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GLOBAL EXISTENCE AND NONEXISTENCE OF

SOLUTIONS FOR COUPLED NONLINEAR WAVE

EQUATIONS WITH DAMPING AND SOURCE TERMS

Yaojun Ye

Abstract. The initial-boundary value problem for a class of nonlinear
higher-order wave equations system with a damping and source terms in
bounded domain is studied. We prove the existence of global solutions.
Meanwhile, under the condition of the positive initial energy, it is showed
that the solutions blow up in the finite time and the lifespan estimate of
solutions is also given.

1. Introduction

In this paper, we are concerned with the following initial-boundary value

problem for the systems of higher-order nonlinear hyperbolic equations:

(1.1) utt +A1u+ a|ut|r1−2ut = g1(u, v), (x, t) ∈ Ω× R
+,

(1.2) vtt +A2v + a|vt|r2−2vt = g2(u, v), (x, t) ∈ Ω× R
+,

(1.3) u(x, 0) = u0(x) ∈ H
m1

0 (Ω), ut(x, 0) = u1(x) ∈ L2(Ω), x ∈ Ω,

(1.4) v(x, 0) = v0(x) ∈ H
m2

0 (Ω), vt(x, 0) = v1(x) ∈ L2(Ω), x ∈ Ω,

(1.5)
∂i

∂νi
u(x, t) = 0, i = 0, 1, 2, . . . ,m1 − 1, x ∈ ∂Ω, t ≥ 0,

(1.6)
∂j

∂νj
v(x, t) = 0, j = 0, 1, 2, . . . ,m2 − 1, x ∈ ∂Ω, t ≥ 0,
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where Ai = (−∆)mi , mi ≥ 1 (i = 1, 2) are natural numbers, a > 0 and

ri ≥ 2 (i = 1, 2) are real numbers, Ω is a bounded domain in Rn with smooth

boundary ∂Ω so that the divergence theorem can be applied, ν is unit outward

normal on ∂Ω, and ∂iu
∂νi denotes the i-order normal derivation of u. gi(·, ·) :

R2 → R (i = 1, 2) are given functions to be determined later.

For the initial-boundary value problem of a single higher-order nonlinear

hyperbolic equation

(1.6) utt + (−∆)mu+ a|ut|r−2ut = b|u|p−2u, x ∈ Ω, t > 0,

(1.7) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.8)
∂iu

∂νi
= 0, i = 0, 1, 2, . . . ,m− 1, x ∈ ∂Ω, t ≥ 0.

As for a = 0, P. Brenner and W. Von Wahl [4] proved the existence and

uniqueness of classical solutions to (1.6)-(1.8) in Hilbert space. H. Pecher [9]

investigated the existence and uniqueness of Cauchy problem for the equation

(1.6) by using the potential well method due to L. Payne and D. H. Sattinger

[8] and D. H. Sattinger [11]. Meanwhile, B. X. Wang [13] showed that the

scattering operators map a band in Hs intoHs if the nonlinearities have critical

or subcritical powers in Hs. C. X. Miao [7] obtained the scattering theory at

low energy using time-space estimates and nonlinear estimates, and he also

gave the global existence and uniqueness of solutions under the condition of

low energy.

Quite recently, Y. J. Ye [15] dealt with the existence and asymptotic behavior

of global solutions for (1.6)-(1.8). In [2], A. B. Aliev and B. H. Lichaei consider

the Cauchy problem of the equation (1.6), and they found the existence and

nonexistence criteria of global solutions using the Lp − Lq estimate for the

corresponding linear problem and also established the asymptotic behavior of

solutions and their derivatives as t → +∞.

In the case of mi = 1 (i = 1, 2), (1.1)-(1.5) becomes the initial-boundary

value problem of the system of wave equations. K. Agre and M. A. Rammaha

[3] studied the following system of wave equations:

(1.9) utt −∆u+ a|ut|r1−2ut = g1(u, v), (x, t) ∈ Ω× R
+,

(1.10) vtt −∆v + a|vt|r2−2vt = g2(u, v), (x, t) ∈ Ω× R
+,

(1.11) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.12) v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω,

(1.13) u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

They prove, under some restrictions on the parameters and initial data, several

results on local existence and global existence of a weak solution. Meanwhile,

they also showed that any weak solution with negative initial energy blows up
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in finite time. Later, B. Said-Houari [10] investigates the blow-up property of

solution for the problem (1.9)-(1.13) provided that the initial data are large

enough and the initial energy is positive. This result extends a previous result

in [3] to a large class of initial data.

