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PEAK FUNCTION AND ITS APPLICATION

SANGHYUN CHO

1. Introduction

Let © be a smoothly bounded pseudoconvex domain in C" and let
A(9Q)) denote the functions holomorphic on § and continuous on Q. A
point p € b2 is a peak point if there is a functior. f € A(f2) such that
flp) =1, and |f{z)] < 1 for z € 0 — {p}. The existence of peaking
functions as well as the additional smoothness up to the boundary
is one of the major topics in several complex variables. When 2 is
strictly pseudoconvex, the situation with regard to peak functions is
fairly well understood, but in the weakly pseudoconvex case we know
very little. If ¢ C?is pseudoconvex and b8 is of finite type. Bedford
and Fornaess [1]. showed that there is a peak function in A(€2). This
method also works for finite type domains in C* where the Levi-form of
b2 has (n-2)-positive eigenvalues. We also mention the work of Bloom
[2]. Hakim and Sibony [11], and Range [16] on the existence of peak
functions with additional smoothness up to the boundary of €. i.e., in
the various subclass of A({2).

Recently the author proposed @ method [8] to construct a peak func-
tion for the domains in C" where the optimal estiraates of the Bergman
kernel function are known. Namely, for each neighborhood V of p € bQ2
we construct a regular bumping family of pseudcconvex domains out-
side V', and use Bishop's % — % method on bumped domains. This is a
modification of Fornaess and McNeal’s method [19] and can be applied
to wide class of domains in C". The optimal estiriates of the Bergman
kernel function and its derivatives are known, for example, for pseu-
doconvex domains of finite type in C* [4,12], decoupled pseudoconvex
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domains of finite type domains in C" [13], pseudoconvex domains of
finite type in C™ where the Levi-form of 6Q has (n — 2)-positive eigen-
values [6,7], and for the locally convex finite type domains in C” (15].
In this paper, we want to prove the existence of the Holder continuous
peak functions on the domains we have just mentioned.

THEOREM 1.1. Let Q be a smoothly bounded pseudoconvex domain
in C™ and let b2 be of finite type and p € b§). Assume that the optimal
estimates of the Bergman kernel function and its derivatives are known
on and off the diagonal near p € bQ). Then for each small neighborhood
V of p, there is a Hélder continuous peak function that peaks at p and
extends holomorphically up to bQ < V.

REMARK 1.2. The author proved the existence of (continuous) peak
functions for the locally convex domains in C™ [8]. Here we prove an
additional smoothness (i.e., Holder continuity) of the peak function
up to the boundary for the domains, for example, we have mentioned
before Theorem 1.1.

REMARK 1.3. Fornaess and McNeal also proved the existence of
the Holder continuous peak functions for the pseudoconvex domains of
finite type in C? and for decoupled pseudoconvex finite type domains
in C". Here we revise their proof and we show, in addition, that the
peak function extends holomorphically up to bQ <\ V.

The existence of peak functions for A(2) implies that © is complete
in the Carathéodory metric. Since the Carathéodory metric is smaller
than the Kobayashi metric and the Bergman meiric, we obtain the
following corollary as an immediate application of Theorem 1.1.

COROLLARY 1.4. Let Q be one of four kinds of domains we men-
tioned before Theorem 1.1. Then § is complete in the Kobayashi,
Bergman and Carathéodory metrics.

We will only prove the existence of Hélder continuous peak function
on the pseudoconvex domains of finite type in C* where the Levi-form
of b§) has (n — 2)-positive eigenvalues. The same analysis will give us
a Holder continuous peak functions for the rest kinds of domains.
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2. Smooth bumping families

Let © be a smoothly bounded pseudoconvex domain in C* with
smooth defining function r and let 0 € Q. If g : C — C is any
smooth function with ¢(0) = 0, let v(g) denote the order of vanishing
of g at 0. For a vector valued G = (g1,...¢n), let v(G) denote the
minimum order of vanishing of the g; at 0.

DEFINITION 2.1. (D’Angelo). 0 is a point of finite 1-type if

oG
supg%—) = A(0) < oo,
where G : C — C" is a complex analytic map with G(0) = 0; A(0) is
called the type of 0.

