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REDUCTION METHOD APPLIED TO THE

NONLINEAR BIHARMONIC PROBLEM

Tacksun Jung and Q-Heung Choi∗

Abstract. We consider the semilinear biharmonic equation with
Dirichlet boundary condition. We give a theorem that there exist at
least three nontrivial solutions for the semilinear biharmonic bound-
ary value problem. We show this result by using the critical point
theory, the finite dimensional reduction method and the shape of
the graph of the corresponding functional on the finite reduction
subspace.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let
∆ be the elliptic operator and ∆2 be the biharmonic operator. In this
paper we investigate the number of the weak solutions of the following
semilinear biharmonic equation with Dirichlet boundary condition

∆2u + c∆u = b(u + 1)+ − b in Ω, (1.1)

u = 0, ∆u = 0 on ∂Ω,

where u+ = max{u.0} and b, c ∈ R. Choi and Jung [3] show that the
problem

∆2u + c∆u = bu+ + s in Ω, , (1.2)

u = 0, ∆u = 0 on ∂Ω,

has at least two nontrivial solutions when (c < λ1, λ1(λ1 − c) < b <
λ2(λ2 − c) and s < 0) or (λ1 < c < λ2, b < λ1(λ1 − c) and s > 0).
They obtained these results by use of the variational reduction method.
They [5] also proved that when c < λ1, λ1(λ1 − c) < b < λ2(λ2 − c) and
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s < 0, (1.2) has at least three nontrivial solutions by use of the degree
theory. Tarantello [9] also studied (1.1). She show that if c < λ1 and
b ≥ λ1(λ1 − c), then (1.1) has a negative solution. She obtained this
result by the degree theory. Micheletti and Pistoia [7] also proved that
if c < λ1 and b ≥ λ2(λ2− c), then (1.1) has at least four solutions by the
variational linking theorem and Leray-S chauder degree theory. In this
paper we are looking for the weak solutions of (1.1) when

λk < c < λk+1 and λk+m(λk+m − c) < b < λk+m+1(λk+m+1 − c).

The eigenvalue problem

∆2u + c∆u = Λu in Ω,

u = 0, ∆u = 0 on ∂Ω,

has infinitely many eigenvalues λk(λk−c), k ≥ 1 and corresponding eigen-
functions φk, k ≥ 1, the suitably normalized with respect to L2(Ω) inner
product, of where each eigenvalue λk is repeated as often as its multiplic-
ity, where λk, k ≥ 1, are the infinitely many eigenvalues and φk, k ≥ 1,
are the corresponding eigenfunctions, suitably normalized with respect
to L2(Ω) inner product of the eigenvalue problem

∆u + λu = 0 in Ω,

u = 0 on ∂Ω.

We recall that λ1(λ1− c) ≤ λ2(λ2− c) ≤ . . . → +∞, and that φ1(x) > 0
for x ∈ Ω.

Our main result is the following.

Theorem 1.1. Assume that λk < c < λk+1 and λk+m(λk+m−c) < b <
λk+m+1(λk+m+1 − c). Then (1.1) has at least three nontrivial solutions.

The outline of the proof is as follows: In section 2, we show that the
corresponding functional I(u) ∈ C1(H,R), Fréchet differentiable and
satisfies the Palais-Smale condition. In section 3, we prove Theorem 1.1.
For the proof of Theorem 1.1 we use the finite dimensional reduction
method and investigate the (P.S.) condition and the critical points of
the corresponding functional Ĩ(v) on the finite reduction subspace.
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2. Reduction method

Let L2(Ω) be a square integrable function space defined on Ω. Any
element u in L2(Ω) can be written as

u =
∑

hkφk with
∑

h2
k < ∞.

We define a subspace H of L2(Ω) as follows

H = {u ∈ L2(Ω)|
∑

|λk(λk − c)| < ∞}.

Then this is a complete normed space with a norm

‖u‖ = [
∑

|λk(λk − c)|h2
k]

1
2 .

Since λk → +∞ and c is fixed, we have
(i) ∆2u + c∆u ∈ H implies u ∈ H.
(ii) ‖u‖ ≥ C‖u‖L2(Ω), for some C > 0.
(iii) ‖u‖L2(Ω) = 0 if and only if |‖u|‖ = 0,
which is proved in [2].
We are looking for the weak solutions of (1.1). The weak solutions of
(1.1) coincide with the critical points of the associated functional

I ∈ C1(H, R),

I(u) =

∫

Ω

[
1

2
|∆u|2 − c

2
|∇u|2 − b

2
|(u + 1)+|2 − bu]dx, (2.1)

By the following Lemma 2.1, I ∈ C1(H, R) and I is Fréchet differen-
tiable in H:

