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SUMMABILITY IN MUSIELAK–ORLICZ HARDY SPACES

Jun Liu and Haonan Xia

Abstract. Let φ : Rn × [0,∞) → [0,∞) be a growth function and

Hφ(Rn) the Musielak–Orlicz Hardy space defined via the non-tangential
grand maximal function. A general summability method, the so-called

θ-summability is considered for multi-dimensional Fourier transforms in

Hφ(Rn). Precisely, with some assumptions on θ, the authors first prove
that the maximal operator of the θ-means is bounded from Hφ(Rn) to

Lφ(Rn). As consequences, some norm and almost everywhere conver-

gence results of the θ-means, which generalizes the well-known Lebesgue’s
theorem, are then obtained. Finally, the corresponding conclusions of

some specific summability methods, such as Bochner–Riesz, Weierstrass

and Picard–Bessel summations, are also presented.

1. Introduction

The main purpose of this article is to investigate the so-called θ-summability,
which is generated by a single function θ and includes many well-known sum-
mations, in the Musielak–Orlicz Hardy space Hφ(Rn). Recall that the study
on summability means was originally motivated by the convergence problem of
the Dirichlet integrals which are defined by setting, for any f ∈ L1(Rn) and
x ∈ Rn,

(1.1) sδf(x) :=

∫
Rn

1{z∈Rn:|z|≤δ}(ξ)f̂(ξ)e
2πıx·ξ dξ, ∀ δ ∈ (0,∞),

here and thereafter, ı :=
√
−1, x · ξ :=

∑n
k=1 xkξk for any x := (x1, . . . , xn),

ξ := (ξ1, . . . , ξn) ∈ Rn, and f̂ denotes the Fourier transform of f , which is
defined by setting, for any ξ ∈ Rn,

f̂(ξ) :=

∫
Rn

f(x)e−2πıx·ξ dx.
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First, Carleson [6] and Hunt [12] proved that, for any one-dimensional function
f ∈ Lp(R),

(1.2) lim
δ→∞

sδf = f almost everywhere,

which now is known as one of the deepest results in harmonic analysis. More-
over, the convergence of (1.2) also holds true in the Lp(R)-norm (see, for in-
stance, [11]). However, the convergence in (1.2) does not hold true for any
higher dimensional function f ∈ Lp(Rn), except the norm convergence for
p = 2 (see, for instance, Stein and Weiss [24] or Grafakos [11]). But more
than this, the convergence in (1.2) does not hold true for p = 1 even when
n = 1. This motivates one to replace the Dirichlet integrals by some summa-
bility means, which are defined via replacing the characteristic function in (1.1)
by various functions with higher regularity [see (3.2) below]. Via doing this,
one can extend (1.2) to the case p ≤ 1 for the classical Hardy spaces and also
to the case p = 1 for the space L1(Rn). This is just the main motivation for
one to investigate the summability means.

It is well known that Stein, Taibleson and Weiss [22] proved for the Bochner–
Riesz summability that the maximal operator σθ

∗ of the θ-means is bounded
from the classical Hardy Hp(Rn) to the Lebesgue space Lp(Rn) with the index
p greater than some constant p0. This result has been extended to many other
Hardy-type and other summability methods. For more progress about this
topic, we refer the reader to [17,18,21,22,27,29,30] and references therein.

On the other hand, via the non-tangential grand maximal function, Ky [15]
introduced the Musielak–Orlicz Hardy space Hφ(Rn), which is a generalization
of both the Orlicz–Hardy space (see [13,25]) and the weighted Hardy space (see
[10]), where φ : Rn × [0,∞) → [0,∞) is a growth function (see Definition 2.2
below). It is worth noticing that some special Musielak–Orlicz Hardy spaces
appear naturally in the study of the products of functions in BMO(Rn) and
H1(Rn) (see, for instance, [3, 16]), and the endpoint estimates for both the
div-curl lemma and the commutators of Calderón–Zygmund operators (see, for
instance, [2, 14]). For more progress on the theory of Musielak–Orlicz-type
spaces, we refer the reader to [1, 31] and references therein.

In this article, under some conditions on θ and φ, we show that the maximal
operator σθ

∗ is bounded from Hφ(Rn) to Lφ(Rn). As a consequence, we prove
some norm and almost everywhere convergence results for the θ-means. In this
way, the well-known Lebesgue’s theorem is generalized. As special cases of the
θ-summation, we consider the Bochner–Riesz, Weierstrass and Picard–Bessel
summations.

