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EXISTENCE OF INFINITELY MANY SOLUTIONS OF

THE NONLINEAR HIGHER ORDER ELLIPTIC

EQUATION

Tacksun Jung and Q-Heung Choi∗

Abstract. We prove the existence of infinitely many solutions of
the nonlinear higher order elliptic equation with Dirichlet boundary
condition (−∆)mu = q(x, u) in Ω, where m ≥ 1 is an integer and
Ω ⊂ Rn is a bounded domain with smooth boundary, when q(x,u)
satisfies some conditions.

1. Introduction and the main result

In this paper we investigate the multiplicity result for the solutions
of the following nonlinear higher order elliptic equations with Dirichlet
boundary condition

(−∆)mu = q(x, u) in Ω, (1.1)

u = 0, ∆u = 0, . . . ∆m−1u = 0 on ∂Ω,

where m ≥ 1 is an integer and Ω ⊂ Rn is a bounded domain with smooth
boundary. We assume that q satisfies the following conditions:
(q1) q ∈ C(Ω×R) is nonnegative,
(q2) There is a constant C > 0 such that

|q(x, s)| ≤ C(1 + |s|), x ∈ Ω, (1.2)

in particular, we assume that

q(x, s) = λm
1 s + p(x, s), (1.3)
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where λ1 is the smallest eigenvalue of the problem

−∆φ = λφ, φ|∂Ω = 0, (1.4)

and p(x, s) is a fast oscillating function of an arbitrarily small amplitude;
(q3) There are sequences σj, τk such that σj →∞, τk →∞,∫

Ω

P(x,
√

2σjφ1(x))dx → −∞,

∫

Ω

P(x,−√
2σjφ1(x))dx → −∞,

(1.5)
and either∫

Ω

P(x,
√

2τkφ1)dx ≥ 0 or

∫

Ω

P(x,−√2τkφ1)dx ≥ 0, (1.6)

where φ1 is the positive eigenfunction of the eigenvalue problem (1.4)
corresponding to the eigenvalue λ1 and P(x, s) =

∫ s

0
p(x, σ)dσ.

(q4) the function p is uniformly bounded on Ω×R.

Several authors were concerned with the multiple solutions of the
nonlinear elliptic equation with Dirichlet boundary condition

−∆u = g(u) in Ω, (1.7)

u = 0, on ∂Ω.

Castro and Lazer ([3]) showed that if the interval (g′(0), g′(∞))∪(g′(∞), g′(0))
contains the eigenvalues λk, . . . , λj and g′(t) < λj+1 for all t ∈ R, then
(1.7) has at least three solutions. The proofs in [4] are based on global
Lyapunov-Schmidt arguments applied to variational problems. Cas-
tro and Cossio ([5]) proved that problem (1.2) has at least five solu-
tions if g is a differentiable function such that g(0) = 0, g′(0) < λ1,
g′(∞) ∈ (λk, λk+1) with k ≥ 2, and g′(t) ≤ γ < λk+1. They proved this
by using Lyapunov-Schmidt reduction arguments, the mountain pass
lemma, and characterizations of the local degree of critical points. Chang
([6]) also approached the same problems using Morse theory. For other
results in the study of this type problems we refer [2], [7], [9].

Our main result is the following:

Theorem 1.1. Assume that q satisfies (q1)-(q4). Then problem (1.1)
has infinitely many solutions.

The proof of Theorem 1.1 is organized as follows: In section 2 we intro-
duce a Banach space H spanned by eigenfunctions and a corresponding
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functional of (1.1) whose critical points correspond to the weak solutions
of problem (1.1), and study the Lagrange multipliers involved in such
critical point equations. In Section 3 we prove Theorem 1.1.