Lemma 2.1. Assume that λk < c < λk+1 and λk+m(λk+m − c) < b <
λk+m+1(λk+m+1−c). Then I(u) is continuous and Frechét differentiable
in H and

DI(u)(h) =

∫

Ω

∆u ·∆h− c∇u · ∇h− (b(u + 1)+ − b)h (2.2)

for h ∈ H.
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Proof. Let u, v ∈ H. Let us set G(u) = b
2
|(u + 1)+|2 − bu. First we

will prove that I(u) is continuous. We consider

I(u + v)− I(u)

=

∫

Ω

[
1

2
|∆(u + v)|2 − c

2
|∇(u + v)|2 −G(u + v)]

−
∫

Ω

[
1

2
|∆u|2 − c

2
|∇u|2 −G(u)]

=

∫

Ω

[u · (∆2v + c∆v) +
1

2
v · (∆2v + c∆v)− (G(u + v)−G(u))].

Let u =
∑

hkφk, v =
∑

h̃kφk. Then we have

|
∫

Ω

u · (∆2v + c∆v)dx| = |
∑ ∫

Ω

λk(λk − c)hkh̃k| ≤ ‖u‖‖v‖,

|
∫

Ω

v · (∆2v + c∆v)dx| = |
∑ ∫

Ω

λk(λk − c)h̃2
k| ≤ ‖v‖2.

On the other hand, by Mean Value Theorem, we have

∫

Ω

[G(u + v)−G(u)]

=

∫

Ω

[
b

2
|(u + v + 1)+|2 − b

2
|(u + 1)+|2 − b(u + v) + bu]dx

=

∫

Ω

(b(u + tv + 1)+ − b)vdx

≤ b(‖(u + tv + 1)+‖L2(Ω) − 1)‖v‖L2(Ω)

≤ b(‖u + tv + 1‖L2(Ω) − 1)‖v‖L2(Ω)

≤ b‖u + tv‖L2(Ω)‖v‖L2(Ω)

≤ b‖u + v‖L2(Ω)‖v‖L2(Ω)

≤ b‖u + v‖‖v‖ = O(‖v‖),
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where 0 < t < 1. With the above results, we see that I(u) is continuous
at u. To prove I(u) is Fréchet differentiable at u ∈ H, we consider

|I(u + v)− I(u)−DI(u)v|

= |
∫

Ω

1

2
v(∆2v + c∆v)−G(u + v) + G(u)− g(u)v|

≤ 1

2
‖v‖2 + b‖v‖(‖u‖+ ‖v‖) + b‖u‖‖v‖

≤ (
1

2
‖v‖+ b(2‖u‖+ ‖v‖))‖v‖ = 0(‖v‖).

Thus I(u) is Fréchet differentiable at u ∈ H.

Now we shall reduce the theory on the infinite dimensional space to
the theory on the finite dimensional subspace. Let V be a m dimensional
subspace of H which is the closure of span of the eigenfunctions whose
corresponding eigenvalues are Λ ≤ λk+m(λk+m − c) and W be the or-
thogonal complement of V in H. Let P : H → V denote the orthogonal
projection of H onto V and I − P : H → W denote that of H onto
W . Then every element u ∈ H is expressed by u = v + w, v = Pu,
w = (I − P )u. Then (1.1) is equivalent to the two systems with two
unknowns v and w:

∆2v + c∆v = P (b(v + w + 1)+ − b) in Ω, (2.3)

∆2w + c∆w = (I − P )(b(v + w + 1)+ − b) in Ω, (2.4)

v = 0, ∆v = 0 on ∂Ω,

w = 0, ∆w = 0 on ∂Ω.

We recall that if I is a function of class C1 and u0 is a critical point of I,
then u0 is called of mountain pass type if for every open neighborhood U
of I−1(−∞, I(u0))∩U 6= ∅ and I−1(−∞, I(u0))∩U is not pass connected.

Lemma 2.2. (Finite Dimensional Reduction Lemma) Let λk < c <
λk+1. Assume that λk+m(λk+m − c) < b < λk+m+1(λk+m+1 − c), k ≥ 1,
m ≥ 1. Then we have that
(i) there exists m > 0 such that

(DI(v+w)−DI(v+w1), w−w1) ≥ m‖w−w1‖2, for all v ∈ V,w, w1 ∈ W.