Finally, we make some conventions on notation. We always define N :=
{1, 2, . . .}, Z+ := {0} ∪ N and 0 to be the origin of Rn. For each α :=
(α1, . . . , αn) ∈ (Z+)

n =: Zn
+, let |α| := α1 + · · ·+ αn and

∂α :=

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

.
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The symbol C means a positive constant independent of the main parameters,
but may vary in different settings. The symbol f ≲ h means f ≤ Ch and,
if f ≲ h ≲ f , then we write f ∼ h. In addition, for any set Ω ⊂ Rn, we

denote by 1Ω its characteristic function, by Ω∁ the set Rn \Ω and by |Ω| its n-
dimensional Lebesgue measure. For any t ∈ [1,∞], we denote by t′ its conjugate
index, namely, 1/t+ 1/t′ = 1 and by ⌊s⌋ the largest integer not greater than s
for any s ∈ R.

2. Preliminaries

In this section, we recall the notion of the Musielak–Orlicz Hardy spaces via
the non-tangential grand maximal functions.

We begin with the notion of the Orlicz functions (see, for instance, [15]).
Recall that a function Φ : [0,∞) → [0,∞) is called an Orlicz function if
it is non-decreasing, Φ(0) = 0, limt→∞ Φ(t) = ∞ and, for any t ∈ (0,∞),
Φ(t) ∈ (0,∞). The function Φ is said to be of upper (resp. lower) type p for
some p ∈ (−∞,∞) if there exists a positive constant C such that, for any
s ∈ [1,∞) (resp. s ∈ [0, 1)) and t ∈ [0,∞),

Φ(st) ≤ CspΦ(t).

For a given function φ : Rn × [0,∞) → [0,∞) such that, for any x ∈ Rn,
φ(x, ·) is an Orlicz function, φ is said to be of uniformly upper (resp. lower)
type p for some p ∈ (−∞,∞) if there exists a positive constant C such that,
for any x ∈ Rn, s ∈ [1,∞) (resp. s ∈ [0, 1)) and t ∈ [0,∞),

φ(x, st) ≤ Cspφ(x, t).

Moreover, the critical uniformly lower type index i(φ) of φ is defined by

i(φ) := sup {p ∈ (−∞,∞) : φ is of uniformly lower type p} .(2.1)

We now recall the classes of uniformly Muckenhoupt weights; see [15].

Definition 2.1. Let p ∈ [1,∞). A function φ : Rn × [0,∞) → [0,∞) is said
to satisfy the uniformly Muckenhoupt condition for some p ∈ [1,∞), denoted
by φ ∈ Ap(Rn), if, when p ∈ (1,∞),

sup
t∈(0,∞)

sup
B⊂Rn

{
1

|B|

∫
B

φ(x, t) dx

}{
1

|B|

∫
B

[φ(y, t)]−
1

p−1 dy

}p−1

< ∞

and, when p = 1,

sup
t∈(0,∞)

sup
B⊂Rn

{
1

|B|

∫
B

φ(x, t) dx

}{
ess sup
y∈B

[φ(y, t)]−1

}
< ∞,

where the first supremums are taken over all t ∈ [0,∞) and the second ones
over all balls B ⊂ Rn. Moreover, let

A∞(Rn) :=
⋃

p∈[1,∞)

Ap(Rn).
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The critical weight index of φ ∈ A∞(Rn) is defined by

q(φ) := inf {p ∈ [1,∞) : φ ∈ Ap(Rn)} .(2.2)

The following notion of growth functions comes from [15].

Definition 2.2. A function φ : Rn×[0,∞) → [0,∞) is called a growth function
if it satisfies the following conditions:

(i) φ is a Musielak–Orlicz function, namely,
(i)1 the function φ(x, ·) : [0,∞) → [0,∞) is an Orlicz function for all

x ∈ Rn;
(i)2 the function φ(·, t) is a measurable function for all t ∈ [0,∞).

(ii) φ ∈ A∞(Rn).
(iii) φ is of uniformly lower type p for some p ∈ (0, 1] and of uniformly

upper type 1.

Throughout this article, we always assume that φ is a growth function as in
Definition 2.2 and, for any measurable subset Ω ⊂ Rn and t ∈ [0,∞), define

φ(Ω, t) :=

∫
Ω

φ(x, t) dx.

Recall also that the Musielak–Orlicz space Lφ(Rn) is defined to be the collection
of all measurable functions f on Rn such that

∫
Rn φ(x, |f(x)|/λ) dx < ∞ for

some λ ∈ (0,∞), equipped with the Luxemburg–Nakano quasi-norm ∥·∥Lφ(Rn),
defined by setting, for any f ∈ Lφ(Rn),

∥f∥Lφ(Rn) := inf

{
λ ∈ (0,∞) :

∫
Rn

φ(x, |f(x)|/λ) dx ≤ 1

}
.

