EXISTENCE OF INFINITELY MANY SOLUTIONS OF THE NONLINEAR HIGHER ORDER ELLIPTIC EQUATION

Tacksun Jung and Q-Heung Chor*

Abstract

We prove the existence of infinitely many solutions of the nonlinear higher order elliptic equation with Dirichlet boundary condition $(-\Delta)^{m} u=q(x, u) \quad$ in Ω, where $m \geq 1$ is an integer and $\Omega \subset R^{n}$ is a bounded domain with smooth boundary, when $\mathrm{q}(\mathrm{x}, \mathrm{u})$ satisfies some conditions.

1. Introduction and the main result

In this paper we investigate the multiplicity result for the solutions of the following nonlinear higher order elliptic equations with Dirichlet boundary condition

$$
\begin{gather*}
(-\Delta)^{m} u=q(x, u) \quad \text { in } \Omega \tag{1.1}\\
u=0, \quad \Delta u=0, \quad \ldots \quad \Delta^{m-1} u=0 \text { on } \partial \Omega,
\end{gather*}
$$

where $m \geq 1$ is an integer and $\Omega \subset R^{n}$ is a bounded domain with smooth boundary. We assume that q satisfies the following conditions:
($q 1$) $q \in C(\Omega \times R)$ is nonnegative,
(q2) There is a constant $C>0$ such that

$$
\begin{equation*}
|q(x, s)| \leq C(1+|s|), \quad x \in \Omega \tag{1.2}
\end{equation*}
$$

in particular, we assume that

$$
\begin{equation*}
q(x, s)=\lambda_{1}^{m} s+p(x, s) \tag{1.3}
\end{equation*}
$$

Received June 26, 2008. Revised July 16, 2008.
2000 Mathematics Subject Classification: 35Q72.
Key words and phrases: Higher order elliptic equation,critical point theory, Dirichlet boundary condition.
*Corresponding author.
where λ_{1} is the smallest eigenvalue of the problem

$$
\begin{equation*}
-\Delta \phi=\lambda \phi,\left.\quad \phi\right|_{\partial \Omega}=0 \tag{1.4}
\end{equation*}
$$

and $p(x, s)$ is a fast oscillating function of an arbitrarily small amplitude; (q3) There are sequences σ_{j}, τ_{k} such that $\sigma_{j} \rightarrow \infty, \tau_{k} \rightarrow \infty$,

$$
\begin{equation*}
\int_{\Omega} \mathcal{P}\left(x, \sqrt{2 \sigma_{j}} \phi_{1}(x)\right) d x \rightarrow-\infty, \quad \int_{\Omega} \mathcal{P}\left(x,-\sqrt{2 \sigma_{j}} \phi_{1}(x)\right) d x \rightarrow-\infty \tag{1.5}
\end{equation*}
$$

and either

$$
\begin{equation*}
\int_{\Omega} \mathcal{P}\left(x, \sqrt{2 \tau_{k}} \phi_{1}\right) d x \geq 0 \quad \text { or } \quad \int_{\Omega} \mathcal{P}\left(x,-\sqrt{2 \tau_{k}} \phi_{1}\right) d x \geq 0 \tag{1.6}
\end{equation*}
$$

where ϕ_{1} is the positive eigenfunction of the eigenvalue problem (1.4) corresponding to the eigenvalue λ_{1} and $\mathcal{P}(x, s)=\int_{0}^{s} p(x, \sigma) d \sigma$.
$(q 4)$ the function p is uniformly bounded on $\Omega \times R$.
Several authors were concerned with the multiple solutions of the nonlinear elliptic equation with Dirichlet boundary condition

$$
\begin{array}{cc}
-\Delta u=g(u) & \text { in } \Omega, \tag{1.7}\\
u=0, & \text { on } \partial \Omega .
\end{array}
$$

Castro and Lazer ([3]) showed that if the interval $\left(g^{\prime}(0), g^{\prime}(\infty)\right) \cup\left(g^{\prime}(\infty), g^{\prime}(0)\right)$ contains the eigenvalues $\lambda_{k}, \ldots, \lambda_{j}$ and $g^{\prime}(t)<\lambda_{j+1}$ for all $t \in R$, then (1.7) has at least three solutions. The proofs in [4] are based on global Lyapunov-Schmidt arguments applied to variational problems. Castro and Cossio ([5]) proved that problem (1.2) has at least five solutions if g is a differentiable function such that $g(0)=0, g^{\prime}(0)<\lambda_{1}$, $g^{\prime}(\infty) \in\left(\lambda_{k}, \lambda_{k+1}\right)$ with $k \geq 2$, and $g^{\prime}(t) \leq \gamma<\lambda_{k+1}$. They proved this by using Lyapunov-Schmidt reduction arguments, the mountain pass lemma, and characterizations of the local degree of critical points. Chang ([6]) also approached the same problems using Morse theory. For other results in the study of this type problems we refer [2], [7], [9].