(ii) there exists a unique solution w ∈ W of the form

∆2w + c∆w − (I − P )(b(v + w + 1)+ − b) = 0 in W, (2.5)

w = 0, ∆w = 0 on ∂Ω.
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If we put w = θ(v), then θ is continuous on V and satisfies a uniform
Lipschitz condition in v with respect to the L2 norm(also norm ‖ · ‖).
Moreover

∇I(v + θ(v))(w) = 0 for all w ∈ W. (2.6)

(iii) If Ĩ : V → R is defined by Ĩ(v) = I(v+θ(v)), then Ĩ has a continuous
Fréchet derivative ∇Ĩ with respect to v, and

∇Ĩ(v)(h) = ∇I(v + θ(v))(h) for all v, h ∈ V.

(iii) If v0 ∈ V is a critical point of Ĩ if and only if v0 + θ(v0) is a critical
point of I.
(iv) If u0 = v0 + θ(v0) is a critical point of mountain pass type of I, then
v0 is a critical point of mountain pass type of Ĩ.

Proof. (i)If v ∈ V , w,w1 ∈ W , then

(DI(v + w)−DI(v + w1))(w −w1) =

∫

Ω

[|∆(w −w1)|2 − c|∇(w −w1)|2

−(b(v + w + 1)+ − b(v + w1 + 1)+)(w − w1)]

According to the variational characterization of the eigenvalues {λj(λj−
c)}∞1 , we have ‖w‖2 ≥ λk+m+1(λk+m+1 − c)‖w‖L2(Ω). Since (b(v + w +
1)+ − b(v + w1 + 1)+)(w − w1) ≤ b(w − w1)

2, it follows that

(DI(v + w)−DI(v + w1))(w − w1)

≥ ‖w − w1‖2 − b‖w − w1‖2
L2(Ω)

= m‖w − w1‖2

with m = 1− b
λk+m+1(λk+m+1−c)

> 0. Thus (i) is satisfied.

(ii)The equation (2.5) is equivalent to

w = (∆2 + c∆− b

2
)−1(I − P )(b(v + w + 1)+ − b− b

2
(v + w)) (2.7)

Since (∆2 + c∆ − b
2
)−1(I − P ) is self adjoint, compact and linear map

from (I − P )L2(Ω) into itself, the eigenvalues of (∆2 + c∆ − b
2
)−1(I −

P ) are (λl(λl − c) − b
2
)−1, l ≥ k + m + 1. Therefore its L2 norm is

(λk+m+1(λk+m+1 − c)− b
2
)−1. Since

{b(v + w + 1)+ − b− b

2
(v + w)} − {b(v′ + w′ + 1)− b +

b

2
(v′ + w′)}

≤ (b− b

2
)|(v + w + 1)− (v′ + w′ + 1)|,
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it follows that the right-hand side of (2.7) defines, for fixed v ∈ V , a
Lipschitz mapping of (I−P )L2(Ω) into itself with Lipschitz constant r =

1
λk+m+1(λk+m+1−c)− b

2

· (b− b
2
) < 1. Therefore, by the contraction mapping

principle, for given v ∈ V , there exists a unique w = (I−P )L2(Ω) which
satisfies (2.5). If θ(v) denote the unique w ∈ (I − P )L2(Ω) which solves
(2.5), then θ is continuous and satisfies a uniform Lipschitz condition in
v with respect to the L2 norm(also norm ‖ · ‖). In fact, if w1 = θ(v1)
and w2 = θ(v2), then

‖w1 − w2‖

= ‖(∆2 + c∆− b

2
)(I − P )({b(v1 + w1 + 1)+ − b− b

2
(v1 + w1)}

− {b(v2 + w2 + 1)− b +
b

2
(v2 + w2)}‖

≤ ‖(∆2 + c∆− b

2
)(I − P )({b(v1 + w1 + 1)+ − b− b

2
(v1 + w1)}

− {b(v2 + w2 + 1)− b +
b

2
(v2 + w2)}‖

= r‖(v1 + w1)− (v2 + w2)‖
≤ r(‖v1 − v2‖+ ‖w1 − w2‖) ≤ r|‖v1 − v2|‖+ r|‖w1 − w2|‖.

Hence

|‖w1 − w2|‖ ≤ C|‖v1 − v2|‖, C =
r

1− r
. (2.8)

Let u = v + w, v ∈ V and w = θ(v). If w ∈ (I − P )L2(Ω) ∩ H, then
from (2.5) we see that∫

Ω

[∆w ·∆z − c∇w · ∇z − (I − P )(b(v + w + 1)+z − bz)]dx = 0.