2. The functional on the Banach space

Let Ω ⊂ Rn be a bounded domain with smooth boundary. We de-
fine a complete normed inner product subspace H of L2(Ω) as follows:
Let λk, k = 1, 2, . . . denote the eigenvalues and φk, k = 1, 2, . . . the corre-
sponding orthogonal eigenfunctions in L2(Ω) with respect to L2(Ω) inner
product, of the eigenvalue problem

∆u + λu = 0 in Ω, u = 0 on ∂Ω,

where each eigenvalue λ is repeated as often as its multiplicity. We recall
that 0 < λ1 < λ2 ≤ λ3 ≤ . . . , λi → +∞, and that φ1(x) > 0 for x ∈ Ω.
For any integer m the eigenvalue problem

(−∆)mu = µu in Ω, u = 0, ∆u = 0, . . . ∆m−1u = 0 on ∂Ω,

has infinitely many eigenvalues

µk = λm
k , k ≥ 1,

and corresponding eigenfunctions φk(x). The set of functions {φk} is an
orthogonal base for L2(Ω). Let us denote an element u in L2(Ω) as

u =
∑

hkφk,
∑

h2
k < ∞.

We define a subspace H of L2(Ω) as follows

H = {u ∈ L2(Ω) |
∑

λm
k h2

k < ∞, m : integer }.
Now, we define an inner product (, )H by

(u, v)H = ((−∆)mu, v)L2(Ω)

and a norm ‖ · ‖ in H by

‖u‖2 = (u, u)H = ((−∆)mu, u)L2(Ω).

Then H is a complete normed inner product space with a norm ‖ · ‖.
Since λm

k → +∞ and c is fixed, we have the following simple properties.
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Proposition 2.1. (i) (−∆)mu ∈ H implies u ∈ H.
(ii) ‖u‖ ≥ C‖u‖L2(Ω) for some C > 0.
Moreover ‖u‖ ≥ Cr‖u‖r

L(Ω) for r ≥ 2, Cr > 0.
(iii) ‖u‖L2(Ω) = 0 if and only if ‖u‖ = 0.

Proof. (i) Let (−∆)mu =
∑

λm
k hkφk ∈ H. Then

∑
λm

k λ2m
k h2

k < ∞.

Since

∞ >
∑

λm
k λ2m

k h2
k ≥ C

∑
λm

k h2
k

for some C > 0, it follows that
∑

λm
k h2

k < ∞.

Thus u ∈ H.
To prove (ii) we compute

‖u‖ = (u, u)H

= ((−∆)mu, u)L2(Ω) =
∑∫

Ω

[λm
k h2

kφ
2
k]dx

≥ C
∑ ∫

Ω

h2
kφ

2
kdx = C‖u‖L2(Ω)

for some C > 0. Next, we will prove the second statement. Let

‖u‖Lr(Ω) =

(∫

Ω

|u|r
) 1

r

, r ≥ 1, u =
∑

hkφk.

By a theorem of Riesz [5, p.525] we have

‖u‖Lr(Ω) ≤ C ′(
∑

k

|hk|r′) 1
r′ , r ≥ 2,

1

r
+

1

r′
= 1.

Since for every ε > 0
∑

k

1

|λm
k |1+ε

< ∞,

it follows that for every r ∈ [2, +∞) there is C ′′ > 0 such that

‖u‖Lr(Ω) ≥ C ′′‖u‖.
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This proves the second statement of (ii).
To prove (iii) we have:

‖u‖ = 0 ⇐⇒
∫

Ω

[
∑

λm
k h2

kφ
2
k]dx = 0 ⇐⇒ hk = 0 ⇐⇒ ‖u‖L2(Ω).

We define the functional f in H

f(u) =

∫

Ω

[
1

2
|∇u|2m +

1

2
λm|u|2 + P(x, u)

]
dx,

where P(x, s) =
∫ s

0
p(x, σ)dσ. Then the critical points of f coincide with

the solutions of equation (1.1). Now we have the following proposition.

Proposition 2.2. The functional f(u) is continuous and Fréchet
differentiable in H with Fréchet derivative f ′

(f ′(u), v)H =

∫

Ω

[(−∆)mu + λm
1 u + p(x, u)] vdx

for all v ∈ H.

