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FIXED POINT THEOREMS FOR INFINITE
DIMENSIONAL HOLOMORPHIC FUNCTIONS

LAWRENCE A. HARRIS

ABsTRACT. This talk discusses conditions on the numerical range
of a holomorphic function defined on a bounded convex domain in
a complex Banach space that imply that the function has a unique
fixed point. In particular, extensions of the Earle-Hamilton The-
orem are given for such domains. The theorems are applied to
obtain a quantitative version of the inverse function theorem for
holomorphic functions and a distortion form of Cartan’s unique-
ness theorem.

1. Introduction

We begin with a short introduction to the theory of holomorphic
functions with domain and range contained in a complex Banach space.
We then review some well-known fixed point theorems for holomorphic
functions. Perhaps the most basic is the Earle-Hamilton fixed point
theorem, which may be viewed as a holomorphic formulation of Banach’s
contraction mapping theorem.

Next we recall the definition of the numerical range of linear trans-
formations and its extension to holomorphic functions. We prove an
extension of the Earle-Hamilton theorem for bounded convex domains
which was obtained in joint work with Simeon Reich and David Shoikhet
[18]. According to this theorem, a holomorphic function on such a do-
main into the surrounding Banach space has a fixed point if its numerical
range lies strictly to the left of the vertical line z = 1.

Finally, we apply the above fixed point theorem to obtain quantitative
versions of the inverse function theorem and Cartan’s uniqueness theo-
rem where norm estimates in the hypotheses are replaced by estimates
on the numerical range.
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Much of this material has been presented previously at the Interna-
tional Conference on Fixed Point Theory and Its Applications, Technion,
Haifa, Israel, June 2001. (See [17].)

2. Holomorphic functions

The infinite dimensional theory of holomorphic functions originated
in a series of papers by M. Fréchet and R. Gateaux that appeared from
1909 to 1929 and was subsequently developed by many others. (See [20,
5, 6, 7].) We discuss two definitions of holomorphy. A strong definition
due to Fréchet and a weak definition associated with Gateaux. Let X
and Y be complex Banach spaces and let D be an open subset of X. In
many cases, D will be the open ball of radius r and center z, i.e.,

Bez)={z€X: ||lz—z|| <r}.

STRONG DEFINITION. A function h : D — Y is holomorphicif for each
x € D there exists a continuous complex-linear mapping Dh(z) : X - Y
such that
o Ih(z +9) = h(z) - Dh(zyl _
y—0 Iyl
Clearly every function that is holomorphic in the above sense is con-
tinuous and hence locally bounded. There is an another definition which
reduces matters to the case of a complex-valued function of a complex
variable. (We use A to denote a complex variable.)

0.

WEAK DEFINITION. A function h : D — Y is holomorphic if it is
locally bounded and if for each x € D, y € X and linear functional
£ €Y"*, the function

fQA) =t(h(z + Xy))
is holomorphic at A = 0.

The nth derivative D"h(x) of a holomorphic function h at = can be
represented as a symmetric multilinear map of degree n. We denote
the associated homogeneous polynomial of degree n by D"h(z). (See
Example 1 below.)

An advantage of the weak definition is that one can apply the results
of classical function theory to f and then use the Hahn-Banach theorem
to obtain a similar result for the general case. For example, the Cauchy
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estimates can be obtained in this way. Specifically, if h: B(z) = Y is
holomorphic and bounded, then

10" < % sup (@)l - v € Br(a)}

Clearly the strong definition implies the weak definition. In fact, both
definitions are equivalent. This was shown for the case where X is the
complex plane by N. Dunford in 1938 using the uniform boundedness
principle. The general case follows from Theorems 3.10.1 and 3.17.1 of
(20].