Denote by S(Rn) the space of all Schwartz functions and by S ′(Rn) its dual
space (namely, the space of all tempered distributions). For any τ ∈ N, let

Sτ (Rn) :=

{
ϕ ∈ S(Rn) : sup

α∈Zn
+, |α|≤τ+1

sup
x∈Rn

(1 + |x|)(τ+2)(n+1) |∂αϕ(x)| ≤ 1

}
.

In what follows, for any ϕ ∈ S(Rn) and t ∈ (0,∞), ϕt(·) := t−nϕ( ·t ). Moreover,
for any f ∈ S ′(Rn), the non-tangential grand maximal function f∗

τ of f is
defined by setting, for any x ∈ Rn,

f∗
τ (x) := sup

ϕ∈Sτ (Rn)

sup
|y−x|<t, t∈(0,∞)

|f ∗ ϕt(y)|.

The following notion of the Musielak–Orlicz Hardy spaces is just [15, Defi-
nition 5.1].

Definition 2.3. Let τ ∈ N and φ be a growth function as in Definition 2.2.
The Musielak–Orlicz Hardy space Hφ

τ (Rn) is defined as

Hφ
τ (Rn) := {f ∈ S ′(Rn) : f∗

τ ∈ Lφ(Rn)}
and, for any f ∈ Hφ

τ (Rn), let

∥f∥Hφ
τ (Rn) := ∥f∗

τ ∥Lφ(Rn) .
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Remark 2.4. (i) Although the quasi-norm of Hφ
τ (Rn) in Definition 2.3 de-

pends on τ , it follows from [15, Theorems 5.1 and 5.2] that the space
Hφ

τ (Rn) is independent of the choice of τ as long as τ ∈ N∩ [τ(φ),∞),
Here and thereafter, for any given growth function φ,

τ(φ) :=

⌊
n

[
q(φ)

i(φ)
− 1

]⌋
(2.3)

with q(φ) and i(φ), respectively, as in (2.2) and (2.1). Thus, we always
denote simply by Hφ(Rn) the Musielak–Orlicz Hardy space.

(ii) When p ∈ (0, 1] and

φ(x, t) := tp, ∀ x ∈ Rn and t ∈ (0,∞),

the space Hφ(Rn) goes back to the classical Hardy space Hp(Rn) of
Fefferman and Stein [8].

(iii) When p ∈ (0, 1] and

φ(x, t) := w(x)tp, ∀ x ∈ Rn and t ∈ [0,∞),

where w ∈ A∞(Rn) is the Muckenhoupt weight, the space Hφ(Rn)
coincides with the classical weighted Hardy space of Garćıa-Cuerva
[10], which includes the classical Orlicz–Hardy space of Janson [13] as
a special case.

3. Boundedness of maximal θ-operators in Hφ(Rn)

Recall that, for any given p ∈ [1, 2] and any f ∈ Lp(Rn), the Fourier inversion
formula, namely,

f(x) =

∫
Rn

f̂(t)e2πıx·t dt, ∀ x ∈ Rn,

holds true if f̂ ∈ L1(Rn). This motivates the succeeding definition of θ-
summability of the Fourier transforms, which was considered in a great number
of monographs and articles; see, for instance, Butzer and Nessel [5], Grafakos
[11], Trigub and Belinsky [26] as well as Feichtinger and Weisz [9, 27–29] and
references therein. We always assume that

θ ∈ C0(R), θ(| · |) ∈ L1(Rn), θ(0) = 1 and θ is even,(3.1)

where C0(R) denotes the set of all continuous functions f satisfying that

lim
|x|→∞

|f(x)| = 0.

The m-th θ-mean of the function f ∈ Lp(Rn), with p ∈ [1, 2], is defined by
setting, for any m ∈ (0,∞) and x ∈ Rn,

σθ
mf(x) :=

∫
Rn

θ

(
|u|
m

)
f̂(u)e2πıx·u du.(3.2)

This integral is well defined because θ ∈ Lp(R) with p ∈ [1, 2] and f̂ ∈ Lp′
(Rn).
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Let θ0(x) := θ(|x|) for any x ∈ Rn and assume that

θ̂0 ∈ L1(Rn).(3.3)

For an integrable function f , m ∈ (0,∞) and x ∈ Rn, we can rewrite σθ
mf(x)

as

σθ
mf(x) =

∫
Rn

f(x− t)Kθ
m(t) dt = f ∗Kθ

m(x),(3.4)

where the m-th θ-kernel is defined by setting, for any t ∈ Rn,

Kθ
m(t) :=

∫
Rn

θ

(
|u|
m

)
e2πıt·u du = mnθ̂0(mt).