Our main result is the following:
Theorem 1.1. Assume that q satisfies ($q 1$)-($q 4$). Then problem (1.1) has infinitely many solutions.

The proof of Theorem 1.1 is organized as follows: In section 2 we introduce a Banach space H spanned by eigenfunctions and a corresponding
functional of (1.1) whose critical points correspond to the weak solutions of problem (1.1), and study the Lagrange multipliers involved in such critical point equations. In Section 3 we prove Theorem 1.1.

2. The functional on the Banach space

Let $\Omega \subset R^{n}$ be a bounded domain with smooth boundary. We define a complete normed inner product subspace H of $L^{2}(\Omega)$ as follows: Let $\lambda_{k}, k=1,2, \ldots$ denote the eigenvalues and $\phi_{k}, k=1,2, \ldots$ the corresponding orthogonal eigenfunctions in $L^{2}(\Omega)$ with respect to $L^{2}(\Omega)$ inner product, of the eigenvalue problem

$$
\Delta u+\lambda u=0 \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega,
$$

where each eigenvalue λ is repeated as often as its multiplicity. We recall that $0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \ldots, \lambda_{i} \rightarrow+\infty$, and that $\phi_{1}(x)>0$ for $x \in \Omega$. For any integer m the eigenvalue problem

$$
(-\Delta)^{m} u=\mu u \quad \text { in } \Omega, \quad u=0, \Delta u=0, \ldots \Delta^{m-1} u=0 \quad \text { on } \partial \Omega,
$$

has infinitely many eigenvalues

$$
\mu_{k}=\lambda_{k}^{m}, \quad k \geq 1,
$$

and corresponding eigenfunctions $\phi_{k}(x)$. The set of functions $\left\{\phi_{k}\right\}$ is an orthogonal base for $L^{2}(\Omega)$. Let us denote an element u in $L^{2}(\Omega)$ as

$$
u=\sum h_{k} \phi_{k}, \quad \sum h_{k}^{2}<\infty .
$$

We define a subspace H of $L^{2}(\Omega)$ as follows

$$
H=\left\{u \in L^{2}(\Omega) \mid \sum \lambda_{k}^{m} h_{k}^{2}<\infty, \quad m: \text { integer }\right\}
$$

Now, we define an inner product $(,)_{H}$ by

$$
(u, v)_{H}=\left((-\Delta)^{m} u, v\right)_{L^{2}(\Omega)}
$$

and a norm $\|\cdot\|$ in H by

$$
\|u\|^{2}=(u, u)_{H}=\left((-\Delta)^{m} u, u\right)_{L^{2}(\Omega)} .
$$

Then H is a complete normed inner product space with a norm $\|\cdot\|$. Since $\lambda_{k}^{m} \rightarrow+\infty$ and c is fixed, we have the following simple properties.

Proposition 2.1. (i) $(-\Delta)^{m} u \in H$ implies $u \in H$.
(ii) $\|u\| \geq C\|u\|_{L^{2}(\Omega)}$ for some $C>0$.

Moreover $\|u\| \geq C_{r}\|u\|_{L}^{r}(\Omega)$ for $r \geq 2, C_{r}>0$.
(iii) $\|u\|_{L^{2}(\Omega)}=0$ if and only if $\|u\|=0$.

Proof. (i) Let $(-\Delta)^{m} u=\sum \lambda_{k}^{m} h_{k} \phi_{k} \in H$. Then

$$
\sum \lambda_{k}^{m} \lambda_{k}^{2 m} h_{k}^{2}<\infty
$$

Since

$$
\infty>\sum \lambda_{k}^{m} \lambda_{k}^{2 m} h_{k}^{2} \geq C \sum \lambda_{k}^{m} h_{k}^{2}
$$

for some $C>0$, it follows that

$$
\sum \lambda_{k}^{m} h_{k}^{2}<\infty
$$

Thus $u \in H$.
To prove (ii) we compute

$$
\begin{aligned}
\|u\| & =(u, u)_{H} \\
& =\left((-\Delta)^{m} u, u\right)_{L^{2}(\Omega)}=\sum \int_{\Omega}\left[\lambda_{k}^{m} h_{k}^{2} \phi_{k}^{2}\right] d x \\
& \geq C \sum \int_{\Omega} h_{k}^{2} \phi_{k}^{2} d x=C\|u\|_{L^{2}(\Omega)}
\end{aligned}
$$

for some $C>0$. Next, we will prove the second statement. Let

$$
\|u\|_{L^{r}(\Omega)}=\left(\int_{\Omega}|u|^{r}\right)^{\frac{1}{r}}, \quad r \geq 1, \quad u=\sum h_{k} \phi_{k} .
$$

By a theorem of Riesz [5, p.525] we have

$$
\|u\|_{L^{r}(\Omega)} \leq C^{\prime}\left(\sum_{k}\left|h_{k}\right|^{r^{\prime}}\right)^{\frac{1}{r^{\prime}}}, \quad r \geq 2, \quad \frac{1}{r}+\frac{1}{r^{\prime}}=1
$$