For mi > 1 (i = 1, 2), A. B. Aliev and A. A. Kazimov [1] consider the

Cauchy problem of equations (1.1) and (1.2). They obtain the existence and

uniqueness of weak global solutions through the use of Lp − Lq type estimate

for the corresponding linear parts and also established the uniform decay rates

of solutions and their derivatives.

Motivated by the above researches, in this paper, we prove the global ex-

istence of the problem (1.1)-(1.5) under the condition p ≤ 1
2 min{r1, r2},

where p is refer to (2.1). Meanwhile, for the positive initial energy and p >
1
2 max{r1, r2}, we give the blow-up result and obtain the lifespan estimates of

solutions.

We adopt the usual notations and convention. Let Hm(Ω) denote the

Sobolev space with the usual scalar products and norm. Moreover, Hm
0 (Ω)

denotes the closure in Hm(Ω) of C∞
0 (Ω). For simplicity of notations, hereafter

we denote by ‖ · ‖s the Lebesgue space Ls(Ω) norm and ‖ · ‖ denotes L2(Ω)

norm, we write equivalent norm ‖Dm · ‖ instead of Hm
0 (Ω) norm ‖ · ‖Hm

0
(Ω),

whereD denotes the gradient operator, that is Du = ∇u = ( ∂u
∂x1

, ∂u
∂x2

, . . . , ∂u
∂xn

),

and Dmu = ∆ju if m = 2j and Dmu = D∆ju if m = 2j + 1. In addition,

Ci (i = 0, 1, 2, 3, . . .) denote various positive constants which depend on the

known constants and may be different at each appearance.

This paper is organized as follows: In the next section, we give some pre-

liminaries. In Section 3, we study the existence of global solutions for problem

(1.1)-(1.5). The Section 4 is devote to the study of the blow-up result.

2. Preliminaries

Concerning the functions g1(u, v) and g2(u, v), we assume that

(2.1)
g1(u, v) = b1|u+ v|2(p−1)(u+ v) + b2|u|p−2u|v|p,
g2(u, v) = b1|u+ v|2(p−1)(u+ v) + b2|v|p−2v|u|p,

where b1, b2 > 0 and p > 1 are constants.

It easy to see that

(2.2) ug1(u, v) + vg2(u, v) = 2pG(u, v), ∀(u, v) ∈ R
2,

where

(2.3) G(u, v) =
b1

2p
|u+ v|2p + b2

p
|uv|p.

Moreover, a quick computation will show that there exist two positive constants

C0 and C1 such that the following inequality holds (see [10])

(2.4)
C0

2p
(|u|2p + |v|2p) ≤ G(u, v) ≤ C1

2p
(|u|2p + |v|2p).
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Now, we define the following energy function associated with a solution [u, v]

of the problem (1.1)-(1.5):

(2.5) E(t) =
1

2
(‖ut(t)‖2+‖vt(t)‖2+‖Dm1u(t)‖2+‖Dm2v(t)‖2)−

∫

Ω

G(u, v)dx

for [u, v] ∈ H
m1

0 (Ω)×H
m2

0 (Ω), and

(2.6) E(0) =
1

2
(‖u1‖2 + ‖v1‖2 + ‖Dm1u0‖2 + ‖Dm2v0‖2)−

∫

Ω

G(u0, v0)dx

is the initial total energy.

In order to prove our main result, we need the following lemmas.

Lemma 2.1. Let s be a number with 2 ≤ s < +∞ if n ≤ 2m and 2 ≤ s ≤ 2n
n−2m

if n > 2m. Then there is a constant C depending on Ω and s such that

‖u‖s ≤ C‖(−∆)
m
2 u‖, ∀u ∈ Hm

0 (Ω).

Lemma 2.2 (Young inequality). Let X,Y and ε be positive constants and s,

τ ≥ 1, 1
s
+ 1

τ
= 1. Then one has the inequality

XY ≤ εsXs

s
+

Y τ

τετ
.

Lemma 2.3. Let [u, v] be a solution to the problem (1.1)-(1.5). Then E(t) is

a non-increasing function for t > 0 and

(2.7)
d

dt
E(t) = −a(‖ut‖r1r1 + ‖vt‖r2r2) ≤ 0.