Proof. Let u ∈ H. To prove the continuity of f(u), we consider

f(u + v)− f(u) =

∫

Ω

[u · ((−∆)mv) +
1

2
v · ((−∆)mv)

+ λm
1 uv +

1

2
λm

1 v2 + P(x, u + v)− P(x, u)]dx.

Let u =
∑

hkφk, v =
∑

h̃kφk. By Hölder inequality we have
∣∣∣∣
∫

Ω

u · ((−∆)mv)dx

∣∣∣∣ =

∣∣∣∣
∫

Ω

∑
λm

k hkh̃kφ
2
kdx

∣∣∣∣ ≤ ‖u‖ · ‖v‖,

∣∣∣∣
∫

Ω

1

2
v · ((−∆)mv)

∣∣∣∣ ≤
1

2
‖v‖2.

By the Mean Value Theorem we get

P(x, ξ + η)− P(x, ξ) = p(x, ξ + θη)η,
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where θ ∈ [0, 1]. Therefore by (q2) we have
∫

Ω

|P(x, u + v)−P(x, u)| dx =

∫

Ω

|p(x, u + θv)| · |v|dx

≤ C

∫

Ω

(1 + |u|+ |v|)|v|dx

≤ C

∫

Ω

(1 + |u|+ |v|)|v|dx

≤ C‖v‖L2(Ω) + C‖u‖L2(Ω)‖v‖L2(Ω) + C‖v‖2
L2(Ω)

≤ C1‖v‖+ C2‖u‖ · ‖v‖+ C3‖v‖2

= (C1 + C2‖u‖+ C3‖v‖)‖v‖.
for some constants C, C1, C2, C3. With the above results, we see that
f(u) is continuous at u. To prove that f(u) is Fréchet differentiable at
u ∈ H, it is enough to compute the following :

∣∣∣∣f(u + v)− f(u)−
∫

Ω

[(−∆)mu + λm
1 u + p(x, u)] vdx

∣∣∣∣

=

∣∣∣∣∣∣∣∣

1

2

∫

Ω

[
v · ((−∆)mv) + λm

1 v2
]
dx

+

∫

Ω

[P(x, u + v)−P(x, u)− p(x, u)v] dx

∣∣∣∣∣∣∣∣

≤ 1

2

∫

Ω

∣∣v · ((−∆)mv) + λm
1 v2

∣∣ dx

+

∫

Ω

|P(x, u + v)−P(x, u)− p(x, u)v| dx

≤ 1

2

∫

Ω

|v · ((−∆)mv)|+ 1

2

∫

Ω

|λm
1 v|2dx

+

∫

Ω

|P(x, u + v)−P(x, u)− p(x, u)v| dx

≤ 1

2
‖v‖2 + C4‖v‖2 +

∫

Ω

|P(x, u + v)− P(x, u)− p(x, u)v| dx

for C4 > 0. On the other hand, by the Mean Value Theorem, we have
∫

Ω

|P(x, u+v)−P(x, u)−p(x, u)v|dx =

∫

Ω

|p(x, u+θv)v−−p(x, u)v|dx.
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Define

Ω1 ≡ {x ∈ Ω : |u(x)| ≥ β}
Ω2 ≡ {x ∈ Ω : |v(x)| ≥ γ}

Ω3 = {x ∈ Ω : |u(x)| < β and |v(x)| < γ}
with β and γ free for the moment. By the Mean Value Theorem, (q2),
and the Hölder inequality we have

