• 제목/요약/키워드: bloch theorem

검색결과 10건 처리시간 0.019초

BERGMAN SPACES, BLOCH SPACES AND INTEGRAL MEANS OF p-HARMONIC FUNCTIONS

  • Fu, Xi;Qiao, Jinjing
    • 대한수학회보
    • /
    • 제58권2호
    • /
    • pp.481-495
    • /
    • 2021
  • In this paper, we investigate the properties of Bergman spaces, Bloch spaces and integral means of p-harmonic functions on the unit ball in ℝn. Firstly, we offer some Lipschitz-type and double integral characterizations for Bergman space ��kγ. Secondly, we characterize Bloch space ��αω in terms of weighted Lipschitz conditions and BMO functions. Finally, a Hardy-Littlewood type theorem for integral means of p-harmonic functions is established.

A SUBCLASS OF HARMONIC UNIVALENT MAPPINGS WITH A RESTRICTED ANALYTIC PART

  • Chinhara, Bikash Kumar;Gochhayat, Priyabrat;Maharana, Sudhananda
    • 대한수학회논문집
    • /
    • 제34권3호
    • /
    • pp.841-854
    • /
    • 2019
  • In this article, a subclass of univalent harmonic mapping is introduced by restricting its analytic part to lie in the class $S^{\delta}[{\alpha}]$, $0{\leq}{\alpha}<1$, $-{\infty}<{\delta}<{\infty}$ which has been introduced and studied by Kumar [17] (see also [20], [21], [22], [23]). Coefficient estimations, growth and distortion properties, area theorem and covering estimates of functions in the newly defined class have been established. Furthermore, we also found bound for the Bloch's constant for all functions in that family.

A SURVEY OF BLOCH CONSTANTS

  • An, Jong-Su
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제2권1호
    • /
    • pp.17-24
    • /
    • 1995
  • We begin with a brief survey of some of the known results dealing with Bloch constants. Bloch's theorem asserts that there is a constant B$\_$1.C/(1, 0) such that if f is holomorphic in the open unit disk D and normalized by │f'(0)│$\geq$1, then the Riemann surface of f contains an unramified disk of radius at least B$\_$1.C/(1, 0) (see[7,p.14]).(omitted)

  • PDF

FIXED POINT THEOREMS FOR INFINITE DIMENSIONAL HOLOMORPHIC FUNCTIONS

  • Harris, Lwarence-A.
    • 대한수학회지
    • /
    • 제41권1호
    • /
    • pp.175-192
    • /
    • 2004
  • This talk discusses conditions on the numerical range of a holomorphic function defined on a bounded convex domain in a complex Banach space that imply that the function has a unique fixed point. In particular, extensions of the Earle-Hamilton Theorem are given for such domains. The theorems are applied to obtain a quantitative version of the inverse function theorem for holomorphic functions and a distortion form of Cartan's unique-ness theorem.

ON DUALITY OF WEIGHTED BLOCH SPACES IN ℂn

  • Yang, Gye Tak;Choi, Ki Seong
    • 충청수학회지
    • /
    • 제23권3호
    • /
    • pp.523-534
    • /
    • 2010
  • In this paper, we consider the weighted Bloch spaces ${\mathcal{B}}_q$(q > 0) on the open unit ball in ${\mathbb{C}}^n$. We prove a certain integral representation theorem that is used to determine the degree of growth of the functions in the space ${\mathcal{B}}_q$ for q > 0. This means that for each q > 0, the Banach dual of $L_a^1$ is ${\mathcal{B}}_q$ and the Banach dual of ${\mathcal{B}}_{q,0}$ is $L_a^1$ for each $q{\geq}1$.

FATOU THEOREM AND EMBEDDING THEOREMS FOR THE MEAN LIPSCHITZ FUNCTIONS ON THE UNIT BALL

  • Cho, Hong-Rae;Lee, Jin-Kee
    • 대한수학회논문집
    • /
    • 제24권2호
    • /
    • pp.187-195
    • /
    • 2009
  • We investigate the boundary values of the holomorphic mean Lipschitz function. In fact, we prove that the admissible limit exists at every boundary point of the unit ball for the holomorphic mean Lipschitz functions under some assumptions on the Lipschitz order. Moreover, we get embedding theorems of holomorphic mean Lipschitz spaces into Hardy spaces or into the Bloch space on the unit ball in $\mathbb{C}_n$.

음향결정 구조의 레벨셋 기반 위상 및 형상 최적설계 (Level Set based Topological Shape Optimization of Phononic Crystals)