DEFINITION 2.2. Let p € b2 be an arbitrary point and let V' be a
neighborhood of p. By a smooth bumping family for 2 outside V' we
mean a family {Q:}o<t<1 of pseudoconvex domains with C'>® defining
functions {r,} with the following properties:

(a) §2=Q,,

(b) Q¢ C Qy, if t; < tg, and ry(z) is smooth in 2 and t,

(c) for any neighborhood U of 9Q \ V there is a t; > 0 such that
D ~\U=D~U forall t €[0,t].

The following theorem can be found in [5].

THEOREM 2.3. Let p be a point of finite 1-type in the boundary of

a pseudoconvex domain Q in C" with smooth defining function r(z).
Then for each neighborhood V of p, there exists a smooth 1-parameter
family of pseudoconvex domains {{;}o<i<t,, €ach defined by Q¢ =
{z;7(z,t) < 0}, where r(z,t) has the following properties:

(a) r(z,t) is smooth in z near b}, and in t for 0 <t < tg,

(b) r(z,t) =r(z) forz ¢ V,

(¢) &zt <0,

(d) (z,0) = r(2),

(e) forzinV, % < 0.

DEFINITION 2.4. Suppose Q, p € b2, V be as Theorem 2.3. Then
we say {Q}o<t<t, @ bumping family of Q with front V.
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THEOREM 2.5. Let Q CC C" be a smoothly bounded pseudoconvex
domain and let b2 be of finite 1-type. Assume p € b and V is a small
neighborhood of p. Then there is a 1-parameter family of a smooth
bumping family {2} outside V.

Proof. Choose a neighborhood {7 of p such that V << U. Since b2
1s compact, we can choose points =1,... ,zy € bQ and €,.... .en > 0
such that
(1) £ is pseudoconvex and b is of finite type
) Ul B(zie;/2) Db\ U,

=1

(

(2

(3) VNB{z,e)=0.i=1,2 . N,
(4

) B(z;.¢€;),1s contained in a neighborhood V; where Theorem 2.3
can be apphicable, 1 = 1,2, .. N,

Set V; = B(zi.€;), ¢ = 1,2,... N, for the convenience. Consider a
bumping family of © with front V;. Since the type condition is stable
under small C™>-perturbations of b2, we will get a family {2, }o<, <a,
of smooth pseudoconvex domains satisfying (1)-(4) for the domains
0, (instead of ) provided «; i¢ sufficiently small. For each .
0 < t; < a;, we consider a bumping family of 2,, with front V,
and call it {1, }o<iycay- Again {4, bocr <, will satisfy (1) (4)
provided ay is sufficiently small. Continuing in tlds manner, we will
get a bumping family of pseudoconvex domains {4, ¢y} outside
V. Obviously we can regard this family as a l-parameter family of
pseudoconvex domains. [J

3. Estimates on the Bergman kernel

Let Q2 be a bounded pseudoconvex domain of finite type in C" with
smooth defining function r and let p € Q. Suppose that pis a point of
finite T in the sense of D’Angelo [9]. and assume that the Levi-form of
b has (n — 2)-positive eigenvalues ut p. In this section we estimate the
Bergman kernel function near p using the analysis of local geometry of
b2 in [6.7]. For the estimates of th- kernel on the sther domains, one
can refer [4,12.13,15].

Let us take the coordinate functions z7.... , z, about p € bQ2. After

ar ¢, .
5o 0%) > e >0

a linear change of coordinates, we may assume that
for all z € U, for some neighborhood of p.
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PROPOSITION 3.1. ([4, Proposition 2.2 ]) For each z’' ¢ U and pos-
itive even integer m, there is a biholomorphism ®, : C" — C7,

®.1(2") =0, ®.'(2) = ((1,.-. (o) such that

zl

(3.1)
n—1
H@(0) =)+ ReGi+ 3 3 Re (194210000 )
jk>0

+ Y aaEC + Zrcov
J+Hk<m
7,k>0

+O(‘Cl tH " 12—+1 'Cn;7n+l)-

Let us choose z' near p and fix it for a moment. We take m is equal

to T in Proposition 3.1. Set p(¢) =7 o ®.((), and set

5 1
(2, 8) = min{(———)7: 2<1-<T}.
AI(Z’)
Since Ar(zg) > ¢ > 0, it follows that Ap(z') > ¢’ > 0 for all =’ € U if
U is sufficiently small. This gives the inequality,

(3.2) 62 <7(2, 8 < 6T, el

The definition of 7(z',é) easily implies that if 6’ - 6", then

(3.3) (6'16")3r(2",8") < r( .8 ) < (8787 7(2",6").

