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ABSTRACT. In this paper, existence criteria of one solution to a nonlinear
first-order periodic boundary value problem of impulsive dynamic equation
on time scales are obtained by using the well-known Schaefer fixed-point
theorem.
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1. Introduction

The theory of impulsive differential equations is emerging as an important
area of investigation, since it is a lot richer than the corresponding theory of
differential equations without impulse effects. Moreover, such equations may
exhibit several real world phenomena in physics, biology, engineering, etc. (see
[3, 4, 20]). At the same time, the boundary value problems for impulsive differ-
ential equations and impulsive difference equations have received much attention
[2, 10, 16, 17, 21, 22, 24-27]. On the other hand, recently, the theory of dynamic
equations on time scales has become a new important branch (See, for example,
[1, 5, 6, 15, 18]). However, to the best of our knowledge, there is not much
concerning for BVPs of impulsive dynamic equations on time scales [7, 8, 11-14,
23, 29].

Let T be a time scale, i.e., T is a nonempty closed subset of R. Let 0,
T be points in T, an interval (0,7) denoting time scales interval, that is,
(0,T)p :=(0,T) N'T. Other types of intervals are defined similarly.

In this paper, we are concerned with the existence of solutions for the following
nonlinear first-order PBVP on time scale
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z2(t) + p(t)z(o(t) = f(t,x(o(t)), t € J:=[0,Tlp, t # tr,
k=1,2,...,m,

a(th) — a(ty) = L(x(ty)), t =te, k=1,2,...,m, (1)

2(0) = 2(o(T)),

where f : J X R — R is a given function, I, € C(R,R), p : [0,T]y — (0, 00)
is right-dense continuous (that is p € R, where R+ will be defined in section
2), tp € (0,T)p, 0 <ty <--- <tm <T, and foreach k = 1,2,...,m, z(t]) =
limp o+ z(tr + k) and z(t,) = limy,_¢- x(tx + h) represent the right and left
limits of xz(t) at t = .

In [9], Cabada developed the method of lower and upper solutions coupled
with the monotone iterative techniques to derive the existence of extremal so-
lutions to the first-order PBVP of dynamic equations on time scales (in the
one-dimensional case)

u?(t) = f(t, u(t), t = [a,b]y,
{ w(a) = u(o(b)). B )

In [28], Sun and Li considered the existence of solutions to the following first-
order PBVPs on time scales

{ 2(t) + p(t)z(o(t)) = f(t,z(c(t)), t =[0,T)p, (3)
z(0) = z(o(T)).

The main tool used in [28] is the well-known Schaefer fixed-point theorem [19].
In [29], the second author studied the problem (1). The existence of positive
solutions to the problem (1) was obtained by means of the Guo-Krasnoselskii
fixed point theorem. In this paper, we shall show that the PBVP (1) has at
least one solution by means of the well-known Schaefer fixed-point theorem.
Our results were motivated by the work [10].

In the remainder of this section, we state the well-know Schaefer fixed-point
theorem [19].

Theorem 1. (Schaefer Fixed Point Theorem) Let E be a normed linear space
(possibly incomplete) and @ : E — E be a compact operator. Suppose that the
set '
' S = {z € E|z = A\®(z), some A € (0,1)}

is bounded. Then ® has a fixed point in E.

2. Preliminaries

In this section, we state some fundamental definitions and results concerned
time scales, so that the paper is self-contained. For more details, one can refer
to [1, 5, 6, 15, 18].

Definition 1. Assume that z : T -R and fix t € T (if £ = sup T, we assume
t is not left-scattered). Then z is called delta differentiable at t € T if there
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exists a 6§ € R such that for any given € > 0, there is an open neighborhood U
of ¢ such that

|z(o(t)) — z(s) — O|o(t) —s|| < el|o(t)—s|, se€U.

In this case, 8 is called the delta derivative of x at ¢ € T and denote it by
0 = x2(t). If FA(t) = f(t), then we define the delta integral by

/ ' f(s)15s = F(t) - Fla).