It is easy to check that these two definitions in (3.2) and (3.4) coincide for any
f ∈ Lp(Rn) with p ∈ [1, 2]. We can extend the definition of the θ-means to any
f ∈ Hφ(Rn) by setting, for any x ∈ Rn,

(3.5) σθ
mf(x) := f ∗Kθ

m(x),

where m ∈ (0,∞). Furthermore, the maximal θ-operator σθ
∗ is defined by

setting, for any f ∈ Hφ(Rn),

σθ
∗f := sup

m∈(0,∞)

∣∣σθ
mf
∣∣ .

The main result of this article is the following boundedness of maximal θ-
operators from Hφ(Rn) to Lφ(Rn).

Theorem 3.1. Let θ and θ0 be, respectively, as in (3.1) and (3.3) satisfying
that there exists a positive constant β ∈ (1,∞) such that, for any α ∈ (Z+)

n

and x ∈ Rn \ {0},

(3.6)
∣∣∣∂αθ̂0(x)

∣∣∣ ≤ C(α,β) |x|
−β

,

where the positive constant C(α,β) is independent of x. Assume that φ is a
growth function such that

(3.7)
i(φ)

q(φ)
∈
(
n

β
,∞
)
,

where i(φ) and q(φ) are, respectively, as in (2.1) and (2.2). Then there exists
a positive constant C(i(φ),q(φ)) such that, for any f ∈ Hφ(Rn),∥∥σθ

∗f
∥∥
Lφ(Rn)

≤ C(i(φ),q(φ)) ∥f∥Hφ(Rn) .

To show Theorem 3.1, we need some technical lemmas. We begin with
recalling the notion of the space Lq

φ(E). For any measurable subset E ⊂ Rn,
the space Lq

φ(Ω) is defined to be the set of all measurable functions f on Ω
such that

∥f∥Lq
φ(Ω) :=


sup

t∈(0,∞)

[
1

φ(Ω, t)

∫
Ω

|f(x)|qφ(x, t) dx
]1/q

< ∞ if q ∈ [1,∞),

∥f∥L∞(Ω) < ∞ if q = ∞,

(3.8)
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where φ is a given growth function.
The succeeding notions of both atoms and Musielak–Orlicz finite atomic

Hardy space are from [15].

Definition 3.2. Let φ be a growth function as in Definition 2.2 and q(φ) as
in (2.2).

(i) An triplet (φ, q, s) is said to be admissible if q ∈ (q(φ),∞] and s ∈
Z+ ∩ [τ(φ),∞), where τ(φ) is as in (2.3).

(ii) For a given admissible triplet (φ, q, s), a measurable function a on Rn

is called a Musielak–Orlicz (φ, q, s)-atom [shortly, a (φ, q, s)-atom] if
(ii)1 supp a ⊂ B, where B ⊂ Rn is a ball;
(ii)2 ∥a∥Lq

φ(Rn) ≤ ∥1B∥−1
Lφ(Rn);

(ii)3 for any β ∈ Zn
+ with |β| ≤ s,

∫
Rn a(x)xβ dx = 0.

(iii) For a given admissible triplet (φ, q, s), theMusielak–Orlicz finite atomic
Hardy space Hφ,q,s

fin (Rn) is defined to be the set of all f ∈ S ′(Rn)
satisfying that there exist I ∈ N, a sequence {λi}i∈[1,I]∩N ⊂ C and
a sequence of (φ, q, s)-atoms, {ai}i∈[1,I]∩N, supported respectively in

{Bi}i∈[1,I]∩N ⊂ Rn such that f =
∑I

i=1 λiai in S ′(Rn). Moreover, for
any f ∈ Hφ,q,s

fin (Rn), define

∥f∥Hφ,q,s
fin (Rn) := inf

{
Λ
(
{λiai}i∈[1,I]∩N

)}
,(3.9)

where the infimum is taken over all finite decompositions of f as above
and, for any I ∈ N,

Λ({λiai}i∈[1,I]∩N) := inf

λ ∈ (0,∞) :
∑

i∈[1,I]∩N

φ

(
Bi,

|λi|
λ∥1Bi

∥Lφ(Rn)

)
≤ 1

 .

In addition, the space L∞
c,s(Rn), with s ∈ N, is defined to be the set of all

functions f ∈ L∞(Rn) with compact support such that, for any γ ∈ Zn
+ with

|γ| ≤ s,
∫
Rn f(x)xγ dx = 0. Then we have some conclusions as follows, which

can be found in [4].

