{A}_{\{k\}}$ or $T\in\mathcal{A}_{\{k\}}$. (2) Let \mathcal{M} be an ideal in $\mathrm{Alg}\mathcal{L}$ such that $\mathcal{A}_{\{k\}} \subset \mathcal{M} \subset \mathrm{Alg}\mathcal{L}$. Let $\mathcal{A}_{\{k\}} \neq \mathcal{M}$. Then there exists an operator $T = (t_{ij})$ in \mathcal{M} and $T \notin \mathcal{A}_{\{k\}}$, i.e. $T_{(k,k)} \neq 0$. Let $A = (a_{ij}) \in \mathrm{Alg}\mathcal{L}$. If $a_{kk} = 0$, then $A \in \mathcal{A}_{\{k\}}$. Since $\mathcal{A}_{\{k\}} \subset \mathcal{M}$, $A \in \mathcal{M}$. Let $a_{kk} \neq 0$. Let A_1 be an operator defined by $$\begin{cases} A_{1(k,k)} = 0 \\ A_{1(i,j)} = a_{ij} \text{ otherwise.} \end{cases}$$ Then $A_1 \in \mathcal{A}_{\{k\}}$. Since $\mathcal{A}_{\{k\}} \subset \mathcal{M}$, $A_1 \in \mathcal{M}$. Let T_1 be an operator defined by $$\begin{cases} T_{1(k,k)} = 0 \\ T_{1(i,j)} = -T_{(i,j)} \text{ otherwise.} \end{cases}$$ Then $T_1 \in \mathcal{A}_{\{k\}}$. Since $\mathcal{A}_{\{k\}} \subset \mathcal{M}$, $T_1 \in \mathcal{M}$. Put $T_2 = T + T_1$. Then $T_2 \in \mathcal{M}$, $T_{2(k,k)} = T_{(k,k)}$ and $T_{2(i,j)} = 0$ otherwise. Let $\alpha = \frac{a_{kk}}{T_{(k,k)}}$. Then $\alpha T_2 + A_1 = A$ and $A \in \mathcal{M}$. Hence $\mathcal{M} = \text{Alg}\mathcal{L}$. *Proof.* Let \mathcal{A} be an ideal in Alg \mathcal{L} . Let $T \in \mathcal{A}$ and let A be in Alg \mathcal{L} . Then $AT \in \mathcal{A}$ and $TA \in \mathcal{A}$. Since $(AT)_{(p,q)} = A_{(p,p)}T_{(p,q)} + A_{(p,p+1)}T_{(p+1,q)} + \dots + A_{(p,q-1)}T_{(q-1,q)} + A_{(p,q)}T_{(q,q)} = 0$ for all A in Alg \mathcal{L} , $T_{(p,q)} = 0$, $T_{(p+1,q)} = 0$, $T_{(q-1,q)} = 0$, $T_{(q,q)} = 0$. Since $(TA)_{(p,q)} = T_{(p,p)}A_{(p,q)} + T_{(p,p+1)}A_{(p+1,q)} + \dots + T_{(p,q-1)}A_{(q-1,q)} + T_{(p,q)}A_{(q,q)} = 0$ for all A in Alg \mathcal{L} , $T_{(p,p)} = 0$, $T_{(p,p+1)} = 0$, \dots , $T_{(p,q-1)} = 0$, $T_{(p,q)} = 0$. Since $(TA)_{(p+1,q)} = T_{(p+1,p+1)}A_{(p+1,q)} + T_{(p+1,p+2)}A_{(p+2,q)} + \cdots + T_{(p+1,q-1)}A_{(q-1,q)} + T_{(p+1,q)}A_{(q,q)} = 0$ for all A in $Alg\mathcal{L}$, $T_{(p+1,p+1)} = 0$, $T_{(p+1,p+2)} = 0, \cdots, T_{(p+1,q-1)} = 0, T_{(p+1,q)} = 0$. Since $(TA)_{(q-1,q)} = T_{(q-1,q-1)}A_{(q-1,q)} + T_{(q-1,q)}A_{(q,q)} = 0$ for all A in $\mathrm{Alg}\mathcal{L},\ T_{(q-1,q-1)} = 0, T_{(q-1,q)} = 0$. Thus (*) holds. Since $(TA)_{(q,q)} = T_{(q,q)}A_{(q,q)} = 0$ for all A in $\mathrm{Alg}\mathcal{L},\ T_{(q,q)} = 0$. If (*) holds for all T in \mathcal{A} , then $\mathcal{A} \subset \mathcal{A}_{p,q}$. **Corollary 3.