Definition 2. A function f : T —R is called rd-continuous provided it is
continuous at right-dense points in T and its left-sided limits exist at left-dense
points in T. The set of rd-continuous f : T —R will be denoted by C,4.

Lemma 1. If f € Crq and t € TX, then
o(t)
f(s)Ds = pu(t)f(¢),
where p(t) = o(t) — t is the graininess function.
Lemma 2. If f® >0, then f is increasing.

Lemma 3. Assume that f, g: T —R are delta differentiable at t, then
(f9)2(t) = f2®)g(t) + f(a()g™ () = f(£)g™ (&) + 2 (D)9 (o (2)).

t

Definition 3. A function p: T —R is regressive provided
14 p(t)p(t) # 0 for all t € TX.
The set of all regressive and rd-continuous functions will be denoted by R.

Definition 4. We define the set R* of all positively regressive elements of R
by
t={peR:1+u)plt) >0 forall teT}

Definition 5. If p € R, then the delta exponential function is given by ep(t,s) =
exp (fst g(T)AT) , where

_ P(T) if u(r) =0,
9(7) _{ 5 Log(1+p(T)u(r)), if u(r) #0,

here Log is the principal logarithm.
Lemma 4. pr € R, then

(1) ep(t, t) =

2) epltss) = o

(3) eplt, u)ep(u s) = ep(t, s);

(4) ;é(t to) = p(t)ep(t, to), forteT* and to € T.
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Lemma 5. Ifp € R* and ty € T, then
ep(t,to) > 0 for allt € T.

3. Main results

Throughout the rest of this paper, we always assume that the points of impulse
tr. are right-dense for each k =1,2,...,m. Let
PC={z€[0,0(T)tr = R:zr € C(Jr,R), k=1,2,...,m and there exist
z(tF) and z(ty ) with z(t;) = z(t), k= 1,2,... ,m},

where xj is the restriction of z to Ji = (t,tx+1]p C (0,0(T)]T, k=1,2,...,m
and Jo = [0, ti]T, Jms1 = o(T), Yz € PC, define the norm
|z]l pe = max {||lzxll;, , k=0,1,...,m},

obviously PC' is a Banach space.

Definition 6. A function z € PCNCYJ\{t1, t2, ..., tm}, R) is said to be a
solution of PBVP (1.1) if and only if z satisfies the dynamic equation

z2(t) + p(t)z(o(t)) = f(t, z(c(t))) everywhere on J\{t1,t2,... ,tm},
the impulsive conditions
o(t)) — z(t;) = I(z(ty)), k=1,2,...,m,
and the periodic boundary condition z(0) = z(a(T)).
Lemma 6. ([29]) Suppose h: [0,T]t — R is rd-continuous, then z is a solution
of
o(T) m
o(t) = / G(t, s)h(s)0s + 3 Glt, ) Ik((tx)), t € [0,0(T)]m,
0

k=1 |
ep(s,t)ep(a(T),0) 0<s<t<olT
where G(t,s) = { e”e(:}g?)’o)'l » 0sssi<oll), if and only if = is a
ep(o(T),0)-1" 0<t<s< G(T)>

solution of the boundary value problem

z2(t) + p(t)z(o(t)) = h(t), te J := [Q,T]T, t#te, k=1,2,...,m;
() —z(ty) = I(z(t;)), k=1,2,...,m,
z(0) = z(a(T)).

Theorem 2. Suppose
(H1) f: JxR — R is continuous and there exist nonnegative constants & and
K such that, for any X € (0,1), A|f(¢,z)| < a[Xf(t,z)—p(t)z]+ K, t € J,x € R.
(H2) I, : R — R is continuous and there exist nonnegative constants B and
Ny, such that |I;;(z)| < Bk |z| + Ng, for each k=1,2,...,m.
(H3) mB*ep(a(T),0) < ep(a(T),0) — 1, where f* = maxi<t<m G-
Then the PBVP (1) has at least one solution.

Proof. Define an operator ® : PC — PC by
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o(T) m
(®z)(t) = fo G(t,5)f(s,2(0(s))) s + 3 Glt, ti) Iu(a(ti)), ¢ € [0,0(T)]r.
k=1

* TY),0 e .
Note that G* = sup, seo.0(1) |G (t:8)] < é(%(%—zT—)—l By Lemma 6, it is easy

to see that fixed points of ® are the solutions to the PBVP (1) .