Since for every $\varepsilon>0$

$$
\sum_{k} \frac{1}{\left|\lambda_{k}^{m}\right|^{1+\varepsilon}}<\infty
$$

it follows that for every $r \in[2,+\infty)$ there is $C^{\prime \prime}>0$ such that

$$
\|u\|_{L^{r}(\Omega)} \geq C^{\prime \prime}\|u\| .
$$

This proves the second statement of (ii).
To prove (iii) we have:

$$
\|u\|=0 \Longleftrightarrow \int_{\Omega}\left[\sum \lambda_{k}^{m} h_{k}^{2} \phi_{k}^{2}\right] d x=0 \Longleftrightarrow h_{k}=0 \Longleftrightarrow\|u\|_{L^{2}(\Omega)} .
$$

We define the functional f in H

$$
f(u)=\int_{\Omega}\left[\frac{1}{2}|\nabla u|^{2 m}+\frac{1}{2} \lambda^{m}|u|^{2}+\mathcal{P}(x, u)\right] d x
$$

where $\mathcal{P}(x, s)=\int_{0}^{s} p(x, \sigma) d \sigma$. Then the critical points of f coincide with the solutions of equation (1.1). Now we have the following proposition.

Proposition 2.2. The functional $f(u)$ is continuous and Fréchet differentiable in H with Fréchet derivative f^{\prime}

$$
\left(f^{\prime}(u), v\right)_{H}=\int_{\Omega}\left[(-\Delta)^{m} u+\lambda_{1}^{m} u+p(x, u)\right] v d x
$$

for all $v \in H$.
Proof. Let $u \in H$. To prove the continuity of $f(u)$, we consider

$$
\begin{aligned}
f(u+v)-f(u)= & \int_{\Omega}\left[u \cdot\left((-\Delta)^{m} v\right)+\frac{1}{2} v \cdot\left((-\Delta)^{m} v\right)\right. \\
& \left.+\lambda_{1}^{m} u v+\frac{1}{2} \lambda_{1}^{m} v^{2}+\mathcal{P}(x, u+v)-\mathcal{P}(x, u)\right] d x
\end{aligned}
$$

Let $u=\sum h_{k} \phi_{k}, v=\sum \tilde{h_{k}} \phi_{k}$. By Hölder inequality we have

$$
\begin{gathered}
\left|\int_{\Omega} u \cdot\left((-\Delta)^{m} v\right) d x\right|=\left|\int_{\Omega} \sum \lambda_{k}^{m} h_{k} \tilde{h}_{k} \phi_{k}^{2} d x\right| \leq\|u\| \cdot\|v\|, \\
\left|\int_{\Omega} \frac{1}{2} v \cdot\left((-\Delta)^{m} v\right)\right| \leq \frac{1}{2}\|v\|^{2} .
\end{gathered}
$$

By the Mean Value Theorem we get

$$
\mathcal{P}(x, \xi+\eta)-\mathcal{P}(x, \xi)=p(x, \xi+\theta \eta) \eta,
$$

where $\theta \in[0,1]$. Therefore by (q2) we have

$$
\begin{aligned}
\int_{\Omega} & |\mathcal{P}(x, u+v)-\mathcal{P}(x, u)| d x=\int_{\Omega}|p(x, u+\theta v)| \cdot|v| d x \\
& \leq C \int_{\Omega}(1+|u|+|v|)|v| d x \\
& \leq C \int_{\Omega}(1+|u|+|v|)|v| d x \\
& \leq C\|v\|_{L^{2}(\Omega)}+C\|u\|_{L^{2}(\Omega)}\|v\|_{L^{2}(\Omega)}+C\|v\|_{L^{2}(\Omega)}^{2} \\
& \leq C_{1}\|v\|+C_{2}\|u\| \cdot\|v\|+C_{3}\|v\|^{2} \\
& =\left(C_{1}+C_{2}\|u\|+C_{3}\|v\|\right)\|v\| .
\end{aligned}
$$

for some constants C, C_{1}, C_{2}, C_{3}. With the above results, we see that $f(u)$ is continuous at u. To prove that $f(u)$ is Fréchet differentiable at $u \in H$, it is enough to compute the following :

