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ON THE GENERALIZED
HYERS-ULAM-RASSIAS STABILITY OF
A QUADRATIC FUNCTIONAL EQUATION

JAE-HYEONG BAE AND KIL-WOUNG JUN

ABSTRACT. In this paper, we investigate the generalized Hyers-
Ulam-Rassias stability of a quadratic functional equation f{z+y+
)+ f@—y) + fly — 2) + fz — %) = 3/(z) + 3f(y) + 3f(z) and
prove the Hyers-Ulam-Rassias stability of the equation on bounded
domain.

1. Introduction

The stability problem for the functional equations was first raised by
S. M. Ulam [16]:

Let G, be a group and let G be a metric group with a metric d(-, -).
Given € > 0, does there exist a § > 0 such that if a function h : G; — G2
satisfies the inequality d(h{zy), h(z)h(y)) < & for all z,y € G1, then
there exists a homomorphism H : Gy — G2 with d(h{z), H{z)) < ¢ for
all z € G,?

In the next year (1941), D. H. Hyers affirmatively answered the ques-
tion of Ulam for the case when | and G are Banach spaces, and the
result of Hyers was further generalized by Th. M. Rassias ([5], {13]).
Since then, the stability problems of functional equations have been ex-
tensively investigated by a number of mathematician ([6], [7], [14]). For
more detailed definitions for the terminologies, one can refer to {1}, {4],
[10], [11].
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The quadratic function f(z) = cz? (z € R) satisfles the functional
equation

(1.1) fx+y)+ flz—y) = 2f(x) +2f(y).

Hence, the above equation is called the quadratic functional equation
or the Euler-Lagrange functional equation, and every solution of the
quadratic equation (1.1) is called a quadratic function. It is well known
that a function f : E; — FE3 between vector spaces is quadratic if and
only if there exists a unique symmetric function B : Ey X Ep — En,
which is additive in « for each fixed y, such that f(z) = B(z,x) for any
e Fy ([1])

A Hyers-Ulam stability theorem for the quadratic functional equa-
tion (1.1) was proved by F. Skof for functions f : £y — E; where E;
is a normed space and E; a Banach space ([15]). P. W. Cholewa [3]
noticed that the theorem of Skof is still true if the relevant domain E;
is replaced by an abelian group. S. Czerwik {4] proved the Hyers- Ulam-
Rassias stability of the quadratic functional equation, and this result
was generalized by J. M. Rassias [12], C. Borelli and G. L. Forti [2].

Consider the following functional equations:

(12) flaty+2)+ f@)+f)+f(2) = fla+y)+fy+2)+fl+x)

and

(L3) fla+y+2)+f(@—y)+fy—2)+f(z—x) = 3f(2)+3f(y)+3f(2).

The functional equation (1.2) was solved by Pl. Kannappan ([9]). Re-
cently, S$.-M. Jung investigated in his paper [7] the Hyers-Ulam stability
of the equation (1.2) on a restricted (unbounded) domain and applied
the result to the study of an asymptotic behavior of the quadratic fune-
tions. For more information on the stability of the quadratic equation,
we may refer to [14]. The stability problems in connection with the
following functional inequality

Ifz+y+2)+ flz—y)+ fly—2)
+ f(z —z) — 3f(z) — 3f(y) — 37 (2)]|
< ¢(2,y,2)
will be discussed in section 2. In section 3, the Hyers-Ulam stability of
the equation (1.3) on bounded domain will be proved.

By N and R we denote the set of positive integers and of real numbers,
respectively.
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2. Generalized Hyers-Ulam-Rassias stability of Eq. (1.3)

In this section, let E; and F; be a normed space and a Banach space,
respectively. Given a fixed integer & > 2, we denote by ¢ : Ey x Fp x
E; — [0,00) a function such that either

(21) wk(msy’z) = § Wﬂp(klﬁ, kly)ktz) <0
i=0

forall z, y, z € Ey, or

0

. : r Yy oz
(2.2) e, 2) =) KDy (kz‘+1 T ki+1) < o0
i=0

for all z, y, z € E).
For convenience, we use the following abbreviations:

Df(z,y,2) = fle+y+2)+ fle—y)+ fly—2) + f(z - )
—3f(z) - 3f(y) — 3f(2).