Multiplying equation (1.1) by ut and (1.2) by vt, and integrating over Ω ×
[0, t]. Then, adding them together, and integrating by parts, we get

(2.8) E(t)− E(0) = −a

∫ t

0

(‖ut(s)‖r1r1 + ‖vt(s)‖r2r2)ds

for t ≥ 0.

Being the primitive of an integrable function, E(t) is absolutely continuous

and equality (2.7) is satisfied.

The local existence and uniqueness of solutions for the problem (1.1)-(1.5)

can be obtained by a similar way as done in [3, 5, 14]. The result reads as

follows.

Theorem 2.1 (Local existence). Supposed that

(2.9)

1 < p < +∞, n ≤ 2min(m1,m2),

1 < p ≤ min

(

n

n− 2m1
,

n

n− 2m2

)

, n > 2max(m1,m2),

and [u0, v0] ∈ H
m1

0 (Ω)×H
m2

0 (Ω), [u1, v1] ∈ L2(Ω)× L2(Ω). Then there exists

T > 0 such that the problem (1.1)-(1.5) has a unique local solution [u(t), v(t)]

which satisfies

[u, v] ∈ C([0, T ); H
m1

0 (Ω)×H
m2

0 (Ω)),
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ut ∈ C([0, T ); L2(Ω)) ∩ Lr1(Ω× [0, T )),

vt ∈ C([0, T ); L2(Ω)) ∩ Lr2(Ω× [0, T )).

Moreover, at least one of the following statements holds true:

(1) ‖ut‖2 + ‖vt‖2 + ‖Dm1u‖2 + ‖Dm2v‖2 → ∞ as t → T−;

(2) T = +∞.

3. Global solutions

The following theorem shows that the solution obtained in Theorem 2.1 is

a global solution if p ≤ 1
2 min{r1, r2}.

Theorem 3.1. Assume that (2.1)-(2.4) and (2.9) hold and p ≤ 1
2 min{r1, r2}.

Then the local solutions [u(t), v(t)] furnished in Theorem 2.1 are global solutions

and T may be taken arbitrarily large.

Proof. Let [u, v] be a weak solution to the initial-boundary value problem (1.1)-

(1.5) defined on [0, T ] as furnished by Theorem 2.1. We define

(3.1) E1(t) =
1

2
(‖ut(t)‖2 + ‖vt(t)‖2 + ‖Dm1u‖2 + ‖Dm2v‖2),

and

(3.2) E2(t) = E(t) + 2

∫

Ω

G(u(t), v(t))dx,

where E(t) is defined by (2.5). Then we easily see from (3.1) and (3.2) that

(3.3) E1(t) ≤ E2(t).

Our aim is to prove the following inequality holds for all t ∈ [0, T ].

(3.4)

1

2
(‖ut(t)‖2 + ‖vt(t)‖2 + ‖Dm1u‖2 + ‖Dm2u‖2)

+

∫

Ω

G(u(t), v(t))dx + a

∫ t

0

(‖ut(s)‖r1r1 + ‖vt(s)‖r2r2) ≤ CT ,

where CT depends on ‖Dm1u0‖, ‖Dm2v0‖, ‖u1‖, ‖v1‖ and T > 0 is arbitrary.

We have from (2.4), Lemma 2.1, (3.1) and (3.3) that

(3.5)

C0

2p
(‖u‖2p2p + ‖v‖2p2p) ≤

∫

Ω

G(u, v) ≤ C1

2p
(‖u‖2p2p + ‖v‖2p2p)

≤ B2pC1

2p
(‖Dm1u‖2p + ‖Dm2v‖2p) ≤ C2E1(t)

p ≤ C2E2(t)
p,

where C2 = 2p−1B2pC1

p
and B = max(B1, B2), and Bi (i = 1, 2) is the optimal

Sobolev’s constant from H
mi

0 (Ω) (i = 1, 2) to L2p(Ω).

By (3.2), we see that

(3.6)
C0

2p
(‖u‖2p2p + ‖v‖2p2p) ≤

∫

Ω

G(u, v) ≤ E2(t).
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Put Qt = Ω× [0, t], then it yields from the energy identity (2.8) that

(3.7)

E2(t) + a

∫ t

0

(‖ut(s)‖r1r1 + ‖vt(s)‖r2r2)ds = E2(0) + 2

∫

Qt

∂

∂s
G(u(s), v(s))dxds.

