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BIFURCATION PROBLEM FOR THE SUPERLINEAR

ELLIPTIC OPERATOR

Tacksun Jung and Q-Heung Choi∗

Abstract. We investigate the number of solutions for the superlin-
ear elliptic bifurcation problem with Dirichlet boundary condition.
We get a theorem which shows the existence of at least k weak solu-
tions for the superlinear elliptic bifurcation problem with boundary
value condition. We obtain this result by using the critical point the-
ory induced from invariant linear subspace and the invariant func-
tional.

1. Introduction

Let Ω be a bounded domain in Rn, (n ≥ 3), with smooth boundary
∂Ω. Let a : Ω → R be a continuous function and g : R → R be a C1

function. In this paper we consider the number of the weak solutions
of the following superlinear elliptic bifurcation problem with Dirichlet
boundary condition

−∆u = λa(x)u+ g(u) in Ω,(1.1)

u = 0 on ∂Ω.

We assume that a(x) > 0 in Ω and g satisfies the following:
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(g1) g ∈ C1(R,R), g(0) = 0, g(u) = o(∥u∥), ∥ ·∥ is the norm introduced
in section 3.

(g2) There exist a constant β ∈]2, 2∗[, 2∗ = 2n
n−2

, and r0 > 0 such that

0 < βG(ξ) = β

∫ ξ

0

g(t)dt ≤ ξg(ξ) for |ξ| ≥ r0.

(g3) g(u) ≤ C1|u|β−1 for C1 > 0,

(g4) g(−u) = −g(u).
We note that (g2) implies the existence of positive constants a1, a2,

a3 such that

(1.2)
1

β
(ξg(ξ) + a1) ≥ G(ξ) + a2 ≥ a3|ξ|β for ξ ∈ R.

The eigenvalue problem

∆u+ λu = 0 in Ω,

u = 0 on ∂Ω

has infinitely many eigenvalues λj, j ≥ 1 which is repeated as often as
its multiplicity, and the corresponding eigenfunctions ϕj, j ≥ 1 suitably
normalized with respect to L2(Ω) inner product. The eigenvalue problem

−∆u = µa(x)u in Ω,

u = 0 on ∂Ω,

has also infinitely many eigenvalues µj, j ≥ 1 and corresponding eigen-
functions ψj, j ≥ 1. We note that µ1 < µ2 ≤ µ3 . . ., µj → +∞.

This type bifurcation problem was considered by some authors ([1],[3]).
Rabinowitz [3] showed that if g ∈ C1(Ω, R), g satisfies g(ξ) = o(|ξ|) as
ξ → 0, a(x) is continuous and a(x) > 0 in Ω, then (1.1) has several kinds
of solutions under some additional assumptions. He proved this result
by the critical point theory and the variational method.

Chang [1] also proved that (1.1) has at least k solutions under the
conditions (g1)− g(3)

(g1)′ There exists ξ ≥ 0 such that a(x)ξ + g(ξ) ≤ 0 ∀x ∈ Ω,
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(g2)′ g ∈ C1(Ω, R), g satisfies g(ξ) = o(|ξ|) as ξ → 0, a(x) is continuous
on Ω and a(x) > 0,

(g3)′ g(−ξ) = −g(ξ).

He proved this result by the critical point theory.

Jung and Choi [2] investigated the multiple solutions for the follow-
ing nonlinear elliptic equation with jumping nonlinearity and subcritical
growth nonlinearity and Dirichlet boundary condition

∆u+ bu+ − pup−1
− = h(x) in Ω,(1.3)

u = 0 on ∂Ω,

where 2 < p < 2∗, 2∗ = 2n
n−2

, n ≥ 3, u+ = max{u, 0}, u− = −min{u, 0},
u(x) ∈ W 1,2

0 (Ω) and h(x) ∈ Ls(Ω) for some s > n. They first showed
the existence of a positive solution and next found the second nontriv-
ial solution by applying the variational method and the mountain pass
method in the critical point theory. By investigating that the functional
I satisfies the mountain pass geometry they show the existence of at
least two solutions for the equation.

Our main result is the following.

Theorem 1.1. Assume that a : Ω → R is a continuous function,
a(x) > 0, g satisfies the conditions (g1) − (g4) and µk < λ < µk+1,
k ≥ 1. Then (1.1) has at least k weak solutions.

We prove Theorem 1.1 by the critical point theory induced from the
invariant subspace and invariant functional. The outline of the proof of
Theorem 1.1 is as follows: In section 2, we introduce a Hilbert space
H and closed invariant linear subspaces of H which are invariant under
the operator u 7→

∫
Ω
|∇u|2dx, and the invariant functional on H. We

obtain some results on the norm ∥ · ∥ and the functional I(u), and recall
a critical point theory in terms of the invariant functional and invariant
subspaces which plays a crucial role for the proof of the main result. In
section 3, we prove Theorem 1.1.
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2. Recall of the critical point theory

Let E be a real Hilbert space on which the action Z2 acts orthogonally.
For u ∈ E, we define Z2− actions on E by

Tu = u or Tu = −u,
that is, the Z2 action have the identity map and the antipodal map as
an action. Thus Z2−action acts freely on the subspace {u| Tu = −u}.
Let FixZ2 be the set of fixed points of the action, i.e.,

FixZ2 = {u ∈ E| Tu(x) = u(x), for all x ∈ Ω, u ∈ E, Z2 − action T}.
We note that FixZ2 = {0}. Let

X1 = FixZ2 = {0} X2 = X⊥
1 .