∫

Ω1

|P(x, u + v)− P(x, u)|dx =

∫

Ω1

p(x, u + θv)vdx

≤
∫

Ω1

C(1 + |u + θv|)|v|dx

≤
∫

Ω1

C(1 + |u|+ |v|)|v|dx

≤ C

∫

Ω1

|v|dx + C

∫

Ω1

|u||v|dx + C

∫

Ω1

|v|2dx

≤ C|Ω1|n+2
2n ‖v‖

L
2n

n−2
(Ω) + C|Ω1| 1σ (‖u‖L2(Ω) + ‖v‖L2(Ω))‖v‖

L
2n

n−2 (Ω)
,

where 1
σ

+ 1
2
+ n−2

2n
= 1. Observe that 1

2
+ n−2

2n
< 1 and hence there exists

a σ ≥ 1 satisfying 1
σ

+ 1
2

+ n−2
2n

= 1. Combining Propostion 2.1 (ii) and
the above inequality, we have

∫

Ω1

|P(x, u + v)−P(x, u)|dx ≤ C2‖v‖
[
|Ω|n+2

2n + |Ω1| 1σ (‖u‖+ ‖v‖)
]
.

Similarly
∫

Ω1

|p(x, u)v|dx ≤ C3‖v‖
[
|Ω1|n+2

2n + |Ω1| 1σ ‖u‖
]
.

By Proposition 2.1 (ii) and the Hölder inequality,

‖u‖ ≥ C4‖u‖L2(Ω) ≥ C4‖u‖L2(Ω1) ≥ C4β|Ω1| 12 .
Therefore

|Ω1| 1σ ≤
( ‖u‖

C4β

) 2
σ

≡ M1,

|Ω1|n+2
2n ≤

( ‖u‖
C4β

)n+2
n

≡ M2,
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where M1, M2 → 0 as β →∞. Thus we have
∫

Ω1

|P(x, u + v)− P(x, v)− p(x, u)v| dx ≤ C5‖v‖ [M2 + M1(‖u‖+ ‖v‖)] .

We may assume ‖v‖ ≤ 1. Further choose β so large that C5[M2 +
M1(‖u‖+ 1)] ≤ ε

3
. Hence

∫

Ω1

|P(x, u + v)−P(x, v)− p(x, u)v| dx ≤ ε

3
‖v‖.

Similar estimate show that∫

Ω2

|P(x, u + v)−P(x, v)− p(x, u)v| dx

≤ C6

∫

Ω2

(1 + |u|+ |v|) |v|dx

≤ C7

[∫

Ω2

(1 + |u|+ |v|)2dx

] 1
2

‖v‖L2(Ω)

≤ C8(1 + ‖u‖+ ‖v‖)
(∫

Ω2

|v|2
( |v|

γ

) 2n
n−2

−2

dx

) 1
2

.

Therefore we have∫

Ω2

|P(x, u + v)− P(x, v)− p(x, u)v| dx ≤ C9γ
2− 2n

n−2
2 (1+‖u‖+‖v‖)‖v‖ n

n−2 .

Next since P ∈ C1(Ω×R,R), given any ε̂, β̂ > 0 there exists a γ̂ = γ̂(ε̂, β̂)
such that

|P(x, ξ + h)− P(x, ξ)− p(x, ξ)h| ≤ ε̂|h|
whenever x ∈ Ω, |ξ| ≤ β̂, and |h| ≤ γ̂. In particular if β̂ = β and γ ≤ γ̂,

∫

Ω3

|P(x, u + v)− P(x, v)− p(x, u)v| dx ≤ ε̂

∫

Ω3

|v|dx ≤ C10ε̂‖v‖.

Choose ε̂ so that 3C10ε̂ ≤ ε. This determines γ̂. Choose γ = γ̂.
∫

Ω

|P(x, u + v)− P(x, v)− p(x, u)v| dx

≤ 2ε

3
‖v‖+ C9γ

2− 2n
n−2
2 (1 + ‖u‖+ ‖v‖)‖v‖ n

n−2 .
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Finally choose δ so small that

C9γ
1− n

n−2 (2 + ‖u‖)δ n
n−2

−1 ≤ ε

3
Thus we prove that f(u) is Fréchet differentiable in H.

Proposition 2.3. Let

g(u) =

∫

Ω

[
1

2
λm

1 u2(x) + P(x, u(x))

]
dx.

Then g′ is continuous with respect to weak convergence and

(g′(u), v)H =

∫

Ω

[λm
1 uv + p(x, u)v] dx (2.2)

for all v ∈ H. This implies that g itself is weakly continuous.