In order to estimate the last term in (3.7), we set

Q11 := {(x, s) ∈ Qt : |u(x, s)| ≥ 1, |v(x, s)| ≥ 1},
Q12 := {(x, s) ∈ Qt : |u(x, s)| ≥ 1, |v(x, s)| ≤ 1},
Q21 := {(x, s) ∈ Qt : |u(x, s)| ≤ 1, |v(x, s)| ≥ 1},
Q22 := {(x, s) ∈ Qt : |u(x, s)| ≤ 1, |v(x, s)| ≤ 1}.

From (2.1) and (2.3) we conclude that

(3.8)

∣

∣

∣

∣

∣

2

∫

Qt

∂

∂s
G(u(s), v(s))dxds

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∫

Qt

∂G

∂u
ut(s) +

∂G

∂v
vt(s)dxds

∣

∣

∣

∣

≤ 2

∫

Qt

(

∣

∣

∣

∣

∂G

∂u

∣

∣

∣

∣

|ut(s)|+
∣

∣

∣

∣

∂G

∂v

∣

∣

∣

∣

|vt(s)|)dxds ≤ C3(I(t) + J(t)),

where C3 = 2max{22(p−1)b1, b2} and

I(t) =

∫

Qt

(|u|2p−1 + |v|2p−1 + |u|p−1|v|p)|ut|dxds,(3.9)

J(t) =

∫

Qt

(|u|2p−1 + |v|2p−1 + |v|p−1|u|p)|vt|dxds.(3.10)

In order to estimate I(t) and J(t), we write

(3.11) I(t) = I11 + I12 + I21 + I22, J(t) = J11 + J12 + J21 + J22,

where

Iij =

∫

Qij

(|u|2p−1 + |v|2p−1 + |u|p−1|v|p)|ut|dxds, i, j = 1, 2,(3.12)

Jij =

∫

Qij

(|u|2p−1 + |v|2p−1 + |v|p−1|u|p)|vt|dxds, i, j = 1, 2.(3.13)

We estimate I11(t) as follows: By noting |u|, |v| ≥ 1 on Q11, the first two terms

in I11(t) are estimated in the same way. From p ≤ r1
2 , we see that η = r1−2p

r1
≥ 0
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and (η + 2p− 1) r1
r1−1 = 2p. We have from Lemma 2.2 and (3.6) that

(3.14)
∫

Q11

|ut(s)||v(s)|2p−1dxds =

∫

Q11

|ut(s)||v(s)|η+2p−1|v(s)|−ηdxds

≤
∫

Q11

|ut(s)||v(s)|η+2p−1dxds

≤ ε

∫

Q11

|ut(s)|r1dxds + Cε

∫

Q11

|v(s)|2pdxds

≤ ε

∫

Qt

|ut(s)|r1dxds + C4

∫ t

0

E2(s)ds,

where ε > 0 will be determined later and C4 = 2pCε

C0

. Similarly, we have

(3.15)

∫

Q11

|ut(s)||u(s)|2p−1dxds ≤ ε

∫

Qt

|ut(s)|r1dxds+ C4

∫ t

0

E2(s)ds.

For the last term in I11, we get from Lemma 2.2 and (3.6) that

(3.16)

∫

Q11

|u|p−1|v|p|ut|dxds ≤ 1

2

∫

Q11

|v|2pdxds+ 1

2

∫

Q11

|u|2(p−1)|ut|2dxds

≤ p

C0

∫ t

0

E2(s)ds+
1

2

∫

Qt

|u|2(p−1)|ut|2dxds.

Let θ =
2(r1−2p)

r1
, then we have from p ≤ r1

2 that θ ≥ 0 and (θ+2p−2) r1
r1−2 = 2p.

Therefore, we obtain from Lemma 2.2 and (3.6) that

(3.17)

1

2

∫

Q11

|ut(s)|2|u(s)|2p−2dxds

=
1

2

∫

Q11

|ut(s)|2|u(s)|θ+2p−2|u(s)|−θdxds

≤ 1

2

∫

Q11

|ut(s)|2|u(s)|θ+2p−2dxds

≤ ε

∫

Q11

|ut(s)|r1dxds+ Cε

∫

Q11

|u(s)|2pdxds

≤ ε

∫

Qt

|ut(s)|r1dxds+ C5

∫ t

0

E2(s)ds.