Lemma 3.3. Let φ be as in Definition 2.2, q ∈ (q(φ),∞) and s ∈ N∩[τ(φ),∞),
where q(φ) and τ(φ) are as in (2.3). Then,

(i) for any f ∈ L∞
c,s(Rn), there exist some I ∈ N, a sequence {λi}i∈[1,I]∩N ⊂

C and a sequence of (φ, q, s)-atoms, {ai}i∈[1,I]∩N, such that

f =

I∑
i=1

λiai

holds true both in S ′(Rn) and almost everywhere, and

Λ
(
{λiai}i∈[1,I]∩N

)
≲ ∥f∥Hφ(Rn).

(ii) L∞
c,s(Rn) is dense in Hφ(Rn).
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The following items are just, respectively, [15, Lemma 4.5(i), Lemma 4.1(i)
and Lemma 4,3(i)].

Lemma 3.4. Let φ be a growth function as in Definition 2.2.

(i) If φ ∈ Aq(Rn) with some q ∈ [1,∞), then there exists a positive con-
stant C such that, for any ball B ⊂ Rn, subset Ω ⊂ B and t ∈ (0,∞),

φ(B, t)

φ(Ω, t)
≤ C

[
|B|
|Ω|

]q
.

(ii) There exists a positive constant C such that, for any {(x, ti)}i∈N ⊂
Rn × [0,∞),

φ

(
x,
∑
i∈N

ti

)
≤ C

∑
i∈N

φ(x, ti).

(iii) For any given positive constant C, there exists a positive constant C̃
such that, for any t ∈ (0,∞) and measurable function f on Rn,∫

Rn

φ

(
x,

|f(x)|
t

)
dx ≤ C implies ∥f∥Lφ(Rn) ≤ C̃t.

Recall that, for any locally integrable function f , the Hardy–Littlewood max-
imal function MHL(f) is defined by setting, for any x ∈ Rn,

MHL(f)(x) := sup
x∈B

1

|B|

∫
B

|f(y)| dy,(3.10)

where the supremum is taken over all balls B ∋ x.
We also need the boundedness of MHL on the space Lφ(Rn), which comes

from [19, Corollary 2.8].

Lemma 3.5. Let φ be a Musielak–Orlicz function with uniformly lower type
p−φ and uniformly upper type p+φ satisfying q(φ) < p−φ ≤ p+φ < ∞, where q(φ) is
as in (2.2). Then the Hardy–Littlewood maximal operator MHL is bounded on
Lφ(Rn) and there exists a positive constants C such that, for any f ∈ Lφ(Rn),∫

Rn

φ (x,MHLf(x)) dx ≤ C

∫
Rn

φ(x, |f(x)|) dx.

By [27, (5.19)] and [7, Lemma 3.2(ii)], we easily obtain the following conclu-
sion; the details are omitted.

Lemma 3.6. Assume that θ and θ0 are, respectively, as in (3.1) and (3.3).
Let q ∈ (1,∞] and φ ∈ Aq(Rn). Then there exists a positive constant C such
that, for any locally integrable function f and t ∈ (0,∞),∫

Rn

[
σθ
∗f(x)

]q
φ(x, t) dx ≤ C

∫
Rn

|f(x)|qφ(x, t) dx.

Next, we prove Theorem 3.1.
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Proof of Theorem 3.1. Let all notation be the same as those in Theorem 3.1
and (φ, q, s) an admissible triplet. We show this theorem by three steps.

Step 1. In this step, we aim to prove that there exists a positive constant
C(φ, q, s), depending on φ, q and s, such that, for any λ ∈ (0,∞) and (φ, q, s)-
atom a supported in some ball B ⊂ Rn,∫

Rn

φ
(
x, λσθ

∗(a)(x)
)
dx ≤ C(φ, q, s)φ

(
B, λ∥1B∥−1

Lφ(Rn)

)
.(3.11)

To this end, we rewrite∫
Rn

φ
(
x, λσθ

∗(a)(x)
)
dx =

∫
2B

φ
(
x, λσθ

∗(a)(x)
)
dx+

∫
(2B)∁

· · ·(3.12)

=: I1 + I2,

where 2B denotes the ball with the same center and with the twice radius of
B.

When q ∈ (q(φ),∞), from the fact that φ is non-decreasing and of uniformly
upper type 1, Lemma 3.4(i), the Hölder inequality, Lemma 3.6 and Definition
3.2(ii), it follows that, for any λ ∈ (0,∞),

I1 ≲
∫
2B

[
σθ
∗(a)(x)

∥1B∥−1
Lφ(Rn)

+ 1

]
φ
(
x, λ ∥1B∥−1

Lφ(Rn)

)
dx(3.13)

≲ φ
(
B, λ ∥1B∥−1

Lφ(Rn)

)
+ ∥1B∥Lφ(Rn)

{∫
2B

[
σθ
∗(a)(x)

]q
× φ

(
x, λ ∥1B∥−1

Lφ(Rn)

)
dx
}1/q [

φ
(
B, λ ∥1B∥−1

Lφ(Rn)

)](q−1)/q

≲ φ
(
B, λ ∥1B∥−1

Lφ(Rn)

)
+ ∥1B∥Lφ(Rn) ∥a∥Lq

φ(B)φ
(
B, λ ∥1B∥−1

Lφ(Rn)

)
≲ φ

(
B, λ ∥1B∥−1

Lφ(Rn)

)
.