$$
\begin{aligned}
& \left|f(u+v)-f(u)-\int_{\Omega}\left[(-\Delta)^{m} u+\lambda_{1}^{m} u+p(x, u)\right] v d x\right| \\
& =\left|\begin{array}{l}
\frac{1}{2} \int_{\Omega}\left[v \cdot\left((-\Delta)^{m} v\right)+\lambda_{1}^{m} v^{2}\right] d x \\
\quad+\int_{\Omega}[\mathcal{P}(x, u+v)-\mathcal{P}(x, u)-p(x, u) v] d x
\end{array}\right| \\
& \leq \frac{1}{2} \int_{\Omega}\left|v \cdot\left((-\Delta)^{m} v\right)+\lambda_{1}^{m} v^{2}\right| d x \\
& +\int_{\Omega}|\mathcal{P}(x, u+v)-\mathcal{P}(x, u)-p(x, u) v| d x \\
& \leq \frac{1}{2} \int_{\Omega}\left|v \cdot\left((-\Delta)^{m} v\right)\right|+\frac{1}{2} \int_{\Omega}\left|\lambda_{1}^{m} v\right|^{2} d x \\
& +\int_{\Omega}|\mathcal{P}(x, u+v)-\mathcal{P}(x, u)-p(x, u) v| d x \\
& \leq \frac{1}{2}\|v\|^{2}+C_{4}\|v\|^{2}+\int_{\Omega}|\mathcal{P}(x, u+v)-\mathcal{P}(x, u)-p(x, u) v| d x
\end{aligned}
$$

for $C_{4}>0$. On the other hand, by the Mean Value Theorem, we have

$$
\int_{\Omega}|\mathcal{P}(x, u+v)-\mathcal{P}(x, u)-p(x, u) v| d x=\int_{\Omega}|p(x, u+\theta v) v--p(x, u) v| d x .
$$

Define

$$
\begin{aligned}
& \Omega_{1} \equiv\{x \in \bar{\Omega}:|u(x)| \geq \beta\} \\
& \Omega_{2} \equiv\{x \in \bar{\Omega}:|v(x)| \geq \gamma\} \\
& \Omega_{3}=\{x \in \bar{\Omega}:|u(x)|<\beta \text { and }|v(x)|<\gamma\}
\end{aligned}
$$

with β and γ free for the moment. By the Mean Value Theorem, (q2), and the Hölder inequality we have

$$
\begin{aligned}
& \int_{\Omega_{1}}|\mathcal{P}(x, u+v)-\mathcal{P}(x, u)| d x=\int_{\Omega_{1}} p(x, u+\theta v) v d x \\
& \leq \int_{\Omega_{1}} C(1+|u+\theta v|)|v| d x \\
& \leq \int_{\Omega_{1}} C(1+|u|+|v|)|v| d x \\
& \leq C \int_{\Omega_{1}}|v| d x+C \int_{\Omega_{1}}|u||v| d x+C \int_{\Omega_{1}}|v|^{2} d x \\
& \leq C\left|\Omega_{1}\right|^{\frac{n+2}{2 n}}\|v\|_{L^{\frac{2 n}{n-2}}}(\Omega)+C\left|\Omega_{1}\right|^{\frac{1}{\sigma}}\left(\|u\|_{L^{2}(\Omega)}+\|v\|_{L^{2}(\Omega)}\right)\|v\|_{L^{\frac{2 n}{n-2}}(\Omega)},
\end{aligned}
$$

where $\frac{1}{\sigma}+\frac{1}{2}+\frac{n-2}{2 n}=1$. Observe that $\frac{1}{2}+\frac{n-2}{2 n}<1$ and hence there exists a $\sigma \geq 1$ satisfying $\frac{1}{\sigma}+\frac{1}{2}+\frac{n-2}{2 n}=1$. Combining Propostion 2.1 (ii) and the above inequality, we have

$$
\int_{\Omega_{1}}|\mathcal{P}(x, u+v)-\mathcal{P}(x, u)| d x \leq C_{2}\|v\|\left[|\Omega|^{\frac{n+2}{2 n}}+\left|\Omega_{1}\right|^{\frac{1}{\sigma}}(\|u\|+\|v\|)\right] .
$$

Similarly

$$
\int_{\Omega_{1}}|p(x, u) v| d x \leq C_{3}\|v\|\left[\left|\Omega_{1}\right|^{\frac{n+2}{2 n}}+\left|\Omega_{1}\right|^{\frac{1}{\sigma}}\|u\|\right] .
$$

By Proposition 2.1 (ii) and the Hölder inequality,

$$
\|u\| \geq C_{4}\|u\|_{L^{2}(\Omega)} \geq C_{4}\|u\|_{L^{2}\left(\Omega_{1}\right)} \geq C_{4} \beta\left|\Omega_{1}\right|^{\frac{1}{2}}
$$

Therefore

$$
\begin{aligned}
& \left|\Omega_{1}\right|^{\frac{1}{\sigma}} \leq\left(\frac{\|u\|}{C_{4} \beta}\right)^{\frac{2}{\sigma}} \equiv M_{1} \\
& \left|\Omega_{1}\right|^{\frac{n+2}{2 n}} \leq\left(\frac{\|u\|}{C_{4} \beta}\right)^{\frac{n+2}{n}} \equiv M_{2},
\end{aligned}
$$

where $M_{1}, M_{2} \rightarrow 0$ as $\beta \rightarrow \infty$. Thus we have
$\int_{\Omega_{1}}|\mathcal{P}(x, u+v)-\mathcal{P}(x, v)-p(x, u) v| d x \leq C_{5}\|v\|\left[M_{2}+M_{1}(\|u\|+\|v\|)\right]$.
We may assume $\|v\| \leq 1$. Further choose β so large that $C_{5}\left[M_{2}+\right.$ $\left.M_{1}(\|u\|+1)\right] \leq \frac{\varepsilon}{3}$. Hence

$$
\int_{\Omega_{1}}|\mathcal{P}(x, u+v)-\mathcal{P}(x, v)-p(x, u) v| d x \leq \frac{\varepsilon}{3}\|v\| .
$$