** Let p and q be natural numbers such that p < q and let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_{p,q} \subset \mathcal{A} \subset \mathcal{B}_{p,q}$. Then \mathcal{A} is an ideal in $Alg\mathcal{L}$ if and only if $\mathcal{A} = \mathcal{A}_{p,q}$. **Corollary 4.** Let p and q be natural numbers such that p < q and let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_{p,q} \subset \mathcal{A} \subset \mathcal{B}^{(1)}_{p,q}$. Then \mathcal{A} is an ideal in $Alg\mathcal{L}$ if and only if $\mathcal{A} = \mathcal{A}_{p,q}$. **Corollary 5.** Let p and q be natural numbers such that p < q and let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_{p,q} \subset \mathcal{A} \subset \mathcal{B}^{(2)}_{p,q}$. Then \mathcal{A} is an ideal in $Alg\mathcal{L}$ if and only if $\mathcal{A} = \mathcal{A}_{p,q}$. **Corollary 6.** Let p and q be natural numbers such that p < q and let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_{p,q} \subset \mathcal{A} \subset \mathcal{B}^{(3)}_{p,q}$. Then \mathcal{A} is an ideal in $Alg\mathcal{L}$ if and only if $\mathcal{A} = \mathcal{A}_{p,q}$. **Corollary 7.** Let p and q be natural numbers such that p < q and let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_{p,q} \subset \mathcal{A} \subset \mathcal{B}^{(4)}_{p,q}$. Then \mathcal{A} is an ideal in $Alg\mathcal{L}$ if and only if $\mathcal{A} = \mathcal{A}_{p,q}$. If we repeat the proof of Theorem 2, then we can prove Theorem 8. **Theorem 8.** Let p a natural number and let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{B}_{p,p+1} = \{T \in Alg\mathcal{L} \mid T_{(p,p+1)} = 0\} \subset \mathcal{A} \subset Alg\mathcal{L}$. Then \mathcal{A} is an ideal in $Alg\mathcal{L}$ if and only if $\mathcal{A} = Alg\mathcal{L}$. *Proof.* Let \mathcal{A} be an ideal in Alg \mathcal{L} . Since $\mathcal{B}_{p,p+1}$ is not an ideal in Alg \mathcal{L} , there exists an operator T in \mathcal{A} but $T \notin \mathcal{B}_{p,p+1}$, i.e. $T_{(p,p+1)} \neq 0$. Let $A \in \text{Alg}\mathcal{L}$. If $A_{(p,p+1)} = 0$, then $A \in \mathcal{B}_{p,p+1}$. Since $\mathcal{B}_{p,p+1} \subset \mathcal{A}$, $A \in \mathcal{A}$. Let $A_{(p,p+1)} \neq 0$. Let G be an operator defined by $$\begin{cases} G_{(p,p+1)} = 0 \\ G_{(i,j)} = -T_{ij} \text{ otherwise.} \end{cases}$$ Then $G \in \mathcal{A}$. Let $T_1 = T + G$. Then $T_1 \in \mathcal{A}$. Let T_2 be an operator defined by $$\left\{ \begin{array}{l} T_{2(p,p+1)} = 0 \\ T_{2(i,j)} = A_{(i,j)} \end{array} \right. \mbox{ otherwise.}$$ Then $T_2 \in \mathcal{A}$. Let $x = \frac{A_{(p,p+1)}}{T_{(p,p+1)}}$. Then $A = xT_1 + T_2$ and $A \in \mathcal{A}$. Hence $\mathcal{A} = \text{Alg}\mathcal{L}$. **Theorem 9.