To deal with I2, by an argument similar to those used in the proofs of [21, (5.10)]
and [20, (3.6)] with some slight modifications (see also [30] for the variable

atoms), we conclude that, for any x ∈ (2B)∁,

σθ
∗(a)(x) ≲ ∥1B∥−1

Lφ(Rn) [MHL (1B) (x)]
β/n

.(3.14)

Note that n/β < i(φ)
q(φ) [see (3.7)]. Then there exist two numbers κ ∈ (q(φ),∞)

and ν ∈ (0, i(φ)) such that nκ/β < ν, φ ∈ Aκ(Rn) and φ is of uniformly lower
type ν. Thus, φ̃(x, t) := φ(x, tβ/n) is of uniformly lower type νβ/n. Moreover,
by (3.14), Lemma 3.5 and the fact that νβ/n > κ > q(φ), we find that

I2 ≲
∫
(2B)∁

φ̃
(
x, λn/β ∥1B∥−n/β

Lφ(Rn) MHL (1B) (x)
)
dx(3.15)

≲
∫
Rn

φ̃
(
x, λn/β ∥1B∥−n/β

Lφ(Rn) 1B(x)
)
dx

∼ φ
(
B, λ ∥1B∥−1

Lφ(Rn)

)
.
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This, combined with (3.12) and (3.13), finishes the proof of (3.11) for the case
when q ∈ (q(φ),∞).

If q = ∞, then, for I1, similarly to (3.13), for any λ ∈ (0,∞), we have

I1 ≲
∫
2B

[
σθ
∗(a)(x)

∥1B∥−1
Lφ(Rn)

+ 1

]
φ
(
x, λ ∥1B∥−1

Lφ(Rn)

)
dx

≲ φ
(
B, λ ∥1B∥−1

Lφ(Rn)

)
+ ∥1B∥Lφ(Rn) ∥a∥L∞(Rn)φ

(
B, λ ∥1B∥−1

Lφ(Rn)

)
≲ φ

(
B, λ ∥1B∥−1

Lφ(Rn)

)
.

Observe that (3.15) also holds true for q = ∞. The proof of (3.11) is completed.
Step 2. Let q ∈ (q(φ),∞), where q(φ) is as in (2.2). In this step, we prove

that there exists a positive constant C(i(φ),q(φ)) such that, for any f ∈ L∞
c,s(Rn),∥∥σθ

∗f
∥∥
Lφ(Rn)

≤ C(i(φ),q(φ)) ∥f∥Hφ(Rn) .(3.16)

For this purpose, for any f ∈ L∞
c,s(Rn), by Lemma 3.3(i), we know that there

exist some I ∈ N, a sequence {λi}i∈[1,I]∩N ⊂ C and a sequence of (φ, q, s)-
atoms, {ai}i∈[1,I]∩N, supported respectively in {Bi}i∈[1,I]∩N ⊂ Rn, such that

f =
∑I

i=1 λiai holds true both in S ′(Rn) and almost everywhere, and

Λ
(
{λiai}i∈[1,I]∩N

)
≲ ∥f∥Hφ(Rn)

and ∑
i∈[1,I]∩N

φ

(
Bi,

|λi|∥1Bi∥−1
Lφ(Rn)

Λ({λiai}i∈[1,I]∩N)

)
= 1.

From this, Lemma 3.4(ii) and (3.11), we deduce that∫
Rn

φ

(
x,

σθ
∗f(x)

Λ({λiai}i∈[1,I]∩N)

)
dx ≲

∑
i∈[1,I]∩N

∫
Rn

φ

(
x,

|λi|σθ
∗(ai)(x)

Λ({λiai}i∈[1,I]∩N)

)
dx

≲
∑

i∈[1,I]∩N

φ

(
Bi,

|λi|∥1Bi∥−1
Lφ(Rn)

Λ({λiai}i∈[1,I]∩N)

)
≲ 1,

which, together with Lemma 3.4(iii), further implies that∥∥σθ
∗f
∥∥
Lφ(Rn)

≲ Λ({λiai}i∈[1,I]∩N) ≲ ∥f∥Hφ(Rn) .