Similar estimate show that

$$
\begin{aligned}
& \int_{\Omega_{2}}|\mathcal{P}(x, u+v)-\mathcal{P}(x, v)-p(x, u) v| d x \\
& \leq C_{6} \int_{\Omega_{2}}(1+|u|+|v|)|v| d x \\
& \leq C_{7}\left[\int_{\Omega_{2}}(1+|u|+|v|)^{2} d x\right]^{\frac{1}{2}}\|v\|_{L^{2}(\Omega)} \\
& \leq C_{8}(1+\|u\|+\|v\|)\left(\int_{\Omega_{2}}|v|^{2}\left(\frac{|v|}{\gamma}\right)^{\frac{2 n}{n-2}-2} d x\right)^{\frac{1}{2}} .
\end{aligned}
$$

Therefore we have
$\int_{\Omega_{2}}|\mathcal{P}(x, u+v)-\mathcal{P}(x, v)-p(x, u) v| d x \leq C_{9} \gamma^{\frac{2-\frac{2 n}{n-2}}{2}}(1+\|u\|+\|v\|)\|v\|^{\frac{n}{n-2}}$.
Next since $P \in C^{1}(\bar{\Omega} \times R, R)$, given any $\hat{\epsilon}, \hat{\beta}>0$ there exists a $\hat{\gamma}=\hat{\gamma}(\hat{\varepsilon}, \hat{\beta})$ such that

$$
|\mathcal{P}(x, \xi+h)-\mathcal{P}(x, \xi)-p(x, \xi) h| \leq \hat{\epsilon}|h|
$$

whenever $x \in \bar{\Omega},|\xi| \leq \hat{\beta}$, and $|h| \leq \hat{\gamma}$. In particular if $\hat{\beta}=\beta$ and $\gamma \leq \hat{\gamma}$,

$$
\int_{\Omega_{3}}|\mathcal{P}(x, u+v)-\mathcal{P}(x, v)-p(x, u) v| d x \leq \hat{\varepsilon} \int_{\Omega_{3}}|v| d x \leq C_{10} \hat{\varepsilon}\|v\| .
$$

Choose $\hat{\varepsilon}$ so that $3 C_{10} \hat{\epsilon} \leq \epsilon$. This determines $\hat{\gamma}$. Choose $\gamma=\hat{\gamma}$.

$$
\begin{aligned}
& \int_{\Omega}|\mathcal{P}(x, u+v)-\mathcal{P}(x, v)-p(x, u) v| d x \\
& \leq \frac{2 \varepsilon}{3}\|v\|+C_{9} \gamma^{\frac{2-\frac{2 n}{n-2}}{2-2}}(1+\|u\|+\|v\|)\|v\|^{\frac{n}{n-2}} .
\end{aligned}
$$

Finally choose δ so small that

$$
C_{9} \gamma^{1-\frac{n}{n-2}}(2+\|u\|) \delta^{\frac{n}{n-2}-1} \leq \frac{\varepsilon}{3}
$$

Thus we prove that $f(u)$ is Fréchet differentiable in H.
Proposition 2.3. Let

$$
g(u)=\int_{\Omega}\left[\frac{1}{2} \lambda_{1}^{m} u^{2}(x)+\mathcal{P}(x, u(x))\right] d x .
$$

Then g^{\prime} is continuous with respect to weak convergence and

$$
\begin{equation*}
\left(g^{\prime}(u), v\right)_{H}=\int_{\Omega}\left[\lambda_{1}^{m} u v+p(x, u) v\right] d x \tag{2.2}
\end{equation*}
$$

for all $v \in H$. This implies that g itself is weakly continuous.
To prove Proposition 2.3, we need the following lemma.
Lemma 2.1. If p satisfies (q1)-(q2), the map $u(x) \rightarrow p(x, u(x))$ belongs $C\left(L^{2}(\Omega), L^{2}(\Omega)\right)$.

