• Title/Summary/Keyword: bounded domain

Search Result 190, Processing Time 0.021 seconds

BOUNDARY VALUE PROBLEMS FOR THE STATIONARY NORDSTRÖM-VLASOV SYSTEM

  • Bostan, Mihai
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.743-766
    • /
    • 2010
  • We study the existence of weak solution for the stationary Nordstr$\ddot{o}$m-Vlasov equations in a bounded domain. The proof follows by fixed point method. The asymptotic behavior for large light speed is analyzed as well. We justify the convergence towards the stationary Vlasov-Poisson model for stellar dynamics.

PEAK FUNCTION AND ITS APPLICATION

  • Cho, Sang-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.399-411
    • /
    • 1996
  • Let $\Omega$ be a smoothly bounded pseudoconvex domain in $C^n$ and let $A(\Omega)$ denote the functions holomorphic on $\Omega$ and continuous on $\bar{\Omega}$. A point $p \in b\Omega$ is a peak point if there is a function $f \in A(\Omega)$ such that $f(p) = 1, and $\mid$f(z)$\mid$ < 1 for z \in \bar{\Omega} - {p}$.

  • PDF

CONTROLLABILITY OF NONLINEAR DELAY PARABOLIC EQUATIONS UNDER BOUNDARY CONTROL

  • Park, Jong-Yeoul;Kwun, Young-Chel;Jeong, Jin-Mun
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.333-346
    • /
    • 1996
  • Let $A(\zeta, \partial)$ be a second order uniformly elliptic operator $$ A(\zeta, \partial )u = -\sum_{j, k = 1}^{n} \frac{\partial\zeta_i}{\partial}(a_{jk}(\zeta)\frac{\partial\zeta_k}{\partial u}) + \sum_{j = 1}^{n}b_j(\zeta)\frac{\partial\zeta_j}{\partial u} + c(\zeta)u $$ with real, smooth coefficients $a_{j, k}, b_j$, c defined on $\zeta \in \Omega, \Omega$ a bounded domain in $R^n$ with a sufficiently smooth boundary $\Gamma$.

  • PDF

MULTIPLICITY AND STABILITY OF SOLUTIONS FOR SEMILINEAR ELLIPTIC EQUATIONS HAVING NOT NON-NEGATIVE MASS

  • Kim, Wan-Se;Ko, Bong-Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.85-109
    • /
    • 2000
  • In this paper, the multiplicity, stability and the structure of classical solutions of semilinear elliptic equations of the form (equation omitted) will be discussed. Here $\Omega$ is a smooth and bounded domain in $R^{n}$ (n $\geq$ 1), f(x,u) = │u│$^{\alpha}$/sgn(u)-h(x), 0 < $\alpha$ < 1, (n $\geq$ 1) and h is a ${\gamma}$- Holder continuous function on $\Omega$ for some 0 < ${\gamma}$ < 1.a}$ < 1.

  • PDF

GLOBAL EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR COUPLED NONLINEAR WAVE EQUATIONS WITH DAMPING AND SOURCE TERMS

  • Ye, Yaojun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1697-1710
    • /
    • 2014
  • The initial-boundary value problem for a class of nonlinear higher-order wave equations system with a damping and source terms in bounded domain is studied. We prove the existence of global solutions. Meanwhile, under the condition of the positive initial energy, it is showed that the solutions blow up in the finite time and the lifespan estimate of solutions is also given.

STABILIZATION OF VISCOELASTIC WAVE EQUATION WITH VARIABLE COEFFICIENTS AND A DELAY TERM IN THE INTERNAL FEEDBACK

  • Liang, Fei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1457-1470
    • /
    • 2017
  • In this paper, we consider the stabilization of the viscoelastic wave equation with variable coefficients in a bounded domain with smooth boundary, subject to linear dissipative internal feedback with a delay. Our stabilization result is mainly based on the use of the Riemannian geometry methods and Lyapunov functional techniques.

GLOBAL SOLUTION AND BLOW-UP OF LOGARITHMIC KLEIN-GORDON EQUATION

  • Ye, Yaojun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.281-294
    • /
    • 2020
  • The initial-boundary value problem for a class of semilinear Klein-Gordon equation with logarithmic nonlinearity in bounded domain is studied. The existence of global solution for this problem is proved by using potential well method, and obtain the exponential decay of global solution through introducing an appropriate Lyapunov function. Meanwhile, the blow-up of solution in the unstable set is also obtained.

EXISTENCE OF INFINITELY MANY SOLUTIONS OF THE NONLINEAR HIGHER ORDER ELLIPTIC EQUATION

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.309-322
    • /
    • 2008
  • We prove the existence of infinitely many solutions of the nonlinear higher order elliptic equation with Dirichlet boundary condition $(-{\Delta})^mu=q(x,u)$ in ${\Omega}$, where $m{\geq}1$ is an integer and ${\Omega}{\subset}{R^n}$ is a bounded domain with smooth boundary, when q(x,u) satisfies some conditions.

  • PDF