In this section, we assume that a function f : E; — FE; satisfies the
inequality

(2.3) - DSz, 2 < el y, 2)
for all z,y,z € E;. We define a real sequence (b;) by
bl = 1, bz =2 and bi = Zbg'_.l + bi_g (i > 3)

First, we will introduce the following lemma before we prove the gener-
alized Hyers-Ulam stability of the quadratic equation (1.3).

LEMMA 2.1. Under the above assumptions,

1

(2.4) = f(K'2)

1 n
_ 2k2n (P(O’ k m! 0)

‘ <
is true for any = € E; if f is odd function, and

k—1 —1
1 1 N L
<z 2b D gk — ks, K, 0)

j=1  i=0

25) | f*'2) - ()
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is true for any x € E; if f is even function and f{0) = 0.

Proof. (Odd case). If we replace z,y, z in (2.3) by 0, z, 0, respectively,
then we have

(2.6) 12f (@)t < (0, x,0)
for all x € E,. In (2.6) put 2 = kz and divide by 2k%. Then

(0, kx, 0).

1

5/ (ka)

Make the induction hypothesis

(2.8)

n 1 T
——flk"z)|| < W(p(o,k z,0},

k2n

which is true for n = 1 by (2.7). Assuming (2.8) true, replace z by kz in
it and divide by k2. Then (2.8) remains true with » replaced by n + 1,
which establishes (2.8) for all n € N and all z € E;.

(Even case). If we replace z,y, z in (2.3) by iz, z,0, respectively, then
we have

F (e + D) + (5 — 1)z) — 2f(iz) — 2f(2)|| < ¢(iz,,0)
for all integers ¢, 2 < ¢ < k. Hence, we immediately get
I f (kz) — k2 f ()]
< JI2f((k — Da) — 2(k — D* f (@) + || F((k — 2)z) — (k - 2)*F ()]
+ [1f(kz) + f((k — 2)z) — 2f((k — L)) — 2f (=)

bl

-2
1.90(( —-1- i)$a$¢ 0)

IA
. EM

-3

+ bz‘p((k -2~ i).’L‘, T, 0) + (P((k - 1):1',‘, I, 0)

X

I
—

221tp k—1i)z,z,0)

(A
-
. MMH .
.

+, bz—zw((k — 1)z, 2,0) + ¢((k — 1)z, 2,0)

'“"M

-

= > _biv((k —j)z,2,0).

.
I
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Applying the induction, the assertion (2.5) is true for n = 1. Now, we
assume that the assertion (2.5) is true. Then

e [ 12) - (@)

1
n—i—l n 7
< [ 10 - st + | gm0 - 1)
k—1
1|1 . . 1
j=1
n—1 1 . )
> i P((k = )k'z, K'z,0)
i=0
=, =
< o > " bjo((k — j)k e, k"z,0) + = 5> b
j=1 i=1
n—1 1
Z k?z‘p((k _J)ktﬂ“? kzm’ 0)
=0
1 & 1
= 73 2 bi D pareo((k — )k'z, k', 0)
=1 i=0
which completes the induction proof. O

In the next theorem, we shall prove the stability of the quadratic
equation (1.3).

THEOREM 2.2. Assume that a function f : Ey — Eo satisfies the
inequality (2.3) for all z,y,z € E; and f(0) = 0. Then there exists a
unique quadratic function @ : £y — E, satisfying

k 1

(29) Q@) - f@) < Zb ek = J)z,2,0) + 299(0 z,0)

=1

for all z € FEy when ¥ (z,y,2) < oc for all z,y,z € Ey, or

k—1
(210) Q@) ~ @ < 15 3 bivu(k — 9),2,0) + 3¢(0,2,0)
j=1
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for all z € By when ¥y (z,y,z) < o for all ¢,y,z € E1. If, moreover,
f is measurable or f(tz) is continuous in t € R for every fixed z € Ej,
then the function ( satisfies

(2.11) Q(tz) = t°Q(z)

forallz € Fy andt € R.