  • 김민근;하시모토 히로시;아베 카주히사;조선호
    • 한국전산구조공학회논문집
    • /
    • 제25권6호
    • /
    • pp.549-558
    • /
    • 2012
  • 본 논문에서는 레벨셋 방법을 이용하여, 소음을 차단하기 위한 음향 구조물의 형상 최적설계를 수행하였다. 형상 최적설계의 목적은 특정한 각도와 각속도로 입사되는 입사파에 대해서 음향 투과율(acoustic transmittance)이 최소가 되도록 음향 결정의 형상(inclusion shape)을 결정하는 것이다. 음향 결정 구조에서는 음향이 흩어져 있는 결정 구조에 의해서 굴절되기 때문에 결정 모양을 조정함으로써, 음향 거동을 제어할 수 있다. 본 연구에서는 음향 구조물로 결정이 수평방향으로는 주기적으로 무한히 분포하고 수직방향으로는 유한한 층간 구조를 가지고 있는 소음 방어벽(Noise barrier)을 고려한다. 주기적 구조물을 고려하기 때문에 결정의 좌와 우에 Bloch 이론을 적용해 주기적 경계조건을 부과하였고, 소음 방어벽 위와 아래에는 임피던스 행렬(impedance matrix)를 이용하여, 무한 균질 영역과 소음 방어벽 사이의 음파 투과를 모사하였다. 결정의 위상과 형상변화를 묘사하기 위해서 레벨셋 방법(level set method)을 사용하였다. 레벨셋 방법에서는 초기 영역을 고정시킨 상태에서, 레벨셋으로 표현되는 임시적 경계(implicit moving boundary)를 변화시킴으로써 복잡한 형상을 다룰 수 있다. 몇몇 수치적 예제를 통해, 제시된 방법의 적용성을 검증하였다.

극대화된 밴드갭을 갖는 켈빈 격자 구조의 아이소-지오메트릭 최적 설계 (Isogeometric Optimal Design of Kelvin Lattice Structures for Extremal Band Gaps)

  • 최명진;오명훈;조선호;구본용
    • 한국전산구조공학회논문집
    • /
    • 제32권4호
    • /
    • pp.241-247
    • /
    • 2019
  • 밴드갭은 기계적 파동의 전파가 금지되는 특정 주파수 범위를 의미한다. 본 연구는 경사도 기반의 설계 최적화 방법을 사용하여 낮은 가청 주파수 범위에서 밴드갭을 갖는 3차원 켈빈 격자를 설계하는 것을 목적으로 하고 있다. 블로흐 이론을 이용하여 무한주기 격자에서의 탄성파 전파를 해석하고, 기하학적으로 엄밀한 빔 이론에서 선형화를 통해 얻은 전단 변형 가능한 빔 모델을 사용하여 격자 구조 연결선을 모델링하였다. 주어진 격자 구성에서 중립 축 및 단면 두께를 B-spline 함수를 이용한 아이소-지오메트릭 매개화를 통해 설계 변수로 정의하고, 격자 구조의 밴드갭의 크기를 극대화하는 최적 설계를 수행하였다.

Bandgap capability of hybrid Kirigami inspired cellular structures

  • Del Broccolo, S.;Ouisse, M.;Foltete, E.;Scarpa, F.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권6호
    • /
    • pp.479-495
    • /
    • 2019
  • Periodic cellular core structures included in sandwich panels possess good stiffness while saving weight and only lately their potential to act as passive vibration filters is increasingly being studied. Classical homogeneous honeycombs show poor vibracoustic performance and only by varying certain geometrical features, a shift and/or variation in bandgap frequency range occurs. This work aims to investigate the vibration filtering properties of the AUXHEX "hybrid" core, which is a cellular structure containing cells of different shapes. Numerical simulations are carried out using two different approaches. The first technique used is the harmonic analysis with commercially available software, and the second one, which has been proved to be computationally more efficient, consists in the Wave Finite Element Method (WFEM), which still makes use of finite elements (FEM) packages, but instead of working with large models, it exploits the periodicity of the structure by analysing only the unit cell, thanks to the Floquet-Bloch theorem. Both techniques allow to produce graphs such as frequency response plots (FRF's) and dispersion curves, which are powerful tools used to identify the spectral bandgap signature of the considered structure. The hybrid cellular core pattern AUXHEX is analysed and results are discussed, focusing the investigation on the possible spectral bandgap signature heritage that a hybrid core experiences from their "parents" homogeneous cell cores.

A WFE and hybrid FE/WFE technique for the forced response of stiffened cylinders

  • Errico, Fabrizio;Ichchou, M.;De Rosa, S.;Bareille, O.;Franco, F.
    • Advances in aircraft and spacecraft science
    • /
    • 제5권1호
    • /
    • pp.1-19
    • /
    • 2018
  • The present work shows many aspects concerning the use of a numerical wave-based methodology for the computation of the structural response of periodic structures, focusing on cylinders. Taking into account the periodicity of the system, the Bloch-Floquet theorem can be applied leading to an eigenvalue problem, whose solutions are the waves propagation constants and wavemodes of the periodic structure. Two different approaches are presented, instead, for computing the forced response of stiffened structures. The first one, dealing with a Wave Finite Element (WFE) methodology, proved to drastically reduce the problem size in terms of degrees of freedom, with respect to more mature techniques such as the classic FEM. The other approach presented enables the use of the previous technique even when the whole structure can not be considered as periodic. This is the case when two waveguides are connected through one or more joints and/or different waveguides are connected each other. Any approach presented can deal with deterministic excitations and responses in any point. The results show a good agreement with FEM full models. The drastic reduction of DoF (degrees of freedom) is evident, even more when the number of repetitive substructures is high and the substructures itself is modelled in order to get the lowest number of DoF at the boundaries.