EXAMPLE 1. Define a mapping P : X — Y to be a homogeneous
polynomial of degree n if

where F': X x -.-x X — Y is a continuous (complex) multilinear map
of degree n. Then P is holomorphic on X and

n—1
DP(z)y = ]éF(x,.;c. TR k ,lac), z,y € X.
n—— —

Let {P,}3° be a sequence of homogeneous polynomials where P, is
of degree n and put

a = limsup || By *™.
n—oo

Suppose « is finite. The radius of convergence of the series Y - o Py (2)
is R = 1/o when o # 0 and R = oo otherwise. By the Weierstrass
M-test this series converges uniformly on B,(0) whenever 0 <r < R. It
follows from the weak definition that

o0
h(z) = Z Py(z)
n=0
converges to a holomorphic function on Br(0). Conversely, if the series
converges uniformly on B,(0) for some s > 0 then s < R. Thus R may
be thought of as the radius of uniform convergence.

ExaMPLE 2. A. E. Taylor was first to point out in 1938 that the
power series for an entire function on a Banach space can have a finite
radius of convergence. For example, let X be the space cp of all sequences
of complex numbers converging to zero with the usual sup norm. We
exhibit a power series that is holomorphic everywhere in X but does
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not converge uniformly on B;(0) although it does converge uniformly on
B,.(0) for every r with 0 < r < 1. Define

o0
Zxﬁ for z = (21)q
k=0

and let S,,(z) be the nth partial sum of the series beginning with n =
0. Then h is defined and holomorphic everywhere in X by the weak
definition. Also, the power series for h converges uniformly on B,.(0) for
0 < 7 < 1 by the Weierstrass M-test since |zf| < |lz||* for any z € X.
Now for each positive integer n define an = € B;1(0) by

{wk = 1/¥2 n<k<2n

z, = 0 otherwise.

Then Syp(z) =0 and

2n 2n 1 n
San(@) > ) ' = 1= 71
k=n+1 k=n+1

Hence the partial sums {S,(z)} cannot converge uniformly on B;(0).

The following theorem shows that every holomorphic function can be
written as the sum of an infinite series of homogeneous polynomials in
some neighborhood of each of the points of its domain. The proof is a
consequence of the Cauchy estimates and the weak definition.

THEOREM 1. (Taylor’s Theorem (20, Th. 3.17.1}) If h is holomorphic
and bounded in B(z), then

o0

hz+y) = 3 —D"h(z)(w)

n=0

for all y in B-(0). Moreover, the radius of convergence of the series is at
least as large as r.

It follows from Taylor’s Theorem and the uniqueness of power series
expansions that if & is as in Example 1, then

1 .
P, = — D "h(0), n=0,1,....
ni
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3. Holomorphic fixed point theorems

A set S is said to lie strictly inside a subset D of a Banach space if
there is some € > 0 such that B¢(z) C D whenever x € S. The follow-
ing theorem may be viewed as a holomorphic version of the Banach’s
contraction mapping theorem.

THEOREM 2. (Earle-Hamilton [9]) Let D be a nonempty domain in a
complex Banach space X and let h : D — D be a bounded holomorphic
function. If h(D) lies strictly inside D, then h has a unique fixed point
inD.

Proof. We construct a metric p, called the CRF-pseudometric, in
which h is a contraction. Let A be the open unit disc of the complex
plane. Define

afz,v) = sup{|Dg(z)v|: ¢g: D — A holomorphic }
for zx € D and v € X, and set

1
L() = /0 al(y(t),7 (1) dt

for v in the set I' of all curves in D with piecewise continuous derivative.
Clearly « specifies a seminorm at each point of D. We view L(vy) as the
length of the curve v measured with respect to a. Define

p(z,y) =inf{L(y): y€T, y(0) =z,7(1) =y}

for x,y € D. It is easy to verify that p is a pseudometric on D.
Let z € D and v € X. By the chain rule,

D(g o h)(z)v = Dg(h(z)) Dh(z)v
for any holomorphic function g : D — A. Hence,
(1) a(h(z), Dh(z)v) < a(z,v).