Proof. We first assume that ¥ (z,y,2z) < oo for all z,y,z € Ey. If f
is even function, then it follows from (2.5) and (2.1) that

k-1

(212)  lim <z Zb @ k— j)z,z,0).

() - £(2)| <

Now, we show that {1 f(k"z)} is a Cauchy sequence: Let m,n be
integers with n > m > 0. Then, by (2.12) and (2.1), we have

o f"2) = 5 F (k")

k2n
1 1 T —178 1,918 m
< Tam —kZ(n—m)f(k kM) - f(k"x)
1 1 k—1 n—im—1
< k——QZbJ > k ((k — )Y k™z, Kk ™z, 0)
j=1 i=0
1 k-1 n—1 '
SF b; /=3 w((k — Hk'z, kz,0) = 0 as m — oo.
j=1  i=m

Since F> is a Banach space, we may define a function ¢} : E; — E5 by
Q(x) = limp_.o 3= f(k™x) for any z € E;. By the definition of Q and
(2.12),

k—
Q@) - f@I < %; srl(k = )7,,0).

If f is odd function, then it follows from (2.4) that lim, ..o 3= f (k") =
0 for all = € E,. By (2.6),

10@) - F@)I = @) < 50(0.,0).



QGeneralized Hyers-Ulam-Rassias stability 33

Therefore, by f = fo + fo (fe : even part of f, f, : odd part of f),

Q=) — f(=)l = IIQ(IE) — fe(@) | + I fol)

< k2 Zb Pi((k — 7))z, z,0) + 2cp(0,m,()).

By replacing z, y and z in (2.3) by k"2, k"y and k"2, respectively, and
dividing the resulting inequality by k%" and by using (2.1), we get

I P67+ 3 2) + 5 F K7 = )+ g f R = 2)
kinf(k”z—:v)) k‘:’,,,, (k"x —k% (k"y)—ﬁf(k"z)u

1
gﬁcp(k”x,k”y, k"z) -0 as n— oo,
which implies that @ is a quadratic function.
Now, let Q : Ey — E, be an another quadratxc function which

satisfies the mequahty {(2.9). Since @ and Q' are quadratic functions,
we can easily show that

(213)  Q("¢)=k"Q(z) and Q (k"z)=K"Q ()
for any n € N. Thus, it follows from (2.13), (2.9) and (2.1) that
Hmﬂfd@m=wﬂQWﬂ— (k")
QUk™z) - F(k D) + |IF(K"z) - Q’(k"w)ﬂ

< o

k2n

—0 as n— oo,
which implies that Q(x) = Q' (z) for all z € E;.
Also, it can be proved that (2.11) is true if f is measurable or f(tz) is

continuous in ¢ € R for each fixed © € Ey (cf. [4]). We can quite similarly
prove the theorem for the case y(z,y,2) < oo forall ;,y,2 € E;. U
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COROLLARY 2.3. If a function f : By — FE9 satisfies the functional
inequality

(2.14) 1Df(z,y2)|| < ¢

for all x,y,z € E), then there exists exactly one quadratic function
Q : E]_ — E2 such that

5
Q) - f@l < ze

for all x € E\. Moreover, if f is measurable or f(tx) is continuous in
t € R for each fixed x € E4, then the function @ satisfies (2.11) for all
€ F; andt € R.

Proof. If we put {z,y, z) = ¢, then @ satisfies the condition (2.1) for
k = 2. Hence, it follows from Theorem 2.2 that there exists a unique
quadratic function Q : F; — FE; such that

1Q() — F@)) < (. 2,0) + 56(0,,0)
< 2i2 _ 52—2.@(2%:,2%,0) + %90(0,58,0)

1=

for all x € F. O

COROLLARY 2.4. If a function f : E; — E, satisfies the functional
inequality

(2.15) 1Df(z,y. ) < e (l=l” + lyll” + [|=1)

for some 0 < p < 2 and for all z,y,z ¢ E,, then there exists a unique
quadratic function @ : By — FEo such that

10 - J@H < (255 + 3 ) ellel?
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for all £ € E1. Moreover, if f is measurable or f(tx) is continuous in
t € R for each fixed ¢ € E,, then the function @ satisfies (2.11) for all
xz € F, and teR.