** Let p be a natural number and let A be a linear manifold in $Alg\mathcal{L}$ such that $A_{p,p+1} \subset A \subset \mathcal{D}_1 = \{T \in Alg\mathcal{L} \mid T_{(p,p+1)} = 0 \text{ and } T_{(p,p)} = 0\}$. Then A is an ideal in $Alg\mathcal{L}$ if and only if $A = A_{p,p+1}$. *Proof.* Let \mathcal{A} be an ideal in Alg \mathcal{L} . Suppose that $\mathcal{A} \neq \mathcal{A}_{p,p+1}$. Then there exists an operator T in \mathcal{A} and $T \notin \mathcal{A}_{p,p+1}$, i.e. $T_{(p+1,p+1)} \neq 0$. Let $A \in \mathcal{D}_1$. If $A_{(p+1,p+1)} = 0$, then $A \in \mathcal{A}_{p,p+1}$. Since $\mathcal{A}_{p,p+1} \subset \mathcal{A}$, $A \in \mathcal{A}$. Let $A_{(p+1,p+1)} \neq 0$. Let A_1 be an operator defined by $$\left\{ \begin{array}{l} A_{1(p+1,p+1)} = 0 \\ A_{1(i,j)} = -T_{(i,j)} \end{array} \right. \text{ otherwise}.$$ Then $A_1 \in \mathcal{A}_{p,p+1}$. Since $\mathcal{A}_{p,p+1} \subset \mathcal{A}$, $A_1 \in \mathcal{A}$. Put $T_1 = T + A_1$. Then $T_1 \in \mathcal{A}$. Let T_2 be an operator defined by $$\left\{ \begin{array}{l} T_{2(p+1,p+1)} = 0 \\ T_{2(i,j)} = A_{(i,j)} \end{array} \right. \text{otherwise}.$$ Then $T_2 \in \mathcal{A}_{p,p+1}$. Since $\mathcal{A}_{p,p+1} \subset \mathcal{A}$, $T_2 \in \mathcal{A}$. Put $x = \frac{A_{(p+1,p+1)}}{T_{(p+1,p+1)}}$. Then $xT_1 \in \mathcal{A}$, $A = xT_1 + T_2$ and $A \in \mathcal{A}$. So $\mathcal{A} = \mathcal{D}_1$. It is a contradiction. Hence $\mathcal{A} = \mathcal{A}_{p,p+1}$. We can prove the following theorem by the similar proof of Theorem 9. **Theorem 10.** Let p be a natural number and let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_{p,p+1} \subset \mathcal{A} \subset \mathcal{D}_2 = \{T \in Alg\mathcal{L} \mid T_{(p,p+1)} = 0 \text{ and } T_{(p+1,p+1)} = 0\}$. Then \mathcal{A} is an ideal in $Alg\mathcal{L}$ if and only if $\mathcal{A} = \mathcal{A}_{p,p+1}$. We denote $\mathcal{A}_{p,q} \cap \mathcal{A}_0$ by $\mathcal{A}_{p,q}^{(0)}$. **Theorem 11.** Let p and q be natural numbers (p < q). Let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_{p,p+1}^{(0)} \subset \mathcal{A} \subset \mathcal{A}_0$. Then \mathcal{A} is an ideal in $Alg\mathcal{L}$ if and only if $\mathcal{A} = \mathcal{A}_{p,p+1}^{(0)}$ or $\mathcal{A} = \mathcal{A}_0$. *Proof.* Let \mathcal{A} be an ideal in Alg \mathcal{L} . Assume that $\mathcal{A} \neq \mathcal{A}_{p,p+1}^{(0)}$. Then there exists an operator $T \in \mathcal{A}$ and $T \notin \mathcal{A}^{(0)}_{p,p+1}$, i.e. $T_{(p,p+1)} \neq 0$ and $T_{(i,i)} = 0$ for all $i \in \mathbb{N}$. Let $A \in \mathcal{A}_0$. If $A_{(p,p+1)} = 0$, then $A \in \mathcal{A}_{p,p+1}^{(0)}$ and so $A \in \mathcal{A}$. Let $A_{(p,p+1)} \neq 0$. Let A_1 be an operator defined by $$\begin{cases} A_{1(p,p+1)} = 0 \\ A_{1(i,j)} = A_{(i,j)} \text{ otherwise.