Nowset 1y =8, 79 = ... =Tp—1 = 6%, n = 7(2',5) = 7 and define

(3.4) Rs(z) = {¢C € C% (k] < 7k, k=1,2,...,n}, and
Qs(2") = {2((); ( € Rys(2')}-

In (1], the author proved that for z € Q4(z’) it follows that

(3.5) (2, 8) = 1(z,6).

We recall the estimates on the Bergman kernel function and its deriva-
tives for the domain ) considered in this section [6.7]. Because of the
transformation formula for the Bergman kernel function, we state our
estimates the special coordinates in Proposition 3.1.
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THEOREM 3. 2 Let ¥ and p € bQ be as in the begining of this
section. For z',22 e UNQ, set (' = ®'(2%), 1 = 1,2. Then there exist

a ne1ghborhood U of p and constants Cy g, independent of z!, 22 €
UnNQ, such that

D& DeKa,, (C' )| < Cagb™ ™ =81-47 (1 §)=2=en—bn

where & = |p(C1)|+1p(C*)|+ M(¢', (%), v = aa+ B2+ . .+ an1 +Baoi,
and M((1, (%) = |¢f - C1|+Z]=3 1) = G+ g Ad=)IGh — GBI

and where p=ro® ..

REMARK 3.3. Let Q and p € b2 be as above. Then the author
(6] estimated the Bergman kernel function K|z, z) on the diagonal as
follows

(3.6) K(z,z) =~ Z:A,(;:')%r(z)“”_T2 mr(z) " r(z,r(2)) 2

=2

near p, and this is the case when »! = 22, and o, = 0, in Theorem
3.2.

Since p is a point of finite type T, Catlin’s theorem [3] says that
there are € > 0 and a neighborhood U in which 0-Neumann problem

satisfies a subelliptic estimate of order € > 0 on (0,1)-forms. For each
w € UNQ, define the function

ho(z) = Kq(z,w)
T Ko(w,w)

Then the estimates of Theorem 3.2 and (3.6) give us
(3.7) D2 ho(2)] S 670075 (Crt e onai) (2 g) o,

where 6 = |r(w)| + |r(z)| + M(w, z), and where

n—1

M(w,z) = IZI_U’1|+Z|Z] —wjl +ZA1(w Vzn — wal'.

F=2 =2
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We will estimate Kq(z,w) for z outside a certain neighborhood of w
and will show that |h,(z)| is quite small outside that neighborhood.
For the convenience in notation, we denote by C the various constants
that follows. Let 7 be a projection onto b and set p = n(w). For
n > 0, let B(p,n) denote the euclidean ball centered at p of radius
n. Let ( € C*°(C") be a function with the property that ¢ = 1 on
2\ B(p,n) and ¢ = 0 on B(p, %), and let N denote the O-Neumann
operator on (0,1)-forms. The following theorem was proved in [14].

PROPOSITION 3.4. Let Q, U, and € > 0 be as above. Let s.t € R*.
If o is a smooth (0,1)-form in the domain of the Kohn Laplacian and
suppa C B(p, ) then there is a constant Cy; > ( so that

T — [543 p
[(Na 2 < Can 205 +4)f'a||‘);t.

Let ¢ € C§°(0,1) be a non-negative radial function with [¢ = 1.
For w € U, set
—w
( )) 2n¢(

2 (w)/2

Puwl(z) = (
Then from the Kohn’s formula,
KQ(Z, w) = Pw(z ) *Va@w( 7).

Assume supp¢, C B(p, ). Then from the Proposition 4.1 with s =
r + 1, we have

IC()Eal w7 < CIKNIGw(-)1 744
< Oy P B, ()12
If t > n+ 1, Sobolev’s lemma gives
H‘Pw”2 (t—-1) = = sup{|(¢w. )l f € C3°, [[flle-1 <1}

sC&/msc

for some C' > 0. If we choose r > n+1, another application of Sobolev’s
lemma shows

sup.|((2)Kq(z,w)] < Cll¢() Kal- w)]],.
Hence _
sup.|((z)Kalz, w)| < Cp~(FE+),

Now set n = 6(w) 2539, If we combine Theorem 3.2 and the estimate
(3.6), we have proved the following
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PROPOSITION 3.5. Let Q and 5 be as above. There exists a constant
C > 0, independent of w € U, so that

[hu(2)] < Cé(w)

forw € U and z € @\ B(n(w),n).

