• Title/Summary/Keyword: boundary point

Search Result 1,417, Processing Time 0.023 seconds

POSITIVE SOLUTIONS OF MULTI-POINT BOUNDARY VALUE PROBLEMS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION AT RESONANCE

  • Yang, Aijun;Ge, Weigao
    • The Pure and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.213-225
    • /
    • 2009
  • This paper deals with the existence of positive solutions for a kind of multi-point nonlinear fractional differential boundary value problem at resonance. Our main approach is different from the ones existed and our main ingredient is the Leggett-Williams norm-type theorem for coincidences due to O'Regan and Zima. The most interesting point is the acquisition of positive solutions for fractional differential boundary value problem at resonance. And an example is constructed to show that our result here is valid.

  • PDF

EXISTENCE OF EVEN NUMBER OF POSITIVE SOLUTIONS TO SYSTEM OF FRACTIONAL ORDER BOUNDARY VALUE PROBLEMS

  • Krushna, B.M.B.;Prasad, K.R.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.255-268
    • /
    • 2018
  • We establish the existence and multiplicity of positive solutions to a coupled system of fractional order differential equations satisfying three-point boundary conditions by utilizing Avery-Henderson functional fixed point theorems and under suitable conditions.

REDUCTION METHOD APPLIED TO THE NONLINEAR BIHARMONIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.1
    • /
    • pp.87-96
    • /
    • 2010
  • We consider the semilinear biharmonic equation with Dirichlet boundary condition. We give a theorem that there exist at least three nontrivial solutions for the semilinear biharmonic boundary value problem. We show this result by using the critical point theory, the finite dimensional reduction method and the shape of the graph of the corresponding functional on the finite reduction subspace.

POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR p-LAPLACIAN WITH SIGN-CHANGING NONLINEAR TERMS

  • Li, Xiangfeng;Xu, Wanyin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.411-422
    • /
    • 2010
  • By using the fixed point index theory, we investigate the existence of at least two positive solutions for p-Laplace equation with sign-changing nonlinear terms $(\varphi_p(u'))'+a(t)f(t,u(t),u'(t))=0$, subject to some boundary conditions. As an application, we also give an example to illustrate our results.

ELLIPTIC BOUNDARY VALUE PROBLEM WITH TWO SINGULARITIES

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.26 no.1
    • /
    • pp.9-21
    • /
    • 2018
  • We investigate existence and multiplicity of the solutions for elliptic boundary value problem with two singularities. We obtain one theorem which shows that there exists at least one nontrivial weak solution under some conditions on which the corresponding functional of the problem satisfies the Palais-Smale condition. We obtain this result by variational method and critical point theory.

BIFURCATION PROBLEM FOR THE SUPERLINEAR ELLIPTIC OPERATOR

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.333-341
    • /
    • 2012
  • We investigate the number of solutions for the superlinear elliptic bifurcation problem with Dirichlet boundary condition. We get a theorem which shows the existence of at least $k$ weak solutions for the superlinear elliptic bifurcation problem with boundary value condition. We obtain this result by using the critical point theory induced from invariant linear subspace and the invariant functional.

ON DICHOTOMY AND CONDITIONING FOR TWO-POINT BOUNDARY VALUE PROBLEMS ASSOCIATED WITH FIRST ORDER MATRIX LYAPUNOV SYSTEMS

  • Murty, M.S.N.;Kumar, G. Suresh
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1361-1378
    • /
    • 2008
  • This paper deals with the study of dichotomy and conditioning for two-point boundary value problems associated with first order matrix Lyapunov systems, with the help of Kronecker product of matrices. Further, we obtain close relationship between the stability bounds of the problem on one hand, and the growth behaviour of the fundamental matrix solution on the other hand.

MULTIPLE POSITIVE SOLUTIONS OF PERIODIC BOUNDARY VALUE PROBLEMS WITH IMPULSE

  • Song, Xiaohua;Zhao, Zengqin;Wang, Xin
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.875-883
    • /
    • 2009
  • At least two positive solutions of a first-order periodic boundary value problem with impulse are obtained by establishing a new cone and the theorem of fixed point index. And at the end of this paper we give an example to illustrate the application of our main results.

  • PDF