} \end{cases}$$ Then $A_1 \in \mathcal{A}^{(0)}_{p,p+1}$. Since $\mathcal{A}^{(0)}_{p,p+1} \subset \mathcal{A}$, $A_1 \in \mathcal{A}$. Define an operator T_1 by $$\begin{cases} T_{1(p,p+1)} = 0 \\ T_{1(i,j)} = -T_{(i,j)} \text{ otherwise.} \end{cases}$$ Then $T_1 \in \mathcal{A}^{(0)}_{p,p+1}$. Since $\mathcal{A}^{(0)}_{p,p+1} \subset \mathcal{A}$, $T_1 \in \mathcal{A}$. Let $T_2 = T + T_1$. Then $T_2 \in \mathcal{A}$ and $T_{2(p,p+1)} = T_{(p,p+1)} + T_{1(p,p+1)} = T_{(p,p+1)}$ and $T_{2(i,j)} = 0$ otherwise. Put $x = \frac{A_{(p,p+1)}}{T_{(p,p+1)}}$. Then $xT_2 + A_1 = A$ and so $A \in \mathcal{A}$. Hence $\mathcal{A} = \mathcal{A}_0$. **Theorem 12.** Let p and q be natural numbers (p < q). Then i) $A_{p,p+1} \supset A_{p,p+2} \supset A_{p,p+3} \supset \cdots$. - *ii)* $A_{p,p+1}^{(0)} \supset A_{p,p+2}^{(0)} \supset A_{p,p+3}^{(0)} \supset \cdots$. *iii)* $A_{p,q} \subset A_{p+1,q} \subset A_{p+2,q} \subset \cdots \subset A_{q-1,q}$. *iv)* $A_{p,q}^{(0)} \subset A_{p+1,q}^{(0)} \subset A_{p+2,q}^{(0)} \subset \cdots \subset A^{(0)}_{q-1,q}$. *v)* $A_{p,q} \supset A_{p,q+1} \supset A_{p,q+2} \supset \cdots$. *vi)* $A_{p,q}^{(0)} \supset A_{p,q+1}^{(0)} \supset A_{p,q+2}^{(0)} \supset \cdots$. Let \mathcal{A} be an ideal in Alg \mathcal{L} . Let $X=\{\ (p,q)\mid T_{(p,q)}=0 \text{ for all }$ $T \in \mathcal{A}$ }. Let i, j be natural numbers and let $E_{i,j}$ be the operator whose (i,j)-component is 1 and all other entries are 0. Let $k \in \mathbb{N}$ and let $n \in \mathbb{N}$. Put $E_n^{(k)} = \sum_{i=1}^n E_{i+k}, E^{(k)} = \sum_{i=1}^\infty E_{i+k}$. Then $E_n^{(k)} \longrightarrow E^{(k)}(\text{strongly}).$ **Lemma 13.** Let A be a strongly closed ideal in $Alg\mathcal{L}$. Assume that $X = \{ (p,q) \mid T_{(p,q)} = 0 \text{ for all } T \in \mathcal{A} \} = \emptyset. \text{ Then } E^{(k)} \in \mathcal{A} \text{ for all } T \in \mathcal{A} \}$ $k \in \mathbb{N}$. *Proof.* Let k be a natural number. Since $X = \emptyset$, there exists $T^{(k,i)} \in \mathcal{A}$ such that $T^{(k,i)}_{(i,i+k)} \neq 0$ for each $i \in \mathbb{N}$. Let $T_i' =$ $E_{i} T^{(k,i)} E_{i+k} = T^{(k,i)}_{(i,i+k)} E_{i}_{i+k}$. Then $T_{i}' \in \mathcal{A}$ because \mathcal{A} is an ideal in Alg \mathcal{L} . Since $T^{(k,i)}_{(i,i+k)} \neq 0$ and \mathcal{A} is an ideal in Alg \mathcal{L} , $E_{i}_{i+k} \in$ \mathcal{A} for each $i \in \mathbb{N}$. Since \mathcal{A} is an ideal in $Alg\mathcal{L}$, $E_i^{(k)} = \sum_{i=1}^n E_{i+k} \in \mathcal{A}$ for all $n \in \mathbb{N}$. Since $E_n^{(k)} \longrightarrow E^{(k)}$ (strongly) and \mathcal{A} is strongly closed, $E^{(k)} \in \mathcal{A} \text{ for all } k \in \mathbb{N}.