REMARK 3.6. In [1], the author showed that the sharp subelliptic

estimate holds near p. So we may. in fact, take € := —%—

4. A construction of Hélder continuous peak functions

In this section, we construct a Hélder continuous peak function at p.
This construction can be done by careful observation of the estimates in
Theorem 3.2 and (3.6), (3.7). Let 2 and p € bQ be as in the begining of
section 3 and assume that the type of pis T. Then by Remark 3. 6 the
sharp subelliptic estimate of order ] holds near . Set n = W
Now we denote by N the interior ]l()I‘Ilchl to the boundary of Q at p.

LEMMA 4.1. For every q on N, let |¢ — p| = d. There exists a
constant C' > 0 such that for every point ¢ on N sufficiently close to p,

there exist a neighborhood U, of p and a holomorphic function h = h,
on §2 such that

[h[<ConQ,
() (¢) =1,

(3) |h(z ]<Cdfor~€Q\U
(4) [Dh| < §

Proof. Define h(z) = K(z,q)/K(q.q). Property (2) is clear. From
Proposition 3.5, we have [hy(z)| < Cd for z € Q '« B(x(q).d"). This
proves (3) with U, = B(p, d") The estimates of Theorem 3.2 and (3.6)
give |h| < C for z € U, = B(w(q).d"). This fac: together (3 ) gives
(1). Also from the estimates of Theorem 3.2 and (3.6), (3.7). we have
|IDh| < £ O

REMARK 4.2. Actually (4) of Lemma 4.1 can be sharpened as in
(3.7).

We now ready to costruct a Hélder continuous peak functions at D;
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For simplicity we assume that p = 0. Let the type of p is equal to T
and choose a neighborhood U of p such that the subelliptic estimates
for d-equation of order % hold on U7 and Theorem 3.2 and the estimates
of Remark 3.3 hold on U/. We denote by N the interior normal to the
boundary of ! at p. For each neighborhood V' CC U of p. choose a
neighborhood Vi, Vi ¢C V ¢C U. Next we censider a 1-parameter
family of a smooth bumping family {Q}o<i<t, outside V. We may
assume that Vi, N Q = V; N Q, for all t > 0, afier perhaps shrinking

Vi,and QN V CcC Q, ~Vforall 0 <t <ty Now fix 0 < t; <ty
and consider the pseudoconvex domain 2. Since the type Condxtlon
is stable. we may assume that ), is of ﬁnit( type. Also we have
d=dist (QNV 60 NV) > 0. Lot qn =ptorN , for a small constant
s to be determined. Hence d,, = . De ﬁne holz) = hg (2 + qn — D),
where hy, 1s the function d(:ﬁnel{ on 2, (instead of 1} as i1 Lemma
4.1 associated with ¢,. Notice that h,(z) is defined on Q~ V. and
on U intersect a translate of & which contains Q NV, provided s is
sufficiently small. Therefore h,, :s well defined and holomorphic on Q
for each n > 0. Let U, denote the neighborhood corresponding to h,,
as in Lemma 4.1. For a suitable constant 0 < ¢ -2 1, to be determined
later, let 7 = 1 — ¢ and define a peak function as H = r 3.~ c"hn.
During the proof we will choose the constants more precisely. Let us
estimate H on various sets. First outside Uy. Ey the property (3) of
Lemma 4.1 we have |h,| < % for every n provided that s is sufficiently
small. So we ge‘r that |H| <r > ", "‘; = -‘12

Now let P(z) = /.1|+an1 EREDY ‘___,1 5 41(0)] 7 }", with the notation
of section 3. ’\’(xt assume thai z is in U, ~ J,41. Let m be the
largest integer so that P(z) < dy. Then from the estimates of the first
derivatives of hy and by virtue of (3.2) and (3.5), we have for k < m
that