Since ∫

Ω

∆w ·∆z = 0 and

∫

Ω

∇v · ∇z = 0,

we have
DI(v + θ(v))(w) = 0. (2.9)

(iii) Since the functional I has a continuous Fréchet derivative DI, Ĩ
has a continuous Fréchet derivative DĨ with respect to v.
(iv) Suppose that there exists v0 ∈ V such that DĨ(v0) = 0. From
DĨ(v)(h) = DI(v + θ(v))(h) for all v, h ∈ V , DI(v0 + θ(v0))(h) = 0 for
all h ∈ V . Since DI(v + θ(v))(w) for all w ∈ W and H is the direct sum
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of V and W , it follows that DI(v0 + θ(v0)) = 0. Thus v0 + θ(v0) is a
solution of (1.1). Conversely if u is a solution of (1.1) and v = Pu, then
DĨ(v) = 0.
(iv) Suppose v0 is not of mountain pass type of Ĩ. Let S be an open
neighborhood of v0 in V such that Ĩ−1(−∞, Ĩ(v0))∩ S is empty or path
connected. If Ĩ−1(−∞, Ĩ(v0)) ∩ S is empty, by part (i) we see that
{v + w : v ∈ V, w ∈ W} ∩ I−1(−∞, I(u0)) is also empty. Thus u0 is not
of mountain pass type for I. If Ĩ−1(−∞, Ĩ(v0)) ∩ S is path connected,
Letting T = {v + w : v ∈ V, ‖w − θ(v)‖ < 1} and using again (i) it is
seen that T ∩ I−1(−∞, I(u0)) is also path connected.

3. Palais-Smale condition and proof of theorem 1.1

We shall show that Ĩ(v) satisfies the (P.S.) condition.

Lemma 3.1. Assume that λk < c < λk+1 and λk+m(λk+m − c) < b <
λk+m+1(λk+m+1 − c). Then Ĩ(v) satisfies the Palais-Smale condition.

Proof. Let us set u(v) = v + w(v), v ∈ V , w(v) ∈ W . Then we have

Ĩ(v) =

∫

Ω

[
1

2
|∆v + ∆w(v)|2 − c

2
|∇v +∇w(v)|2]dx

−
∫

Ω

b

2
|(v + w(v) + 1)+|2dx +

∫

Ω

b(v + w)dx.

Let us set G(u(v)) =
∫
Ω
[b(u(v) + 1)+ − b]dx. Then we have

Ĩ(v) = I(v + w(v)) = I(u(v))

=

∫

Ω

[
1

2
|∆u(v)|2 c

2
|∇u(v)|2 − b

∫

Ω

G(u(v))dx

=

∫

Ω

[
1

2
|∆v|2 − c

2
|∇v|2]dx− b

∫

Ω

G(v)dx

+{
∫

Ω

1

2
|∆u(v)|2 − c

2
|∇u(v)|2 − 1

2
|∆v|2 +

c

2
|∇v|2

−b

∫

Ω

[G(u(v))−G(v)]dx}.
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The terms in the bracket are equal to

−b

∫

Ω

[G′(sw(v)− v)w(v)dx]ds +
1

2

∫

Ω

(∆2u(v) + c∆u(v))w(v)dx

= b

∫

Ω

∫ 1

0

G′′(sw(v) + v)w(v)w(v)sdsdx

−1

2

∫

Ω

(∆2w(v) + c∆w(v))w(v)dx

by the condition λk+m(λk+m − c) < b < λk+m+1(λk+m+1 − c). Thus we
have

Ĩ(v) ≤
∫

Ω

[
1

2
|∆v|2 − c

2
|∇v|2]dx

−b

∫

Ω

G(v)dx

1

2
{λk+m(λk+m − c)− b}‖v‖2 = b‖v‖ −→ −∞ as ‖v‖ → ∞.

Thus −Ĩ(v) is bounded from below and, so satisfies the (P.S.) condition.

Lemma 3.2. Under the same assumption as Theorem 1.1, 0 is neither
a minimum nor degenerate.

Proof. We note that 0 = 0+ θ(0), θ(0) = 0. Since I + θ is continuous,
I is identity map, there exists a small neighborhood B of 0 such that if
v ∈ B, then

1

2

∫

Ω

(∆2v + c∆v)vdx− Λ̄

2

∫

Ω

G(v)dx + o(‖v‖2) ≤ Ĩ(v)

≤ 1

2

∫

Ω

(∆2v + c∆v)vdx− Λ

2

∫

Ω

G(v)dx + o(‖v‖2),

where (Λ.Λ̄) ⊂ (λk+m(λk+m − c), λk+m+1(λk+m+1 − c)).

Proof of theorem 1.1 By Lemma 3.1, I(v) is bounded above, satisfies
the (P.S.) condition and Ĩ(v) → −∞ as ‖v‖ → ∞. By Lemma 3.3,
0 is neither a minimum nor degenerate. Thus Ĩ(v) has at least three
nontrivial weak solutions.
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