DOI QR코드

DOI QR Code

FIXED POINT THEOREMS FOR INFINITE DIMENSIONAL HOLOMORPHIC FUNCTIONS

  • Harris, Lwarence-A. (Department of Mathematics University of Kentucky Lexington)
  • Published : 2004.01.01

Abstract

This talk discusses conditions on the numerical range of a holomorphic function defined on a bounded convex domain in a complex Banach space that imply that the function has a unique fixed point. In particular, extensions of the Earle-Hamilton Theorem are given for such domains. The theorems are applied to obtain a quantitative version of the inverse function theorem for holomorphic functions and a distortion form of Cartan's unique-ness theorem.

Keywords

References

  1. J. Math. Anal. Appl. v.203 One-sided estimates for the existence of null points of holomorphic mappings in Banach spaces L.Aizenberg;S.Reich;D.Shoikhet https://doi.org/10.1006/jmaa.1996.0366
  2. London Math. Soc. Lecture Note Ser. v.2 Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras F.F.Bonsall;J.Duncan
  3. London Math. Soc. Lecture Note Ser. v.10 Numerical Ranges Ⅱ F.F.Bonsall;J.Duncan
  4. Abstr. Appl. Anal. no.6 Local uniform linear convexity with respect to the Kobayashi distance M.Budzynska
  5. Complex Analysis in Locally Convex Spaces S.Dineen
  6. Oxford Math. Monogr. The Schwarz Lemma S.Dineen
  7. Springer Monographs in Mathematics Complex Analysis on Infinite-dimensional Spaces S.Dineen
  8. Linear Operators N.Dnford;J.T.Schwartz
  9. Global Analysis, Proc. Symp. Pure Math. v.16 A fixed point theorem for holomorphic mappings C.J.Earle;R.S.Hamilton
  10. London Math. Soc. Lecture Note Ser. v.299 Schwarz's lemma and the Kobayashi and Caratheodory metrics on complex Banach manifolds, Kleinican Groups and Hyperbolic 3-Manifolds C.J.Earle;L.A.Harris;J.H.Hubbard;S.Mitra
  11. Hyperbolic Geometry and Nonexpansive Mappings Uniform Convexity K.Goebel;S.Reich
  12. Nonlinear Analysis v.4 Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball K.Goebel;T.Sekowski;A.Stachura https://doi.org/10.1016/0362-546X(80)90012-7
  13. Pacific J. Math. v.38 A continuous form of Schwarz's lemma in normed linear spaces L.A.Harris https://doi.org/10.2140/pjm.1971.38.635
  14. Amer. J. Math. v.93 The numerical range of holomorphic functions in Banach spaces L.A.Harris https://doi.org/10.2307/2373743
  15. Monatsh. Math. v.83 On the size of balls covered by analytic transformations L.A.Harris https://doi.org/10.1007/BF01303008
  16. Advances in Holomorphy Schwarz-Pick systems of pseudometrics for domains in normed linear spaces L.A.Harris;J.A.Barroso(ed.)
  17. Abstr. Appl. Anal. no.5 Fixed points of holomorphic mappings for domains in Banach spaces L.A.Harris
  18. J. Anal. Math. v.82 Dissipative holomorphic functions, Bloch radii, and the Schwarz lemma L.A.Harris;S.Reich;D.Shoikhet https://doi.org/10.1007/BF02791228
  19. Proc. Amer. Math. Soc. v.60 Fixed Points of holomorphic maps in Banach spaces T.L.Hayden;T.J.Suffridge https://doi.org/10.2307/2041120
  20. Amer. Math. Soc. Colloq. Publ. v.31 Functional Analysis and Semi-Groups E.Hille;R.S.Phillips
  21. Proc. Imp. Acad.Tokyo v.19 Topological properties of the unit sphere of a Hilbert space S.Kakutani https://doi.org/10.3792/pia/1195573487
  22. Integral Equations Operator Theory v.22 Fixed point theorems for holomorphic mappings and operator theory in indefinite metric spaces V.Khatskevich;S.Reich;D.Shoikhet https://doi.org/10.1007/BF01378779
  23. Nonlinear Anal. v.8 Common fixed points of commuting holomorphic mappings in Hilbert ball and polydisc T.Kuczumow https://doi.org/10.1016/0362-546X(84)90081-6
  24. Nonlinear Anal. v.9 Nonexpansive retracts and fixed points of nonexpansive mappings in the Cartesian product of n Hilbert balls T.Kuczumow https://doi.org/10.1016/0362-546X(85)90043-4
  25. Handbook of Metric Fixed Point Theory Fixed points of holomorphic mappings: A metric approach T.Kuczumow;S.Reich;D.Shoikhet;W.A.Kirk(ed.);B.Sims(ed.)
  26. Trans. Amer. Math. Soc. v.100 Semi-inner-product spaces G.Lumer https://doi.org/10.2307/1993352
  27. Conformal Mapping Z.Nehari
  28. Abstr. Appl. Anal. v.1 Generation theory for semigroups of holomorphic mappings in Banach spaces S.Reich;D.Shoikhet https://doi.org/10.1155/S1085337596000012
  29. Proc. Amer. Math. Soc. v.79 Bolzano's theorem in several complex variables M.H.Shih https://doi.org/10.2307/2042381
  30. The Theory of Functions(2nd ed.) E.C.Titchmarsh

Cited by

  1. Optical tomography on graphs vol.33, pp.5, 2017, https://doi.org/10.1088/1361-6420/aa66d1
  2. Abel averages and holomorphically pseudo-contractive maps in Banach spaces vol.423, pp.2, 2015, https://doi.org/10.1016/j.jmaa.2014.10.079