We have from (3.14)-(3.17) that

(3.18) I11(t) ≤ 3ε

∫

Qt

|ut(s)|r1dxds+ C6

∫ t

0

E2(s)ds,

where C6 = 2C4 + C5 +
p
C0

. Similarly, we obtain

(3.19) J11(t) ≤ 3ε

∫

Qt

|vt(s)|r2dxds + C6

∫ t

0

E2(s)ds,
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For I12(t), by noting that |u| ≥ 1 and |v| ≤ 1 on Q12, we have from Lemma

2.2 and (3.2) that

(3.20)

I12(t) ≤
∫

Q12

(1 + |u|2p−1 + |u|p−1)|ut|dxds

≤ δ|Qt|+ Cδ

∫

Q12

|ut(s)|2dxds+ 2

∫

Q12

|u(s)|2p−1|ut(s)|dxds

≤ δ|Qt|+ 2Cδ

∫ t

0

E2(s)ds + 2

∫

Q12

|u(s)|2p−1|ut(s)|dxds,

where |Qt| denotes the Lebesgue measure of Qt.

We conclude from (3.15) and (3.20) that

(3.21) I12(t) ≤ δ|Qt|+ 2(C4 + Cδ)

∫ t

0

E2(s)ds + 2ε

∫

Qt

|ut(s)|r1dxds.

Likewise, we easily get

(3.22) J12(t) ≤ δ|Qt|+ 2(C4 + Cδ)

∫ t

0

E2(s)ds+ 2ε

∫

Qt

|vt(s)|r2dxds.

Using the same way in (3.21) and (3.22), we have

I21(t) ≤ δ|Qt|+ 2(C4 + Cδ)

∫ t

0

E2(s)ds+ 2ε

∫

Qt

|ut(s)|r1dxds,(3.23)

J21(t) ≤ δ|Qt|+ 2(C4 + Cδ)

∫ t

0

E2(s)ds+ 2ε

∫

Qt

|vt(s)|r2dxds.(3.24)

For I22(t), we get from (3.3) and Lemma 2.2 that

(3.25)

I22(t) ≤ 3

∫

Q22

|ut(s)|dxds

≤ δ|Qt|+ Cδ

∫

Q22

|ut(s)|2dxds ≤ δ|Qt|+ Cδ

∫ t

0

E2(s)ds

for some δ > 0. Similarly, we have

(3.26) J22(t) ≤ δ|Qt|+ Cδ

∫

Q22

|vt(s)|2dxds ≤ δ|Qt|+ Cδ

∫ t

0

E2(s)ds.

Combining (3.18)-(3.19), (3.21)-(3.22) and (3.23)-(3.26), we have

(3.27)

I(t)+J(t) ≤ 6δ|Qt|+7ε

∫

Qt

|ut(s)|r1dxds+7ε

∫

Qt

|vt(s)|r2dxds+C7

∫ t

0

E2(s)ds,

where C7 = 2(C6 + 4C4 + 5Cδ).
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Choosing ε > 0 small enough such that ε < a
7C3

, we have from (3.7), (3.8)

and (3.27) that

(3.28)

E2(t)+(a−7C3ε)

∫ t

0

(‖ut(s)‖r1r1+‖vt(s)‖r2r2)ds = E2(0)+C8|Qt|+C9

∫ t

0

E2(s)ds,

where C8 = 6C3δ > 0 and C9 = C3C7 > 0.

It follows from Gronwall inequality and (3.28) that

(3.29) E2(t) ≤ (E2(0) + C8|Qt|)eC9t.

We have from (3.28) and (3.29) that

(3.30) E2(t)+(a−7C3ε)

∫ t

0

(‖ut(s)‖r1r1 +‖vt(s)‖r2r2)ds ≤ (E2(0)+C8|QT |)eC9T

for all 0 < t ≤ T , where T is arbitrary. Thus, (3.4) follows from (3.2) and (3.30).

By standard continuation argument, the local solutions [u(t), v(t)] obtained in

Theorem 2.1 are global. This finishes the proof of Theorem 3.1. �

4. The result of blow-up

By Minkowski’s inequality, Lemma 2.1 and (2.9), we get that

(4.1) ‖u+ v‖22p ≤ 2(‖u‖22p + ‖v‖22p) ≤ 2B2(‖Dm1u(t)‖2 + ‖Dm2v(t)‖2).
Also, we have from Hölder inequality, Lemma 2.1 and Lemma 2.2 that

(4.2)

‖u(t)v(t)‖p ≤ ‖u(t)‖2p · ‖v(t)‖2p ≤ 1

2
(‖u(t)‖22p + ‖v(t)‖22p)

≤ B2

2
(‖Dm1u(t)‖2 + ‖Dm2v(t)‖2).