To prove Proposition 2.3, we need the following lemma.

Lemma 2.1. If p satisfies (q1)-(q2), the map u(x) → p(x, u(x)) be-
longs to
C(L2(Ω), L2(Ω)).

Proof. If u ∈ L2(Ω), then we have∫

Ω

|p(x, u(x))|2dx ≤ C

∫

Ω

(1 + |u|)2dx ≤ C

∫

Ω

(1 + |u|2)dx,

which shows that p : L2(Ω) → L2(Ω). To prove the continuity of this
map, observe that it is continuous at v if and only if f(x, z) = p(x, z(x)+
v(x)) − p(x, v(x)) is continuous at z = 0. We show that f(x, u) is
continuous at u = 0. Let ε > 0 be given. We claim there is a δ > 0 such
that ‖u‖L2(Ω) ≤ δ implies ‖f(·, u)‖L2(Ω) ≤ ε. By (q1) and f(x, 0) = 0,

given any ε̂ > 0, there is a δ̂ > 0 such that |f(x, ξ)| ≤ ε̂ if x ∈ Ω and

|ξ| ≤ δ̂. Let u ∈ L2(Ω) with ‖u‖L2(Ω) ≤ δ, δ being free from now, and
set

Ω1 ≡ {x ∈ Ω : |u(x)| ≤ δ̂}.
Therefore ∫

Ω1

|f(x, u(x))|2dx ≤ ε̂2|Ω1| ≤ ε̂2|Ω|,

where |Ω1| denotes the measure of Ω1. Choose ε̂2 so that ε̂2|Ω| < (
ε
2

)2
.

This determines ε̂. Let Ω2 = Ω \ Ω1. Then∫

Ω2

|f(x, u(x)|2dx ≤ C1

(|Ω2|+ δ2
)
.
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Moreover

δ2 ≥
∫

Ω2

|u|2dx ≥ δ̂2|Ω2|

or |Ω2| ≤
(
δδ̂−1

)2

. Thus we have

∫

Ω2

|f(x, u(x)|2dx ≤ C1(1 + δ̂−2)δ2.

Choose δ so that C1(1 + δ̂−2)δ2 ≤ (
ε
2

)2
. Thus

∫

Ω

|f(x, u(x)|2dx =

∫

Ω1

|f(x, u(x)|2dx+

∫

Ω2

|f(x, u(x)|2dx ≤
(ε

2

)2

+
(ε

2

)2

,

which implies

‖f(·, u)‖L2(Ω) ≤ ε if ‖u‖L2(Ω) ≤ δ

and the proof is complete.

Proof of Proposition 2.3
Let um → u in H. Then um → u in L2(Ω). By Hölder inequality we
have

‖g′(um)− g′(u)‖
= sup

‖v‖≤1

|
∫

Ω

[λm
1 (um − u) + (p(x, um(x))− p(x, u(x)))] v(x)dx|

≤ sup
‖v‖≤1

[

∫

Ω

|λm
1 ||um − u||v(x)|dx +

∫

Ω

|p(x, um(x))− p(x, u(x))||v(x)|dx]

≤ λm
1 ‖um − u‖L2(Ω) + ‖p(x, um)− p(x, u)‖L2(Ω).

By Lemmma 2.1, the right-hand side of the above inequality tends to 0
as m →∞ and hence g′ is continuous. Finally to prove that g is weakly
continuous, let um converge weakly to u in H. Then by Proposition
2.1 (ii), um converges to u in L2(Ω). Consequently Lemma 2.1 implies
g(um) → g(u).

