DOI QR코드

DOI QR Code

BOUNDED FUNCTION ON WHICH INFINITE ITERATIONS OF WEIGHTED BEREZIN TRANSFORM EXIST

  • Jaesung Lee (Department of Mathematics, Sogang University)
  • Received : 2023.04.03
  • Accepted : 2023.09.05
  • Published : 2023.09.30

Abstract

We exhibit some properties of the weighted Berezin transform Tαf on L(Bn) and on L1(Bn). As the main result, we prove that if f ∈ L(Bn) with limk→∞ Tkαf exists, then there exist unique M-harmonic function g and $h{\in}{\bar{(I-T_{\alpha})L^{\infty}(B_n)}}$ such that f = g + h. We also show that of the norm of weighted Berezin operator Tα on L1(Bn, ν) converges to 1 as α tends to infinity, where ν is an ordinary Lebesgue measure.

Keywords

References

  1. P. Ahern, M. Flores and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (2) (1993), 380-397. https://doi.org/10.1006/jfan.1993.1018
  2. H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. 77 (2) (1963), 335-386. https://doi.org/10.2307/1970220
  3. Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328, https://doi.org/10.1016/0022-1236(86)90101-1
  4. J. Lee., Weighted Berezin transform in the polydisc, J. Math. Anal. Appl. 338 (2) (2008), 1489-1493. https://doi.org/10.1016/j.jmaa.2007.06.048
  5. J. Lee, A Characterization of M-harmonicity, Bull. Korean Math. Soc. 47 (2010), 113-119.
  6. J. Lee, Iterates of weighted Berezin transform under invariant measure in the unit ball, Korean J. Math. 28 (3) (2020), 449-457. https://doi.org/10.11568/KJM.2020.28.3.449
  7. J. Lee, More properties of weighted Berezin transform in the unit ball of ℂn, Korean J. Math. 30 (3) (2022), 459-465. https://doi.org/10.11568/KJM.2022.30.3.459
  8. W. Rudin, Function theory in the unit ball of ℂn, Springer-Verlag, New York Inc., 1980.