We get from (2.3), (4.1) and (4.2) that

(4.3)

∫

Ω

G(u, v)dx ≤ C10B
2p

p
(‖Dm1u(t)‖2 + ‖Dm2v(t)‖2)p,

where C10 = 2p−1b1 +
b2
2p .

Note that we have from (2.5) that

(4.4) E(t) ≥ 1

2
(‖Dm1u(t)‖2 + ‖Dm2v(t)‖2)−

∫

Ω

G(u, v)dx.

It follows from (4.3) and (4.4) that

(4.5)

E(t) ≥ 1

2
(‖Dm1u(t)‖2 + ‖Dm2v(t)‖2)

− C10B
2p

p
(‖Dm1u(t)‖2 + ‖Dm2v(t)‖2)p

= Q
(
√

‖Dm1u(t)‖2 + ‖Dm2v(t)‖2
)

,
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where

Q(λ) =
1

2
λ2 − C10B

2p

p
λ2p.

Therefore, we get that

Q′(λ) = λ− 2C10B
2pλ2p−1, Q′′(λ) = 1− 2(2p− 1)C10B

2pλ2(p−1).

Let Q′(λ) = 0, which implies that λ1 = ( 1
2C10B2p )

1

2(p−1) . As λ = λ1, an

elementary calculation shows that Q′′(t) = −2p < 0. Thus, Q(λ) has the

maximum at λ1 and the maximum value is

(4.6) d = Q(λ1) =

(

1

2
− 1

2p

)(

1

2C2B2p

)
1

p−1

=

(

1

2
− 1

2p

)

λ2
1.

Applying the idea of E. Vitillaro [12], we have the following lemma.

Lemma 4.1. Let [u, v] be a solution of (1.1)-(1.5). Assume that (2.9) holds.

If 0 < E(0) < d and ‖Dm1u0‖2 + ‖Dm2v0‖2 > λ2
1, then there exists λ2 > λ1

such that

(4.7) ‖Dm1u(t)‖2 + ‖Dm2v(t)‖2 ≥ λ2
2

and

(4.8)

∫

Ω

G(u, v)dx ≥ C10B
2p

p
λ
2p
2

for t ≥ 0.

The detail proof of Lemma 4.1 see [10].

Theorem 4.1. Assume that (2.9) holds and that p > 1
2 max{r1, r2}. If [u0, v0]

∈ H
m1

0 (Ω)×H
m2

0 (Ω), [u1, v1] ∈ L2(Ω)×L2(Ω), then any solution of (1.1)-(1.5)

with initial data satisfying 0 < E(0) < d and ‖Dm1u0‖2+‖Dm2v0‖2 > λ2
1 blows

up at a finite time.

Proof. Let

(4.9) H(t) = d− E(t), t ≥ 0.

We see from (2.7) in Lemma 2.3 that H ′(t) ≥ 0. Thus we obtain from (2.5)

and (4.9) that

(4.10)

0 < H(0) ≤ H(t)

= d− 1

2
(‖ut‖2 + ‖vt‖2 + ‖Dm1u‖2 + ‖Dm2v‖2) +

∫

Ω

G(u, v)dx.

We obtain from (4.6) and (4.7) that

d− 1

2
(‖ut‖2 + ‖vt‖2 + ‖Dm1u‖2 + ‖Dm2v‖2) < d− 1

2
λ2
1 = − 1

2p
λ2
1 < 0.

Therefore, we have from (4.10) that

(4.11) 0 < H(0) ≤ H(t) ≤
∫

Ω

G(u, v)dx.
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Now, we define L(t) as follows.

(4.12) L(t) = H(t)1−α + δ

∫

Ω

(uut + vvt)dx, ∀t ≥ 0,

for δ small to be chosen later and

(4.13) 0 < α ≤
{

p− 1

2p
,

2p− r1

2p(r1 − 1)
,

2p− r2

2p(r2 − 1)

}

.

By differentiating both sides of (4.13) on t, we get from (1.1) and (1.2) that

(4.14)

L′(t) = (1− α)H(t)−αH ′(t) + δ(‖ut‖2 + ‖vt‖2)

− δ(‖Dm1u‖2 + ‖Dm2v‖2) + 2pδ

∫

Ω

G(u, v)dx

− aδ

∫

Ω

(|ut|r1−2utu+ |vt|r2−2vtv)dx.