For every t ≥ 0, we define

St = {u ∈ H : ‖u‖2 = 2t}. (2.4)

Theorem 2.1. Let

γ(t) = sup
u∈St

g(u). (2.5)



Existence of infinitely many solutions of nonlinear elliptic eqaution 319

Then γ(t) is a continuous, nondecreasing function in [0,∞). For every
t > 0, γ(t) has left and right hand derivatives γ

′
± satisfying

0 < γ−′(t) ≤ γ+
′(t), t > 0, (2.6)

If γ
′
+(t) 6= 0, then there is u ∈ ∑

t = {u ∈ St : g(u) = γ(t)} such that

g′(u) = γ+
′(t)u. (2.7)

If γ
′
−(t) 6= 0, then there is a u ∈ ∑

t = {u ∈ St : g(u) = γ(t)} such that

g′(u) = γ−′(t)u. (2.8)

The proof is found in [7,8].

3. Proof of theorem 1.1

From the confinuity of γ and (2.6) we have

Lemma 3.1. If 0 < a < c < b and γ(a) ≤ a, γ(b) ≤ b, γ(c) ≥ c, then
there exists a point d ∈ [a, b] such that γ′(d) exists and equals to 1.

Corollary 1. If there are sequences θj, τk such that θj →∞, τk →
∞, γ(θj) ≤ θj and γ(τk) ≥ τk, then there are infinitely many solutions
of

u = g′(u) (3.1)

Proof of Theorem 1.1
In order to apply Corollary 3.1, we note that by Proposition 2.2, (g′(u), v)H

is weakly continuous. We shall show that under hypothesis (q2)− (q3),
there are sequences {σj}, {τk} satisfying the hypotheses of Corollary 3.1.
This will produce an infinite number of solutions of

(u, v)H = (g′(u), v)H , (3.2)

which, given smooth Ω, translates into the solutions of (1.1). Suppose
that the first inequality of (1.5) holds. Let

φt =
√

2t φ1. (3.3)

Then |
phit‖2 = 2t = λm

1 ‖φt‖2
L2(Ω). Thus

γ(t) ≥ g(φt) = t +

∫

Ω

P(x, φt(x))dx. (3.4)
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Thus by the first inequality in (1.5),

γ(τk) ≥ τk, k ≥ 1. (3.5)

If the second inequality in (1.5) holds, the above argument can be re-
peated with

φt = −
√

2tφ1.

Let ε > 0 be given. For arbitary t > 0 there is a ut ∈ St such that
γ(ut) ≤ g(ut) + ε. We can represent this function as

ut =
√

2t (± cos θt · φ1 + sin θt · wt) (3.6)

for some θt and wt with wt ⊥ φ1, ‖wt‖ = 1. Representation (3.6) holds
with cos θt ≥ 0 and an appropriate choice of the sign ±. Thus we have

γ(t) ≤ t(cos2 θt +
λm

1

λ
sin2 θt) +

∫

Ω

P(x, ut(x))dx + ε (3.7)

with λ > λm
1 . Let

φt = ±
√

2t φ1

with the same choice of sign as in (3.6). From (3.7), by (3.4) and with
vt being some convex combination of ut and φt, we have

t(1− λm
1

λ
) sin2 θt − ε ≤

∫

Ω

[P(x, ut)− P(x, φt)] dx

=

∫

Ω

p(x, vt)(ut − φt)dx ≤ C
√

t

∫

Ω

[(1− cos θt)|φ1|+ | sin θt||wt|] dx

≤ C
√

t| sin θt|.
Hence

sin2 θt ≤ C

t
. (3.8)

In particular, we have θt → 0 as t →∞. We see from (3.7), (3.8) that
∫

Ω

[P(x, ut)− P(x, φt)] ≤ C. (3.9)

Consequently, by (3.7),

γ(t)− t ≤
∫

Ω

P(x, ut)dx− t(1− λm
1

λ
) sin2 θt + ε

≤
∫

Ω

[P(x, ut)− P(x, φt)] dx +

∫

Ω

P(x, φt)dx + ε.
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Therefore, by (3.9) and since ε is arbitrary,

γ(t)− t ≤ C +

∫

Ω

P(x, φt(x))dx.

We see that (1.4), even though the sign of φt is not determined, implies
γ(σk)− σk → −∞ as k →∞. The theorem follows from Corollary 3.1.
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