Proof. If $u \in L^{2}(\Omega)$, then we have

$$
\int_{\Omega}|p(x, u(x))|^{2} d x \leq C \int_{\Omega}(1+|u|)^{2} d x \leq C \int_{\Omega}\left(1+|u|^{2}\right) d x
$$

which shows that $p: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$. To prove the continuity of this map, observe that it is continuous at v if and only if $f(x, z)=p(x, z(x)+$ $v(x))-p(x, v(x))$ is continuous at $z=0$. We show that $f(x, u)$ is continuous at $u=0$. Let $\varepsilon>0$ be given. We claim there is a $\delta>0$ such that $\|u\|_{L^{2}(\Omega)} \leq \delta$ implies $\|f(\cdot, u)\|_{L^{2}(\Omega)} \leq \varepsilon$. By (q1) and $f(x, 0)=0$, given any $\hat{\varepsilon}>0$, there is a $\hat{\delta}>0$ such that $|f(x, \xi)| \leq \hat{\varepsilon}$ if $x \in \bar{\Omega}$ and $|\xi| \leq \hat{\delta}$. Let $u \in L^{2}(\Omega)$ with $\|u\|_{L^{2}(\Omega)} \leq \delta, \delta$ being free from now, and set

$$
\Omega_{1} \equiv\{x \in \bar{\Omega}:|u(x)| \leq \hat{\delta}\}
$$

Therefore

$$
\int_{\Omega_{1}}|f(x, u(x))|^{2} d x \leq \hat{\varepsilon}^{2}\left|\Omega_{1}\right| \leq \hat{\varepsilon}^{2}|\Omega|,
$$

where $\left|\Omega_{1}\right|$ denotes the measure of Ω_{1}. Choose $\hat{\varepsilon}^{2}$ so that $\hat{\varepsilon}^{2}|\Omega|<\left(\frac{\varepsilon}{2}\right)^{2}$. This determines $\hat{\varepsilon}$. Let $\Omega_{2}=\bar{\Omega} \backslash \Omega_{1}$. Then

$$
\int_{\Omega_{2}} \mid f\left(x,\left.u(x)\right|^{2} d x \leq C_{1}\left(\left|\Omega_{2}\right|+\delta^{2}\right) .\right.
$$

Moreover

$$
\delta^{2} \geq \int_{\Omega_{2}}|u|^{2} d x \geq \hat{\delta}^{2}\left|\Omega_{2}\right|
$$

or $\left|\Omega_{2}\right| \leq\left(\delta \hat{\delta}^{-1}\right)^{2}$. Thus we have

$$
\int_{\Omega_{2}} \mid f\left(x,\left.u(x)\right|^{2} d x \leq C_{1}\left(1+\hat{\delta}^{-2}\right) \delta^{2} .\right.
$$

Choose δ so that $C_{1}\left(1+\hat{\delta}^{-2}\right) \delta^{2} \leq\left(\frac{\varepsilon}{2}\right)^{2}$. Thus

$$
\int_{\Omega} \left\lvert\, f\left(x,\left.u(x)\right|^{2} d x=\int_{\Omega_{1}} \left\lvert\, f\left(x,\left.u(x)\right|^{2} d x+\int_{\Omega_{2}} \left\lvert\, f\left(x,\left.u(x)\right|^{2} d x \leq\left(\frac{\varepsilon}{2}\right)^{2}+\left(\frac{\varepsilon}{2}\right)^{2},\right.\right.\right.\right.\right.\right.
$$

which implies

$$
\|f(\cdot, u)\|_{L^{2}(\Omega)} \leq \varepsilon \quad \text { if } \quad\|u\|_{L^{2}(\Omega)} \leq \delta
$$

and the proof is complete.

Proof of Proposition 2.3

Let $u_{m} \rightarrow u$ in H. Then $u_{m} \rightarrow u$ in $L^{2}(\Omega)$. By Hölder inequality we have

$$
\begin{aligned}
& \left\|g^{\prime}\left(u_{m}\right)-g^{\prime}(u)\right\| \\
& =\sup _{\|v\| \leq 1}\left|\int_{\Omega}\left[\lambda_{1}^{m}\left(u_{m}-u\right)+\left(p\left(x, u_{m}(x)\right)-p(x, u(x))\right)\right] v(x) d x\right| \\
& \leq \sup _{\|v\| \leq 1}\left[\int_{\Omega}\left|\lambda_{1}^{m}\right|\left|u_{m}-u\left\|v(x)\left|d x+\int_{\Omega}\right| p\left(x, u_{m}(x)\right)-p(x, u(x))\right\| v(x)\right| d x\right] \\
& \leq \lambda_{1}^{m}\left\|u_{m}-u\right\|_{L^{2}(\Omega)}+\left\|p\left(x, u_{m}\right)-p(x, u)\right\|_{L^{2}(\Omega)} .
\end{aligned}
$$

By Lemmma 2.1, the right-hand side of the above inequality tends to 0 as $m \rightarrow \infty$ and hence g^{\prime} is continuous. Finally to prove that g is weakly continuous, let u_{m} converge weakly to u in H. Then by Proposition 2.1 (ii), u_{m} converges to u in $L^{2}(\Omega)$. Consequently Lemma 2.1 implies $g\left(u_{m}\right) \rightarrow g(u)$.