This finishes the proof of Step 2.
Step 3. In this step, we show that (3.16) holds true for any f ∈ Hφ(Rn). To

do this, let f ∈ Hφ(Rn). Then, by the density of the set L∞
c,s(Rn) in Hφ(Rn)

with respect to the quasi-norm ∥ · ∥Hφ(Rn) (see Lemma 3.3(ii)), we conclude
that there exists a Cauchy sequence {fj}j∈N ⊂ L∞

c,s(Rn) such that

lim
j→∞

∥fj − f∥Hφ(Rn) = 0.
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From this, the linearity of σθ
∗ and the fact that (3.16) holds true on the space

L∞
c,s(Rn), it follows that, as j, i → ∞,∥∥σθ

∗(fj)− σθ
∗(fi)

∥∥
Hφ(Rn)

=
∥∥σθ

∗(fj − fi)
∥∥
Hφ(Rn)

≲ ∥fj − fi∥Hφ(Rn) → 0,

which implies that {σθ
∗(fj)}j∈N is a Cauchy sequence in Hφ(Rn). By this and

the completeness ofHφ(Rn) (see [15, Proposition 5.2]), we find that there exists
some g ∈ Hφ(Rn) such that g = limj→∞ σθ

∗(fj) in Hφ(Rn). Let σθ
∗(f) := g.

Then we know from (3.16) that σθ
∗(f) is well defined and, moreover, for any

f ∈ Hφ(Rn),∥∥σθ
∗(f)

∥∥
Hφ(Rn)

≲ lim sup
j→∞

[∥∥σθ
∗(f)− σθ

∗(fj)
∥∥
Hφ(Rn)

+
∥∥σθ

∗(fj)
∥∥
Hφ(Rn)

]
≲ lim sup

j→∞

∥∥σθ
∗(fj)

∥∥
Hφ(Rn)

≲ lim
j→∞

∥fj∥Hφ(Rn) ∼ ∥f∥Hφ(Rn).

This proves that (3.16) holds true for any f ∈ Hφ(Rn) and hence finishes the
proof of Theorem 3.1. □

Remark 3.7. If φ is as in Remark 2.4(ii), then i(φ)
q(φ) = p and Theorem 3.1 goes

back to the classical result with β ∈ (n,∞) and p ∈ (n/β,∞) (see Weisz [29]).
The classical result was proved in a special case, namely, for the Bochner–Riesz
means, in Stein et al. [23] and. For the same case, a counterexample was also
given in [23] to illustrate that the same conclusion is not true for p ∈ (0, n/β].

As applications of Theorem 3.1, we obtain some convergence results.

Corollary 3.8. With the same assumptions as in Theorem 3.1, if f ∈ Hφ(Rn),
then σθ

mf converges almost everywhere as well as in the Lφ(Rn) quasi-norm as
m → ∞.

Proof. Assume first that g ∈ L∞
c,s(Rn). Then, it follows from (3.5) that, for

any x ∈ Rn,

σθ
mg(x) =

∫
Rn

g

(
x− t

m

)
θ̂0(t) dt.

Observe that limm→∞
t
m = 0 for any t ∈ Rn, θ̂0 is integrable on Rn (see

(3.3)) and g ∈ L∞(Rn). By the Lebesgue dominated convergence theorem, we
conclude that, for almost every x ∈ Rn,

lim
m→∞

σθ
mg(x) =

∫
Rn

g(x)θ̂0(t) dt = g(x)θ0(0) = g(x).(3.17)

The above convergence also holds true in the Lφ(Rn) quasi-norm due to g ∈
L∞
c,s(Rn) ⊂ Hφ(Rn) which implies σθ

∗g ∈ Lφ(Rn).
Note that the set L∞

c,s(Rn) is dense in Hφ(Rn) [see Lemma 3.3(ii)]. There-
fore, for any given f ∈ Hφ(Rn) and any ε ∈ (0,∞), there exists a function
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g ∈ L∞
c,s(Rn) such that

(3.18) ∥f − g∥Hφ(Rn) < ε.

For any L ∈ (0,∞) and x ∈ Rn, let

hL(x) := sup
m,r∈[L,∞)

∣∣σθ
mf(x)− σθ

rf(x)
∣∣ and h(x) := lim

L→∞
hL(x).

To show Corollary 3.8, it suffices to prove that h = 0 almost everywhere. To
see this, for any L ∈ N and x ∈ Rn,

hL(x) ≤ sup
m∈[L,∞)

∣∣σθ
m(f − g)(x)

∣∣
+ sup

m,r∈[L,∞)

∣∣σθ
mg(x)− σθ

rg(x)
∣∣+ sup

r∈[L,∞)

∣∣σθ
r (g − f)(x)

∣∣ .
This implies that, for any x ∈ Rn,

h(x) ≤ 2σθ
∗(f − g)(x).

