References
- S. G. Samko, A. A. Kilbas & O.I. Marichev: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Yverdon, 1993.
- I. Podlubny: Fractional Differential Equations, Mathematics in Sciences and Engineering. 198, Academic Press, San Diego, 1999.
- K. S. Miller & B. Ross: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York, 1993.
- A. A. Kilbas, H. M. Srivastava & J.J. Trujillo: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B. V., Amsterdam, 2006.
- V. Lakshmikantham & A.S. Vatsala : Basic theory of fractional differential equations. Nonlinear Anal. 69 (2008), 2677-2682. https://doi.org/10.1016/j.na.2007.08.042
- V. Lakshmikantham & A.S. Vatsala : Theory of fractional functional differential equations. Nonlinear Anal. 69 (2008), 2677-2682. https://doi.org/10.1016/j.na.2007.08.042
- V. Lakshmikantham & A.S. Vatsala : General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Letters 21 (2008), 828-834. https://doi.org/10.1016/j.aml.2007.09.006
- A.M.A. El-Sayed, A.E.M. El-Mesiry & H.A.A. El-Saka: On the fractional-order logistic equation. Appl. Math. Letters 20 (2007), 817-823. https://doi.org/10.1016/j.aml.2006.08.013
- A.M.A. El-Sayed & E. M. El-Maghrabi: Stability of a monotonic solution of a nonautonomous multidimensional delay differential equation of arbitrary (fractional) order. Electronic Journal of Qualitative Theory of Differential Equations 16 (2008), 1-9.
- K. Diethelm & N. J. Ford: Analysis of fractional differential equations. J. Math. Anal. Appl. 265 (2002), 229-248. https://doi.org/10.1006/jmaa.2000.7194
- M. Benchohra, J. Henderson, S. K. Ntouyas & A. Ouahab: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338 (2008), 1340-1350. https://doi.org/10.1016/j.jmaa.2007.06.021
- C. Bai: Positive solutions for nonlinear fractional differential equations with coefficient that changes sign. Nonlinear Anal. 64 (2006), 677-685. https://doi.org/10.1016/j.na.2005.04.047
- Z. Bai & H. Lu: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311 (2005), 495-505. https://doi.org/10.1016/j.jmaa.2005.02.052
- S. Zhang : Existence of solution for a boundary value problem of fractional order. Acta Mathematica Scientia 26 (2006), 220-228 https://doi.org/10.1016/S0252-9602(06)60044-1
- S. Zhang : Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electronic Journal of Qualitative Theory of Differential Equations 2006 (2006), 1-12.
- M. El-Shahed: Positive solutions for boundary value problem of nonlinear fractional differential equation. Abstract and Appl. Anal. Article Number: 10368 Published: 2007, 8 pages.
- D. O'Regan & M. Zima: Leggett-Williams norm-type theorems for coincidences. Arch. Math. 87 (2006), 233-244. https://doi.org/10.1007/s00013-006-1661-6
- J. Mawhin: Topological degree methods in nonlinear boundary value problems. in: NS-FCBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, 1979.
- Aijun Yang & Weigao Ge : Positive solutions for boundary value problems of N-dimension nonlinear fractional differential system. Boundary Value Problems, In press.
- Aijun Yang & Weigao Ge : Positive solutions of multi-point boundary value problems with multivalued operators at resonance. J. Appl. Math. Comput. On line: 10.1007/s12190-008-0217-2.