$ **Theorem 14.** Let A be a strongly closed ideal in $Alg\mathcal{L}$. If $X = \emptyset$, then $A_0 \subset A$. *Proof.* Let $A = (a_{ij}) \in \mathcal{A}_0$. Let B be an operator defined by $$\begin{cases} B_{(1,k)} = 0 (k = 1, 2, \cdots) \\ B_{(i,j)} = a_{i-1 \ j} (i = 2, 3, \cdots \ and \ j = 1, 2, \cdots). \end{cases}$$ Then $B \in \text{Alg}\mathcal{L}$. By Lemma 13, $E^{(1)} = \sum_{i=1}^{\infty} E_{i} E_{i+1}$ is in \mathcal{A} . Hence $E^{(1)}B = A \in \mathcal{A}.$ **Theorem 15.** Let \mathcal{A} be a linear manifold in $Alg\mathcal{L}$ such that $\mathcal{A}_0 \subset$ $\mathcal{A} \subset \mathcal{A}_1$. Then \mathcal{A} is an ideal in Alg \mathcal{L} if and only if $\mathcal{A} = \mathcal{A}_0$. *Proof.* Let \mathcal{A} be an ideal in Alg \mathcal{L} . Since \mathcal{A}_1 is not an ideal in Alg \mathcal{L} , there exists an operator T in A_1 such that $T \notin A$. Let $T_{(i,i)} = \alpha(i = 1)$ $1,2,\cdots$). Let $A \in \mathcal{A}$ and let $A_{(i,i)} = \beta(i=1,2,\cdots)$. If $\beta=0$, then $A \in \mathcal{A}_0$. If $\beta \neq 0$, then $A - (A - \beta I) = \beta I \in \mathcal{A}$. Since $\beta \neq 0$, $I \in \mathcal{A}$. So $IS = S \in \mathcal{A}$ for all S in $Alg\mathcal{L}$. Hence $\mathcal{A} = Alg\mathcal{L}$. It is a contradiction. So $\beta = 0$ and hence $\mathcal{A} = \mathcal{A}_0$. ## References - [1] F. Gilfeather, A. Hopenwasser, and D. Larson, Reflexive algebras with finite width lattices, tensor products, cohomology, compact, J. Funct. Anal., **55** (1984), 176-199. - [2] T. D. Hudson, L. W. Marcoux, and A. R. Sourour, Lie ideal in Triangular operator algebras, Trans. Amer. Math. Soc., 350 (1998), 3321-3339. - Y. S. Jo, Isometris of Tridiagonal algebras, Pacific J. Math., 140 (1989), 97-115. - [4] Y. S. Jo and T. Y. Choi, *Isomorphisms of AlgL*_n and $AlgL_{\infty}$, Michigan Math. J., **37** (1990),305-314. - [5] J. H. Kang, Lie ideals in Tridiagonal Algebra $Alg\mathcal{L}_{\infty}$, Bull. of Korean Math. Soc., **52** (2015), 351-361. - [6] S. K. Lee and J. H. Kang, *Ideals in Tridiagonal Algebra Alg* \mathcal{L}_{∞} , J. Appl. Math. Informatics, **34** (2016), 257-267. - [7] L. W. Marcoux and A. R. Sourour, Conjugation-Invariant subspace and Lie ideals in Non-Self-adjoint operator algebras, J. London Math. Soc.(2), 65 (2002), 493-512. Sang Ki Lee Department of Mathematics Education, Daegu University, Daegu, 38453, Korea. E-mail: Sangklee@daegu.ac.kr Joo Ho Kang Department of Mathematics, Daegu University, Daegu, 38453, Korea. E-mail: jhkang@daegu.ac.kr