First, we assert that @ is continuous and completely continuous. The proof
is divided into three steps.

Step 1: To show that & : PC — PC is continuous, let {z,}52, be a sequence
such that lim,, ...z, = z in PC. Then

(@,)(0) ~ (@2)(1)
a(T)
= [ 6.9 an(o(o) - flsz(o(s))] As

+3° Gt 1) Un(ma(ti)) - Ti(a(t))] |

k=1
< G'o(T) 155, 2n(0(s)) = £(5,2(o(s)ll g + G- | Lil@a(ti))

—I(z(tx))

o0
Since f, I;; are continuous, it follows that | @z, — ®z|pc — 0 (n — o0) . That
is, ® : PC — PC is continuous. 4

Step 2: To show that ® maps bounded sets into bounded sets in PC,
let By = {x € PC: ||z||pc <1}, M = maxe)o, 1) |c|<t |f(t, )], and N* =
maxi<k<m INk.Then, for any x € B;, we have

' o(T) m '
[(22)(¢)] = /0 G(t,s)f(s,2(a(5)))Ds + Y G(t, t) Ix(x(tr))
k=1

< G o(T)M +m(B"l+ N™)].

which shows that ®(B;) is bounded.
Step 3: To show that ® maps bounded sets into equicontinuous sets of PC,
let tq, ts € [O,O‘(T)]T, x € By, then

T |
(@) (1) — (D)(t2)] < /0 |G(t1,8) = G(t2, 5)| | f (s, 2(0(s)))] As

4 DTG t) — Gltas t)] [k ((E))]
k=1

The right-hand side tends to uniformly Zero as |t; — ta| — 0.

Consequently, Steps 1-3 together with the Arzela-Ascoli Theorem show that
®: PC — PC is continuous and completely continuous.

Next, we assert that the set § = {x € PC|z = A®(x), some X € (0,1)} is
bounded. Let x € S. Then, there exists a A € (0,1) such that z = A®(z). So,
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from (H;), (H2) and (Hs), we have:
e = IN@))] |
a(T) m
| et a@ s+ Y Gt lkle(t)

k=1

o(T) m
G / Mf(s,2(0(s))] Bs + G- T (tr)]
0 k=1

= A

IN

IN

o(T)
G / {alMf(s, 2(0(5))) = p(s)2(0(s))] + K} s

+G* ) " [Br |z ()] + Ni]

k=1

o(T)
< 6 / laz? + KOs + G m(" ||| + N*)
0

= G [Ko(T) +m(8" |lz]| + N)], t € [0,0(T)lr,

en(o(T), 0) [Ko(T) + mN"] . _

ep(0(T),0)(L ~mpB*) -1
S = {z € PC|z = A®(z), some A € (0,1)} is bounded. Thus, by the Theorem
1 we know that ® has at least one fixed point, which is the desired solution of
PBVP (1). : d

which implies ||z| po <

Corollary 1. Suppose

(Hy) f :J x R — R is continuous and bounded.

(Hs) I, : R— R, k=1,2,...,m, are continuous and bounded.
Then the PBVP (1) has at least one solution.

4. Example
Example 1. Let T = [0, 1] U (2, 3]. We consider the following PBVP on T

z2(t) + z(a(t) = f(t,z(o(8), t €[0,3], t-# 3,
2 (37) -2 (37) = 13, 4)
z(0) = z(3),

where p( )=1,T =3, f(t,z(c(t))) = tarctan(z(a(t)))®, and I(z(3)) =

Qiefl ) Then the PBVP (4) has at least one solution.

Proof. Since p(t) =1, T = 3, and T = [0,1] U [2,3], it is easy to see that
ep(o(T),0) = 2€°.

Choose aa =0, K = =X, 3% = )e ‘1 , N* = 0, then the conditions of Theorem
2 are satisfied. Thus, the PBVP (4) has at least one solution. O
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