By exploiting (2.5) and (4.9), the equation (4.14) takes the following form

(4.15)

L′(t) = (1 − α)H(t)−αH ′(t) + 2δ(‖ut‖2 + ‖vt‖2)

+ 2δH(t)− 2δd+ 2δ(p− 1)

∫

Ω

G(u, v)dx

− aδ

∫

Ω

(|ut|r1−2utu+ |vt|r2−2vtv)dx.

We obtain from (4.8) and (4.15) that

(4.16)

L′(t) ≥ (1 − α)H(t)−αH ′(t) + 2δ(‖ut‖2 + ‖vt‖2) + 2δH(t)

+ C11δ

∫

Ω

G(u, v)dx− aδ

∫

Ω

(|ut|r1−2utu+ |vt|r2−2vtv)dx,

where C11 = 2(p− 1− dp
C10(Bλ2)2p

). By (4.6) and λ2 > λ1, we see that C11 > 0.

We get from Lemma 2.2 that

(4.17) a

∣

∣

∣

∣

∫

Ω

|ut|r1−2utudx

∣

∣

∣

∣

≤ σ
r1
1

r1
‖u‖r1r1 +

r1 − 1

r1
σ
−r1/(r1−1)
1 ‖ut‖r1r1 , ∀σ1 > 0,

and

(4.18) a

∣

∣

∣

∣

∫

Ω

|vt|r2−2vtvdx

∣

∣

∣

∣

≤ σ
r2
2

r2
‖v‖r2r2 +

r2 − 1

r2
σ
−r2/(r2−1)
2 ‖vt‖r2r2 , ∀σ2 > 0.

It follows from (4.16)-(4.18) that

(4.19)

L′(t) ≥ (1− α)H(t)−αH ′(t) + 2δ(‖ut‖2 + ‖vt‖2) + 2δH(t)

+ C11δ

∫

Ω

G(u, v)dx− δ
σr1
1

r1
‖u‖r1r1 − δ

r1 − 1

r1
σ
−r1/(r1−1)
1 ‖ut‖r1r1

− δ
σr2
2

r2
‖v‖r2r2 − δ

r2 − 1

r2
σ
−r2/(r2−1)
2 ‖vt‖r2r2 .
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Choosing σ1 and σ2 such that

(4.20) σ
−r1/(r1−1)
1 = Π1H(t)−α, σ

−r2/(r2−1)
2 = Π2H(t)−α,

where Π1 and Π2 are large constants to be fixed latter. Hence, we have from

(2.4), (4.19) and (4.20) that

(4.21)

L′(t) ≥ (1− α−Πδ)H(t)−αH ′(t) + 2δ(‖ut‖2 + ‖vt‖2) + 2δH(t)

+ C12δ(‖u‖2p2p + ‖v‖2p2p)−
δ

r1
Π

−(r1−1)
1 H(t)α(r1−1)‖u‖r1r1

− δ

r2
Π

−(r2−1)
2 H(t)α(r2−1)‖v‖r2r2,

where Π = (r1−1)/r1Π1+(r2−1)/r2Π2 and C12 = C11C0

2p is a positive constant.

By p > 1
2 max{r1, r2}, we obtain from (2.4) and (4.11) that

(4.22) H(t)α(r1−1)‖u‖r1r1 ≤ C13(‖u‖2αp(r1−1)+r1
2p + ‖v‖2αp(r1−1)

2p ‖u‖r1r1),
and

(4.23) H(t)α(r2−1)‖v‖r2r2 ≤ C13(‖v‖2αp(r2−1)+r2
2p + ‖u‖2αp(r2−1)

2p ‖v‖r2r2).
From (4.13) and the following algebraic inequality

(4.24) zµ ≤ z + 1 ≤ (1 +
1

k
)(z + k), ∀z ≥ 0, 0 < µ ≤ 1, k ≥ 0,

we have

(4.25) ‖u‖2αp(r1−1)+r1
2p ≤ β(‖u‖2p2p +H(0)) ≤ β(‖u‖2p2p +H(t)),

where β = 1 + 1/H(0). Similarly,

(4.26) ‖v‖2αp(r2−1)+r2
2p ≤ β(‖v‖2p2p +H(t)).