Thus Z2− action has the representation x 7→ −x, for x ∈ X2 and E =
X1 ⊕ X2. We say a subset B of E an Z2-invariant set if for all u ∈ B,
Tu ∈ B. A function I : E → R1 is called Z2-invariant if I(Tu) = I(u),
∀u ∈ E. Let C(B,E) be the set of continuous functions from B into
E. If B is an invariant set we say h ∈ C(B,E) is an equivariant map if
h(Tu) = Th(u) for all u ∈ B.

Now we recall the critical point theory in terms of the invariant sub-
space and invariant functional which is proved in Theorem 4.1 of [1]
which plays a crucial role for the proof of Theorem 1.1: Let Sρ be the
sphere centered at the origin of radius ρ. Let I : E → R be a functional
of the form

I(u) =
1

2
(Lu)u− F (u),

where L : E → E is linear, continuous, symmetric and equivariant,
F : E → R is of class C1 and invariant and DF : E → E is compact.

Theorem 2.1. Assume that I ∈ C1(E,R1) is Z2-invariant and there
exist two closed invariant linear subspaces V , W of E and ρ > 0 with
the following properties:

(a) V +W is closed and of finite codimension in E;

(b) FixZ2 ⊆ V +W ;

(c) L(W ) ⊆ W ;
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(d) supSρ∩V I < +∞ and infW I > −∞;

(e) u /∈ FixZ2 whenever DI(u) = 0 and

inf
W
I ≤ I(u) ≤ sup

Sρ∩V
I.

(f) I satisfies (P.S.)c condition whenever infW I ≤ c ≤ supSρ∩V I.
Then I possesses at least

dim(V ∩W )− codimH(V +W )

distinct critical orbits in I−1([infW I, supSρ∩V I]).

3. Proof of theorem 1.1

Let L2(Ω) be a square integrable function space defined on Ω. Any
element u in L2(Ω) can be written as

u =
∑

hkϕk with
∑

h2k <∞.

We define a subspace H of L2(Ω) as follows

(3.1) H = {u ∈ L2(Ω)|
∑

|µk|h2k <∞}.

Then this is a complete normed space with a norm

∥u∥ = [
∑

|µk|h2k]
1
2 .

Since µk → +∞, we have

(i) −∆u ∈ H implies u ∈ H,

(ii) ∥u∥ ≥ C∥u∥L2(Ω) for some C > 0,

(iii) ∥u∥L2(Ω) = 0 if and only if ∥u∥ = 0,

which can be proved easily.
We note that H in (3.1) is a real Hilbert space on which the action

Z2 acts orthogonally. For u ∈ H, we define Z2− actions on H by

Tu = u or Tu = −u,
that is, the Z2−action have the identity map and the antipodal map as
an action. Thus Z2−action acts freely on the subspace {u| Tu = −u}.
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Let FixZ2 be the set of fixed points of the action, i.e.,

FixZ2 = {u ∈ H| Tu(x) = u(x), for all x ∈ Ω, u ∈ H, Z2 − action T}.

We note that FixZ2 = {0}. Let

X1 = FixZ2 = {0} X2 = X⊥
1 .

Thus Z2− action has the representation x 7→ −x, for x ∈ X2 and H =
X1 ⊕X2. Let

(Lu)h =

∫
Ω

[∆u ·∆h− c∇u · ∇h]dx.

We can check easily that L(H) ⊆ H, L : H → H is an isomorphism
and ∇I(H) ⊆ H. Therefore constrained critical points on H are in fact
free critical points on H. Moreover, distinct critical orbits give rise to
geometrically distinct solutions.

We are looking for the weak solutions of (1.1). By the following
Proposition 3.1, the weak solutions of (1.1) coincide with the critical
points of the associated functional

I(u) ∈ C1(H,R),

I(u) =

∫
Ω

[
1

2
|∇u|2 −

∫
Ω

[
1

2
λa(x)u2 +G(u)]dx,(3.2)

where G(ξ) =
∫ ξ

0
g(τ)τ . By (g1), I is well defined.

Proposition 3.1. Assume that a : Ω → R is a continuous function,
a(x) > 0 and g satisfies (g1)−(g4). Then I(u) is continuous and Fréchet
differentiable in H with Fréchet derivative

∇I(u)h =

∫
Ω

[∇u · ∇h− (λa(x)u+ g(u))h]dx.

If we set

F (u) =

∫
Ω

[
1

2
λa(x)u2 +G(u)]dx,

then F ′(u) is continuous with respect to weak convergence, F ′(u) is
compact, and

F ′(u)h =

∫
Ω

(λa(x)u+ g(u))hdx for all h ∈ H,

this implies that I ∈ C1(H,R) and F (u) is weakly continuous.
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The proof of Proposition 3.1 has the similar process to that of the
proof in Appendix B in [2].