For every $t \geq 0$, we define

$$
\begin{equation*}
S_{t}=\left\{u \in H:\|u\|^{2}=2 t\right\} . \tag{2.4}
\end{equation*}
$$

Theorem 2.1. Let

$$
\begin{equation*}
\gamma(t)=\sup _{u \in S_{t}} g(u) . \tag{2.5}
\end{equation*}
$$

Then $\gamma(t)$ is a continuous, nondecreasing function in $[0, \infty)$. For every $t>0, \gamma(t)$ has left and right hand derivatives $\gamma_{ \pm}^{\prime}$ satisfying

$$
\begin{equation*}
0<\gamma_{-}^{\prime}(t) \leq \gamma_{+}^{\prime}(t), \quad t>0 \tag{2.6}
\end{equation*}
$$

If $\gamma_{+}^{\prime}(t) \neq 0$, then there is $u \in \sum_{t}=\left\{u \in S_{t}: g(u)=\gamma(t)\right\}$ such that

$$
\begin{equation*}
g^{\prime}(u)=\gamma_{+}^{\prime}(t) u \tag{2.7}
\end{equation*}
$$

If $\gamma_{-}^{\prime}(t) \neq 0$, then there is a $u \in \sum_{t}=\left\{u \in S_{t}: g(u)=\gamma(t)\right\}$ such that

$$
\begin{equation*}
g^{\prime}(u)=\gamma_{-}^{\prime}(t) u . \tag{2.8}
\end{equation*}
$$

The proof is found in $[7,8]$.

3. Proof of theorem 1.1

From the confinuity of γ and (2.6) we have
Lemma 3.1. If $0<a<c<b$ and $\gamma(a) \leq a, \gamma(b) \leq b, \gamma(c) \geq c$, then there exists a point $d \in[a, b]$ such that $\gamma^{\prime}(d)$ exists and equals to 1 .

Corollary 1. If there are sequences θ_{j}, τ_{k} such that $\theta_{j} \rightarrow \infty, \tau_{k} \rightarrow$ $\infty, \gamma\left(\theta_{j}\right) \leq \theta_{j}$ and $\gamma\left(\tau_{k}\right) \geq \tau_{k}$, then there are infinitely many solutions of

$$
\begin{equation*}
u=g^{\prime}(u) \tag{3.1}
\end{equation*}
$$

Proof of Theorem 1.1

In order to apply Corollary 3.1, we note that by Proposition $2.2,\left(g^{\prime}(u), v\right)_{H}$ is weakly continuous. We shall show that under hypothesis $(q 2)-(q 3)$, there are sequences $\left\{\sigma_{j}\right\},\left\{\tau_{k}\right\}$ satisfying the hypotheses of Corollary 3.1. This will produce an infinite number of solutions of

$$
\begin{equation*}
(u, v)_{H}=\left(g^{\prime}(u), v\right)_{H}, \tag{3.2}
\end{equation*}
$$

which, given smooth Ω, translates into the solutions of (1.1). Suppose that the first inequality of (1.5) holds. Let

$$
\begin{equation*}
\phi_{t}=\sqrt{2 t} \phi_{1} . \tag{3.3}
\end{equation*}
$$

Then
$p h i_{t}\left\|^{2}=2 t=\lambda_{1}^{m}\right\| \phi_{t} \|_{L^{2}(\Omega)}^{2}$. Thus

$$
\begin{equation*}
\gamma(t) \geq g\left(\phi_{t}\right)=t+\int_{\Omega} \mathcal{P}\left(x, \phi_{t}(x)\right) d x . \tag{3.4}
\end{equation*}
$$

Thus by the first inequality in (1.5),

$$
\begin{equation*}
\gamma\left(\tau_{k}\right) \geq \tau_{k}, \quad k \geq 1 \tag{3.5}
\end{equation*}
$$

If the second inequality in (1.5) holds, the above argument can be repeated with

$$
\phi_{t}=-\sqrt{2 t} \phi_{1} .
$$

Let $\epsilon>0$ be given. For arbitary $t>0$ there is a $u_{t} \in S_{t}$ such that $\gamma\left(u_{t}\right) \leq g\left(u_{t}\right)+\epsilon$. We can represent this function as

$$
\begin{equation*}
u_{t}=\sqrt{2 t}\left(\pm \cos \theta_{t} \cdot \phi_{1}+\sin \theta_{t} \cdot w_{t}\right) \tag{3.6}
\end{equation*}
$$

for some θ_{t} and w_{t} with $w_{t} \perp \phi_{1},\left\|w_{t}\right\|=1$. Representation (3.6) holds with $\cos \theta_{t} \geq 0$ and an appropriate choice of the sign \pm. Thus we have

$$
\begin{equation*}
\gamma(t) \leq t\left(\cos ^{2} \theta_{t}+\frac{\lambda_{1}^{m}}{\lambda} \sin ^{2} \theta_{t}\right)+\int_{\Omega} \mathcal{P}\left(x, u_{t}(x)\right) d x+\epsilon \tag{3.7}
\end{equation*}
$$