Also,using the inequality (X+Y )s ≤ C(Xs+Y s), X,Y ≥ 0, s > 0, we conclude

from (4.13) and (4.24) that

(4.27) ‖v‖2αp(r1−1)
2p ‖u‖r1r1 ≤ C14(‖v‖2p2p + ‖u‖2pr1 ) ≤ C15(‖v‖2p2p + ‖u‖2p2p),

(4.28) ‖u‖2αp(r2−1)
2p ‖v‖r2r2 ≤ C14(‖u‖2p2p + ‖v‖2pr2 ) ≤ C15(‖u‖2p2p + ‖v‖2p2p).

Combining (4.21)-(4.28), we get

(4.29)

L′(t) ≥ (1− α−Πδ)H(t)−αH ′(t) + 2δ(‖ut‖2 + ‖vt‖2) + 2δH(t)

+ δ(C12 − C16Π
−(r1−1)
1 − C17Π

−(r2−1)
2 )(‖u‖2p2p + ‖v‖2p2p)

+ δ(2− C18Π
−(r1−1)
1 − C19Π

−(r2−1)
2 )H(t).

For large values of Π1 and Π2, there exist positive constants Θ1 and Θ2 such

that (4.29) becomes

(4.30)
L′(t) ≥ (1− α−Πδ)H(t)−αH ′(t) + 2δ(‖ut‖2 + ‖vt‖2)

+ δΘ1(‖u‖2p2p + ‖v‖2p2p) + δΘ2H(t).
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Once Π1 and Π2 are fixed, we pick δ small enough such that 1 − α − Πδ ≥ 0

and

L(0) = H(0)1−α + δ

∫

Ω

(u0u1 + v0v1)dx > 0.

Then, we have from (4.30) that

(4.31) L′(t) ≥ C20δ[‖ut‖2 + ‖vt‖2 + ‖u‖2p2p + ‖v‖2p2p +H(t)].

Therefore, L(t) is a nondecreasing function for t ≥ 0, then we obtain that

L(t) ≥ L(0) > 0 for t ≥ 0.

Since 0 < α < 1, it is evident that 1
1−α

> 1. We deduce from (4.12) that

(4.32) L(t)
1

1−α ≤ C21

[

H(t) +

(
∫

Ω

(uut + vvt)dx

)
1

1−α
]

.

On the other hand, for p > 1, we have from Hölder inequality and Lemma 2.2

that

(
∫

Ω

(uut + vvt)dx

)
1

1−α

≤ C22

(

‖ut‖
1

1−α ‖u‖
1

1−α

2p + ‖vt‖
1

1−α ‖v‖
1

1−α

2p

)

(4.33)

≤ C23

(

‖u‖
ρ

1−α

2p + ‖v‖
ρ

1−α

2p + ‖ut‖
ν

1−α + ‖vt‖
ν

1−α

)

,

where 1
ρ
+ 1

ν
= 1. We take ν = 2(1 − α), then ρ

1−α
= 2

1−2α . It follows from

(4.13) and (4.24) that

(4.34) ‖u‖
ρ

1−α

2p = ‖u‖
2

1−2α

2p ≤ β(‖u‖2p2p +H(t)),

and

(4.35) ‖v‖
ρ

1−α

2p = ‖v‖
2

1−2α

2p ≤ β(‖v‖2p2p +H(t)).

We obtain from (4.33)-(4.35) that

(4.36)

(
∫

Ω

(uut + vvt)dx

)
1

1−α

≤ C24[‖ut‖2 + ‖vt‖2 + ‖u‖2p2p + ‖v‖2p2p +H(t)].

Combining (4.32) and (4.36), we find that

(4.37) L(t)
1

1−α ≤ C25

[

‖ut‖2 + ‖vt‖2 + ‖u‖2p2p + ‖v‖2p2p +H(t)

]

.

We have from (4.31) and (4.37) that

(4.38) L′(t) ≥ C26L(t)
1

1−α , t ≥ 0,

where C26 = C20δ
C25

. Integrating both sides of (4.38) over [0, t] yields that

(4.39) L(t) ≥
(

L(0)
α

α−1 − C26α

1− α
t

)− 1−α
α

.
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Noting that L(0) > 0, then there exists T ∗ = Tmax =
(1−α)L(0)

α
α−1

C26α
such that

L(t) → +∞ as t → T ∗. Namely, the solutions of the problem (1.1)-(1.5) blow

up in finite time. �
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