-1
the] —1 < C[d;llzli + Z APz + 7(0,de) izl
7=2
-1 !
< Cldg el + Y di Pzl 4 (0, de) ™" (0, P(2))]

j=2

because 7(0,P(z))"! <

< ‘ | Thus by virtue of 13.3) and (3.4) we get



408 Sanghyvun Cho
that
Akl =1 < Cldp - dg' +dE - d]? +7(0,dy) " - (0, d, )]
S C(QT(k—m) + 2%—(k——m) + 2k—m)_

Therefore [hi| < 1+ C2%~™ for k < m. Similarly, if we Combine the
estimates in Theorem 3.2 and (3.6), we have that |hy| < C—H— for

m < k < n. Also, |h,| < C and |hi| < Cr if k > n. Hencewe
estimate H as follows:

Hl<r[Y fa+o2b-m+ ¥ kc—+ "C+ > 'cc

k<m m-Ck<n k>n
_ e (2o -
(1-2¢) (2¢ — 1)2m
n+41
+rCe™tl. 4 +re™C +rCs- 2)
3 (1-c¢)
2C(1 - ¢) o
— 1___4m—+—1x . 'm+l_2 m—1
(1-c )+~——~(2C_1) (¢ )
4 m+1 n 1
+ = 3 rCe +rc"C + C’s(;
Now set r = 1—017., (lLe.,c=1-— 100) for instance. Then
1 ‘
H < (1= ‘m+] — m+l _ :f—m—l
HI < (=) s 1)< )
2 1
= om+1 SN [ Ct —yn+1
TR 9(2)
1 11
1 m+l San+1 1.
< 2 +4(‘T2) <

if s is sufficiently small. Here we assumed that ' >> 1 and hence
1>¢> 1—90, for instance.

Next we consider Holder estimates. Let Vi = {z : |z| < 27%T} and
choose any z,w € V;. Without loss of generality, we may assume that
0 < |w| < |z|. We will estimate |H(z)~ H(w)| < r Y. c®hn(2)—ha(w)].
First fix m < n so that w € V,, < Vn+1 and z € Vi N\ Vg, Frorn (4)
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of Lemma 4.1, we have |h;(2) — h,(w)

< C'|z—w['d]-_l < Clz —w|297T.
Without loss of generality, we may assume thar mlog% > 2(10T +
1)log2. We thus get that

r E Ahi(2) = ()| € Clz — w] - (2T ¢)m 10
7<m+10
<Clz —wl|”

if 2 — w]'~ - (27¢)™1° < 1, which holds if v < 7Lt

We consider next the tail end of the series.
CAsEl. n>m+3
Then we have

r Z (21 = hi(w)| < Ce™

j>m+8

—mT : 1
We need ¢c™ < |z — w|* or ¢™ < 27T, So if we take v < %gﬂi, then

r Y Flhi(z) - hyw)] < Clz - w]”.

j>m+8

Case II. n <m + 3 and |z — w| < Clw|T.
Note that |h;(z)—h;(w)| < C|Dh,(z')||z—w| for some 2" € Qpr(;.w)(2)-
Since |w| ~ |z'| & 27™7, the estimate (3.7) gives us
[hj(z) = hj(w)] < €277 |2 — w]
< 2™z — w|T - jw|T

<z - w|’11'

r Y dlhy(z) — ki(w)] < Clz —w|T.

j>m-+8
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Casg III. n <m+ 3 and |z — w| >> |w|7.

Let Z, @ be the projections of » and w onto b{) respectively and let
us denote v;, vy the corresponding outward normal vectors at 7 and
w. Set z' =z — |w|vz and w' = w - |w|vg. Note that

Ihy(2') = hj(w")] < CIDR;(z")||3" - '

where |r(z")| 2 |w|. Again from the estimate in (3.7), we get that
[hj(2") = hy(w")] < Clw| 7'z —w'] < C2™T )" —w'| S 1.

Therefore,

PN e~ i) < S () = k()]

i>m+8 i>m+8
4o Z (") — hy(w")|

j>m+8
+r Z cj|h]-(z~r’) — h(w)|

j>m+8

I A

Clem+ M+ M)y < Ce™.

. . _ ' TR
We want ¢™ < |z — w|?, which will follow if ¢™ < |w|T¥ &~ 92— mT"v,
k)

L .
This leads to the estimate v < 7"17(%;72' SoH =r} " c"hy,is a Holder

. logl .
continuous (of order v < iz ) peak function at o.
T2log2 ‘
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