with $\lambda>\lambda_{1}^{m}$. Let

$$
\phi_{t}= \pm \sqrt{2 t} \phi_{1}
$$

with the same choice of sign as in (3.6). From (3.7), by (3.4) and with v_{t} being some convex combination of u_{t} and ϕ_{t}, we have

$$
\begin{aligned}
& t\left(1-\frac{\lambda_{1}^{m}}{\lambda}\right) \sin ^{2} \theta_{t}-\epsilon \leq \int_{\Omega}\left[\mathcal{P}\left(x, u_{t}\right)-\mathcal{P}\left(x, \phi_{t}\right)\right] d x \\
& =\int_{\Omega} p\left(x, v_{t}\right)\left(u_{t}-\phi_{t}\right) d x \leq C \sqrt{t} \int_{\Omega}\left[\left(1-\cos \theta_{t}\right)\left|\phi_{1}\right|+\left|\sin \theta_{t}\right|\left|w_{t}\right|\right] d x \\
& \leq C \sqrt{t}\left|\sin \theta_{t}\right|
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sin ^{2} \theta_{t} \leq \frac{C}{t} \tag{3.8}
\end{equation*}
$$

In particular, we have $\theta_{t} \rightarrow 0$ as $t \rightarrow \infty$. We see from (3.7), (3.8) that

$$
\begin{equation*}
\int_{\Omega}\left[\mathcal{P}\left(x, u_{t}\right)-\mathcal{P}\left(x, \phi_{t}\right)\right] \leq C . \tag{3.9}
\end{equation*}
$$

Consequently, by (3.7),

$$
\begin{aligned}
\gamma(t)-t & \leq \int_{\Omega} \mathcal{P}\left(x, u_{t}\right) d x-t\left(1-\frac{\lambda_{1}^{m}}{\lambda}\right) \sin ^{2} \theta_{t}+\varepsilon \\
& \leq \int_{\Omega}\left[\mathcal{P}\left(x, u_{t}\right)-\mathcal{P}\left(x, \phi_{t}\right)\right] d x+\int_{\Omega} \mathcal{P}\left(x, \phi_{t}\right) d x+\varepsilon
\end{aligned}
$$

Therefore, by (3.9) and since ε is arbitrary,

$$
\gamma(t)-t \leq C+\int_{\Omega} \mathcal{P}\left(x, \phi_{t}(x)\right) d x .
$$

We see that (1.4), even though the sign of ϕ_{t} is not determined, implies $\gamma\left(\sigma_{k}\right)-\sigma_{k} \rightarrow-\infty$ as $k \rightarrow \infty$. The theorem follows from Corollary 3.1.

References

[1] H.Amann Saddle points and multiple solutions of defferential equation, Math. Z. (1979), 127-166.
[2] A.Ambrosetti and P.H. RabinowitzP.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Analysis 14 (1973), 349-381.
[3] V. Bence and P.H. RabinowitzP.H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), 336-352.
[4] A. Castro and A. C. LazerA. C. Lazer, Critical point theory and the number of solutions of a nonlinear Dirichlet problem , Ann. Mat. Pura Appl., (4) 120, 113-137 (1979).
[5] A. Castro and J. CossioJ. Cossio, Multiple solutions for a nonlinear Dirichlet problem, SIAM J. Math. Anal., 25, No. 6, 1554-1561 (1994).
[6] K. C. Chang, Infinite dimensional Morse theory and multiple solution problems, Birkhäuser, (1993).
[7] Q.H. Choi and T. JungT. Jung, Multiplicity results for a semilinear biharmonic equation, Nonlinear Analysis 30 (1997), 5083-5092.
[8] N. Dunford and J.T. SchwartzJ.T. Schwartz, Linear operators Vol. 1, New York, Interscience (1964).
[9] P.H. Rabinowitz, Minimax methods in critical points with applications to differential equations, CBMS. Regional Conf. Ser. Math. Vol 65, Providence, Rhode Island (1986).
[10] M. Schechter and K. TintarevK. Tintarev, Spherical maxima in Hilbert space and semilinear elliptic eigenvalue problems, Differential and Integral Equations 3 (1990), 889-899.
[11] M. Schechter and K. TintarevK. Tintarev, Eigenvalues for semilinear boundary value problems, Arch. Rat. Mech. Anal. 113 (1991), 197-208.
[12] J.T. Schwartz, Nonlinear functional analysis, Gordon and Breach, New York, (1969).
[13] K. Tintarev, Level set maxima and quasiliner elliptic problems, Pacific J. Math. 153 (1992), 185-200.
[14] K. Tintarev, Mountain impasse therorem and spectrum of semilinear elliptic problems, Trans. Amer. Math. Soc. 336 (1993), 621-629.

Department of Mathematics
Kunsan National University
Kunsan 573-701 Korea
E-mail: tsjung@kunsan.ac.kr
Department of Mathematics Education
Inha University
Incheon 402-751 Korea
E-mail: qheung@inha.ac.kr