Proof. Since w(x,y,z) = &(||z|j” + ||y||? + || 2||") satisfies the condition
(2.1) with k& = 2, Theorem 2.2 says that there exists a unique quadratic
function @ : F, — E» such that

Q@) — FE) < gvale, 2,0) + 3¢(0,2,0)
1 1

92 2
2102*

2 1
— _ Iy

for all z € F;. g

o0

smrell2elP + [|2°z]”) + €II$|I‘"

COROLLARY 2.5. If a function f : Ey — E; satisfles the inequalities
(2.15) for some p > 2 and for all x,y,z € E1, then there exists a unique
quadratic function ) : By — E; such that

0w - 1@l = (g + 3 ) elielF

for all x € E;. If, in addition, f is measurable or f(tz) is continuous
int € R for each fixed x € Ey, then the quadratic function @ satisfies
(2.11) for all x € Ey andt € R.

Proof. Since o(z,y, z) = e(||z||P + |yl|? + ||2||”) satisfies the condition
(2.1) with k = 2, Theorem 2.2 says that there exists a unique quadratic
function Q : By — E5 such that

Q@) — F(@)] £ Z5Pa(z,2,0) +

1

Ecp({),as,())
Lo o2(i41 r Z 1

= 2—222 (+Dy (21-+1,§;+'—110) + el

= 5 27 (gl 4

2 1
- o P
(Qp — T 2) ellz||

for all x € E;. ' O

T ||P 1
s )+ gelel
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3. Hyers-Ulam stability of Eq. (1.3) on a bounded domain

Throughout this section, let n be a given positive integer, r > 0 a
constant, and F a Banach space. For convenience, we use the notation
I =[-rr]™

The stability of the quadratic equation on a bounded real interval
was presented by S.-M. Jung as the following theorem (8]:

THEOREM 3.1. If a function f : I — FE satisfies the inequality

[fz+y)+ flz—y) —2f(x) - 2f(w)l| < e

for some ¢ > 0 and for all x,y € I with x4+ y, x —y € I, then there
exists a quadratic function q : R™ — E such that

£ () — g(z)|| < (291202 + 1872n + 334)e
for all x € I,

Similarly, the Hyers-Ulam stability of the quadratic equation (1.3) on
a bounded domain is obtained as the following:

THEOREM 3.2. If a function f : I" — FE satisfies the inequality (2.14)

forall z,y,z € I" withz+y+z2, x4y, 2 —y, y—2,2—x € I", then
there exists a quadratic function ¢ : R™ — E such that

(3.1) 1f(z) = qle)]| < ?(291%2 + 18720 + 334)c

for every x € I".

Proof. Putting x =y = 2z = 0 in (2.14) we get

(3.2) £ <

e m

Putting y = —z in (2.14) and replacing z in (2.14) by z and —z, respec-
tively, we have

| - 5f(z) + f(2x) + f(-22) + f(0) - 3f(-a}l| < ¢

and

| = 5f(—z)+ f(2z) + (O} + f(—22) = 3f(z)|| £ ¢



Generalized Hyers-Ulam-Rassias stability 335

for all z € I™. By the last two inequalities, we obtain

(3.3) I1f(z} = f(=2)I| < e
If we put 2 =0 in (2.14), we have

B4) [f(e+y)+ flz—y)+ f-2) - 3f(z) ~ 2f(y) = 3f(0)]| < ¢

for all z,y € I" with z +y,2 — y € I". It then follows from (3.4), (3.3)
and (3.2) that the inequality

If{z+y) + [z —y) - 2f(z) - 2f ()|
< If(z+y)+ flz—y) + f(~z) - 3f(2) - 2f(y) - 3f(0)]|
+11f(z) = fF(=2)| + I13£(0)]

< —
E+E+5E = '55

holds for all z,y € I™ with x+y,z —y € I"™. According to Theorem 3.1,
there exists a quadratic function ¢ : R® — FE such that the inequality
(3.1) holds for any z € I™. a
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