By integrating this and applying the chain rule, we obtain L(ho~) <
L(v) for all v € I and thus the Schwarz-Pick inequality

(2) p(h(z), h(y)) < p(z,y)
holds for all z,y € D.
Now by hypothesis there exists an ¢ > 0 such that B.(h(z)) C D

whenever x € D. We may assume that D is bounded by replacing D by
the subset

U{Bc(h(x)): z € D}.
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Fix t with 0 < t < €/d, where § denotes the diameter of h(D). Given
x € D, define X

hy) = h(y) + t[h(y) — h(z)]
and note that A : D — D is holomorphic. Given z € D and v € X, it
follows from

PN

Dh(z)v = (1 +t)Dh(z)v
and (1) with h replaced by A that

a(h(z), Dh(z)v) < 1% a(z,v).

Integrating this as before, we obtain

p(h(z), k() < T3 p(e,v)

for all z,y € D.

Now pick a point zg € D and let {z,} be the sequence of iterates
given by z, = h"(xg). Then {z,} is a p-Cauchy sequence by the proof
of the contraction mapping theorem. Since X is complete in the norm
metric, it suffices to show that there exists a constant mn > 0 such that

(3) p(z,y) > miz -yl
for all z,y € D. Since D is bounded, we may take m = 1/d, where d is
the diameter of D. Given x € D and v € X, define

g(y) = m Ly — z),
where ¢ € X* with ||| = 1. Then g : D — A is holomorphic and
Dg(z)v = m£(v). Hence a(z,v) > m ||v|| by the Hahn-Banach theorem.
Integrating as before, we obtain (3). d

The Earle-Hamilton theorem still applies in cases where the holomor-
phic function does not necessarily map its domain strictly inside itself.
In fact, the following interesting fixed point theorem is a consequence of
two applications of the Earle-Hamilton theorem.

THEOREM 3. (Khatskevich-Reich-Shoikhet [22, 28]) Let D be a non-
empty bounded convex domain in a complex Banach space and let
h : D — D be a holomorphic function having a uniformly continu-
ous extension to D. If there exists an ¢ > 0 such that ||h(z) — z| > €
whenever x € 9D, then h has a unique fixed point in D.

For example, the hypothesis that ||h(z) — x| > € for all z € 9D is
satisfied when D contains the origin and

o @I 1
z€dD |.’L‘
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Proof. Given 0 < t < 1 and z € D, define a holomorphic map
ft :D—>Dby
fily) = (1 =)z +th(y)
and let § > 0 be such that Bs(z) C D. To show that f;(D) lies strictly
inside D, take € = (1 —¢)d. Let y € D and let w € Be(ft(y)). Then

. w — th(y)
1—1¢
is in D since z € Bg(x), so
w=(1-t)z+th(y) € D.

Hence B.(f:(y)) €D for all y € D.

By the Earle-Hamilton theorem, f; has a unique fixed point g;(z) in
D. Since the CRF-metric is continuous, the proof of the contraction
mapping theorem shows that the iterates of f; at a chosen point ¢y € D
are holomorphic and locally uniformly Cauchy in z. Hence the limit
function g; : D — D is holomorphic by [20, Th. 3.18.1]. Now an z € D
is a fixed point for g¢; if and only if z is a fixed point for A. Thus, by
the Earle-Hamilton theorem, it suffices to show that ¢:(D) lies strictly
inside D for some t > 0.

Since h has a uniformly continuous extension to D, by hypothesis
there exist € > 0 and 6 > O such that ||h(z) — z|| > € whenever x € D
and

d(z,0D) = inf{|lx —y|| : y € OD} <.
Since D is bounded, there is an M with ||z|| < M for all x € D. If
z €D,

Mgi(z)) — ge(x) = (1 = )[h(g:(2)) — 2,
SO
1A(g:(2)) — ge(@)|| < 2(1 — )M,
Choose t close enough to 1 so that 2(1 — )M < e. If d(g:(x),0D) < &
for some x € D, then

€ < [|h(gt(z)) — ge(2)]l,
a contradiction. Thus, Bs(g:(x)) C D for all x € D, as required. O

ExaMPLE 3. The hypotheses on the behavior of A on 0D cannot be
omitted in Theorem 3. This follows by considering a translate of the
shift operator as in [19]. Specifically, let X = ¢y and define

1

h(x) = (§,$1,:L'2, .. )
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for z € X. Clearly h is an affine isometry on X and h maps the ball
B,(0) into itself for each 7 > }. However, if h(z) = z, then
1

——2—:x1=_'1;2:---,

contradicting that x is in ¢g. Thus A has no fixed point in X.