Combining this with Theorem 3.1 and (3.18), we obtain

∥h∥Lφ(Rn) ≤ 2
∥∥σθ

∗(f − g)
∥∥
Lφ(Rn)

≲ ∥f − g∥Hφ(Rn) ≲ ε.

Since ε ∈ (0,∞) is arbitrary, it follows that h = 0 almost everywhere, which
completes the proof of Corollary 3.8. □

The following Corollary 3.9 can be deduced from Theorem 3.1 and an argu-
ment similar to that used in the proof of [21, Corollary 2.20]; the details are
omitted.

Corollary 3.9. With the same assumptions as in Theorem 3.1, if f ∈ Hφ(Rn)
and there exists a subset I ⊂ Rn such that the restriction f |I ∈ LΦ(I), where

Φ is some growth function with i(Φ)
q(Φ) ∈ [1,∞), then

lim
m→∞

σθ
mf(x) = f(x)

for almost every x ∈ I as well as in the Lφ(I) quasi-norm.

4. Some summability methods

As special cases, we consider some summability methods.

4.1. Bochner–Riesz summation

For any α ∈ (0,∞) and γ ∈ N, the Bochner-Riesz summation is defined by
setting, for any t ∈ Rn,

θ0(t) :=

{
(1− |t|γ)α when |t| ∈ [0, 1),
0 when |t| ∈ [1,∞).

(4.1)

The next lemma can be found in Stein and Weiss [24] (see also Weisz [29]).
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Lemma 4.1. Let θ0 be as in (4.1). Then the conditions (3.1) and (3.3) are
satisfied if α ∈ (n−1

2 ,∞) and, for any β ∈ Zn
+ and x ∈ Rn \ {0},∣∣∣∂β θ̂0(x)

∣∣∣ ≤ C(α,β) |x|
−n/2−α−1/2

,

where C(α,β) is a positive constant independent of x.

By Lemma 4.1 and Theorem 3.1, we immediately have the following conclu-
sion, which is also obtained in [18]; the details are omitted.

Theorem 4.2. Let φ be a growth function and θ0 as in (4.1). If

α ∈
(
n− 1

2
,∞
)

and
i(φ)

q(φ)
∈
(

n

n/2 + α+ 1/2
,∞
)
,

where i(φ) and q(φ) are, respectively, as in (2.1) and (2.2), then there exists a
positive constant C(i(φ),q(φ)) such that, for any f ∈ Hφ(Rn),∥∥σθ

∗f
∥∥
Lφ(Rn)

≤ C(i(φ),q(φ)) ∥f∥Hφ(Rn) .

Remark 4.3. Let θ0 be as in (4.1). Then, in this special case, the corresponding
conclusions in Corollaries 3.8 and 3.9 hold true as well.

4.2. Weierstrass summation

The Weierstrass summation is defined by setting, for any t ∈ Rn,

θ0(t) := e−|t|2/2.(4.2)

It is known that θ̂0(x) = e−|x|2/2 for any x ∈ Rn. Then it is easy to verify the
following result, which also can be found in [21, Lemma 2.27].

Lemma 4.4. Let θ0 be as in (4.2). Then the conditions (3.1) and (3.3) are
satisfied and, for any β ∈ (1,∞), α ∈ Zn

+ and x ∈ Rn \ {0},∣∣∣∂αθ̂0(x)
∣∣∣ ≤ C(α,β) |x|

−β
,

where C(α,β) is a positive constant independent of x.

By this lemma and Theorem 3.1, we obtain the following Theorem 4.5; the
details are omitted.

Theorem 4.5. Let θ0 be as in (4.2). If φ is a growth function, then there
exists a positive constant C(i(φ),q(φ)) such that, for any f ∈ Hφ(Rn),∥∥σθ

∗f
∥∥
Lφ(Rn)

≤ C(i(φ),q(φ)) ∥f∥Hφ(Rn) .

Moreover, the corresponding conclusions in Corollaries 3.8 and 3.9 hold true
as well.
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4.3. Picard–Bessel summation

The Picard–Bessel summation is defined by setting, for any t ∈ Rn,

θ0(t) :=
1

(1 + |t|2)n+1
2

.(4.3)

For more summability methods, we refer the reader to [27, 29] and their refer-
ences.

Remark 4.6. Let θ0 be as in (4.3). Then Lemma 4.4, Theorem 4.5 as well as
the corresponding conclusions in Corollaries 3.8 and 3.9 hold true.
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