We have the following lemma which can be checked easily since FixZ2 =
{0}:

Lemma 3.1. Assume that g satisfies the conditions (g1) − (g4). Let
u ∈ FixZ2 = {0} and u be a critical point of the functional of I, i.e.,
∇I(u) = 0. Then I(u) = 0.

To prove Theorem 1.1 we shall prove that the functional I satisfies
the assumptions (a)− (f) of Theorem 2.1.

We assume that g satisfies the conditions (g1)− (g4). Let us set

H+
k = {u| u ∈ H, u ∈ span{ψl, l ≥ k}},

H−
k = {u| u ∈ H, u ∈ span{ψl, 1 ≤ l ≤ k}}.

We note that

∀u ∈ H+
1 : (Lu)u ≥ µ1

∫
Ω

a(x)u2dx,(3.3)

∀u ∈ H−
k : (Lu)u ≤ µk

∫
Ω

a(x)u2dx.

Lemma 3.2. Assume that g satisfies the conditions (g1)− (g4). Then
there exist ρ > 0 and a sphere Sρ centered at 0 in H such that the
functional I(u) is bounded from above on Sρ ∩ H−

k and from below on
H+

1 . That is,

−∞ < inf
u∈H+

1

I(u) and sup
u∈Sρ∩H−

k

I(u) < 0.

Proof. Let u ∈ H+
1 . Then we have

I(u) =
1

2
(Lu)u−

∫
Ω

[
1

2
λa(x)u2 +G(u)]dx

≥ 1

2
(µ1 − λ)

∫
Ω

a(x)u2dx−
∫
Ω

G(u)dx

≥ 1

2
(µ1 − λ)

∫
Ω

a(x)u2dx− C2

∫
Ω

|u|βdx

≥ 1

2
(µ1 − λ)sup a(x)∥u∥2L2(Ω) − C2∥u∥βL2(Ω) > −∞

since a(x) > 0, µ1−λ < 0 and β > 2. Thus we have infu∈H+
1
I(u) > −∞.
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For u ∈ H−
k ,

I(u) =
1

2
(Lu)u−

∫
Ω

[
1

2
λa(x)u2 +G(u)]dx

≤ 1

2
(µk − λ)

∫
Ω

a(x)u2dx−
∫
Ω

G(u)dx.

By (1.2),

I(u) ≤ 1

2
(µk − λ)

∫
Ω

a(x)u2dx− a3

∫
Ω

|u|βdx+ a2|Ω|.

for C3 > 0 and a2 > 0. Since β > 2 and a(x) > 0, we can choose a
number ρ > 0 and a sphere Sρ centered at 0 in H such that for any
u ∈ Sρ ∩H−

k , I(u) < 0. Thus we have supu∈Sρ∩H−
k
I(u) < 0.

Lemma 3.3. Assume that g satisfies the conditions (g1)− (g4). Then
the functional I satisfies (P.S.)c condition for every c ∈ [infH+

1
I(u), supSρ∩H−

k
I(u)].

Proof. Let u ∈ H. Since H = H+
1 , the functional

I(u) =
1

2
(Lu)u−

∫
Ω

[
1

2
λa(x)u2 +G(u)]dx

≥ 1

2
(µ1 − λ)

∫
Ω

a(x)u2dx−
∫
Ω

G(u)dx

≥ 1

2
(µ1 − λ)sup a(x)∥u∥2L2(Ω) − C2∥u∥βL2(Ω) > −∞.

Thus I(u) is bounded from below. Thus I(u) satisfies the (P.S.)c condi-
tion.

Proof of Theorem 1.1
If we set V = H−

k and W = H+
1 = H, then V and W are invariant

subspace of H with V +W = H and V +W has codimension 0 in H.
We note that FixZ2 = {0} and FixZ2 = {0} ⊆ V +W = H. We also
note that L(W ) ⊆ W . By Lemma 3.1,

−∞ < inf
W
I sup

H−
k ∩Sρ

I < 0.

Thus the condition (d) of Theorem 2.1 is satisfied. Suppose that u is a
critical point of the functional of I and infW I ≤ I(u) ≤ supSρ∩V I. We
claim that u /∈ FixZ2 . If not, then u ∈ FixZ2 = {0} i.e., u = 0. Since
u = 0 is a critcal point of I(u) with I(0) = 0 and 0 /∈ [infW I, supSρ∩V I],
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it leads to a contradiction to the fact that infW I ≤ I(u) ≤ supSρ∩V I.
Thus u /∈ FixZ2 . Thus the condition (e) is satisfied. By Lemma 3.2, I
satisfies (P.S.)c condition whenever infW I ≤ c ≤ supSρ∩V I.
Thus the assumptions (a) − (e) of Theorem 1.1 are satisfied. Thus by
the Theorem 2.1, Then I possesses at least

dim(V ∩W )− codimH(V +W ) = k

distinct critical orbits in I−1([infW I, supSρ∩V I]).
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