It is an open problem whether if B is the open unit ball of a separable
reflexive complex Banach space and if h : B — B is a holomorphic
function with a continuous extension to B then h has a fixed point in B.
However, Hayden and Suffridge [19] have proved that e*h has a fixed
point in B for almost every 6. Also, Goebel, Sekowski and Stachura
(12] have solved the problem in the affirmative for the case where X is
a Hilbert space and this has been extended by Kuczumow [24] to the
case where X is a finite product of Hilbert spaces (with the max norm).
An example of Kakutani {21] shows that holomorphy is essential in the
hypotheses since he exhibited a fixed point free homeomorphism of the
closed unit ball of any infinite dimensional Hilbert space.

A related problem is to weaken the hypotheses of the Earle-Hamilton
theorem by showing that if h : B — B is a holomorphic function such
that the sequence of iterates {h"(z)} lies strictly inside B for some
x € B, then A has a fixed point in B. This has been established when X
is a Hilbert space in [12] and when X is a finite product of Hilbert spaces
in [23]. These results have been extended to bounded convex domains
in a more general class of reflexive Banach spaces by Budzynska [4].
Example 3 gives a counterexample for the general case.

See [25] for an extensive survey of fixed point theorems for holomor-
phic mappings. See [6, 10, 16] for more on function-theoretic metrics on
infinite dimensional domains.

4. The linear numerical range

The notion of the numerical range was successfully extended from op-
erators on a Hilbert space to operators on an arbitrary complex Banach
space X by G. Lumer [26]. To give an equivalent form of his definitions,
define

Jx)y={fe X*: ||{]| =4(z)=1}
for z € X with ||z|| = 1 and note that J(z) is nonempty by the Hahn-

Banach theorem. Let Q(z) be a nonempty subset of J(x) for each z € X
with ||z|| = 1.
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Now let A € £(X). Define numerical ranges of A by
(4) V(4) = {{(Az): LeJ(z), ||zl =1},
(5) W(4) = {{(Ar): LeQ(=z), |zl =1}.
Clearly, W(A) C V(A). If Q(x) is taken to be J(z) for all z € X with
|lz]l = 1, then W{(A) = V(A).
In the case where X is a Hilbert space, the sets Q(z) and J(z) co-

incide and consist of the single functional ¢(y) = (y,z) by the Riesz
representation theorem. Thus

W(A) = V(A) = {(Az,z) : ||z =1, z € H}

in this case.

Since there is in general no adjoint operation on £(X), an operator
A € L(X) is defined to be hermitian if V(A) is real. The following
theorem is well-known. (See Bonsall and Duncan [2, 3] for this and
many other properties of the numerical range.)

THEOREM 4. Let A € L(X). Then

1) V(A) is connected,

2) A is hermitian if and only if ||e?* 4| = 1 for all real t,
3) % o(4) C V(A),

4) V(A < Al < eV (A,

5) supReW(A4) = lim Mﬂ:} .

t—0t

In the above, the symbol €6 denotes the closed convex hull and the
number e is the best constant in (4). Also,

|S| = sup{|A|: A € S}, supReS =sup{ReX: A& S},

if S is a set of complex numbers.

Following Lumer, one can deduce from part (5) of the above theorem
that the closed convex hulls of W(A) and V(A) are equal no matter
what choice of Q is taken. Thus, in particular, [W(A)| = |V (A)].

5. The holomorphic numerical range

We first consider the case where the domain is the open unit ball
B of X and h : B — X is a holomorphic function that is uniformly
continuous in B. Then h has a uniformly continuous extension to B.
Moreover, h is bounded in B so

2]l = sup{||a(z)|| : = € B}
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is finite. In analogy with (4) and (5), define numerical ranges of & by
V(h) = {{(h(z)): L€ J(z), |x]| =1},
W(h) = {lh(z)): L€Q(x), |lz| =1}
THEOREM 5. ([14])
1) supReW(h) = lim ”iﬂ%}b ,

t—0+
2) If P, is a homogeneous polynomial of degree n > 1, then

[Ball < 07t [W(R,)]-

As was shown in [14], a consequence of part (1) of Theorem 5 is that
the closed convex hulls of W (h) and V(h) are the same no matter what
choice of @ is taken. It was also shown in [14] that the constant in part
(2) of the theorem is best possible.

Following [18], we now extend the numerical range to functions de-
fined on more general domains. Let D be a convex domain in X and
suppose D contains the origin. For each x € 0D, let

Jx)={e X": £(z) =1, Rel(y) <1 for all y € D}.

It follows from [8, Cor. 6, p. 449] that J(z) is nonempty. Let Q(x) be
a nonempty subset of J(z) for each z € X withx € 0D. If h: D —» X
has a continuous extension to D, then we define
V(R) = {{(h(z)): L€ J(z), z € 0D},
Wi(h) = {{(h(z)): L€ Q(z), z € OD}.
Otherwise, consider
hs(z) =h(sz), 0 <s< 1.

The function hs always has a continuous extension to D and hence we
may define
(6) L(h) = lim supReW(hy).

5—1
If h is uniformly continuous on D, then h has a uniformly continu-
ous extension to D. Hence, in this case, W(h) is defined and L(h) =
supRe W(h).

LEMMA 6. (cf. {14, Lemma 2]) If h : D — X is holomorphic and
bounded on each domain strictly inside D, then hg is uniformly contin-
uous on D for each s with 0 < s < 1.
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The following lemma is the key to our extension of the Earle-Hamilton
theorem. Throughout the remainder of this section we assume that the
domain D is bounded as well as convex.

LEmMMA 7. ([18]) Let g : D — X be holomorphic and bounded on
each domain strictly inside D. If L(g) < 0, then the equation g(z) = 0
has a unique solution x € D.

Proof. Our proof is a modification of the proof of part (1) of Theo-
rem 5 given in [14]. Tt is easy to show as in the proof of Theorem 3 that
8D lies strictly inside D for each s with 0 < s < 1. Hence by hypothesis
and Lemma 6, we may assume (by considering g,) that g is bounded and
uniformly continuous on RD for some R > 1 and that supRe W(g) < 0.

Let p be the Minkowski functional for D, i.e.,

p(z) =inf{r >0: z € rD}.

Then p(z+y) < p(z)+p(y) and p(tx) = tp(z) for all z,y € X and ¢ > 0.
Also,

D={zecX: p(z) <1},
and there is a number M > 0 such that p(z) < M||z| for all z € X

since D contains a ball about the origin.
Define

£(g(z)) z }
w(r, R =sup{Re cLeQ(—=), r<plz) <R
(r,B) e () 7 <2(0)
for 0 < r < 1. By the uniform continuity of g on RD, we may choose an
R > 1 (at least as small as the previous value) and an r with 0 <r <1
so that w(r, R) < 0.
If r <p(z) < R and ¢ € Q(z/p(x)), then

(7) p((I —tg)(z)) > Rel((I-tg)(z)) =p(x) [1  tRe E(;((xw)))]

> p(z)[1 - tw(r, R)]

for all t > 0.
It is not difficult to show that there exists an v’ with 0 < ' < 1 and
a § > 0 such that

r<p((I +1t9)(2) < R

whenever ' < p(z) < 1 and 0 < ¢t < §. Hence when these inequalities
hold, it follows from (7) that

p((I +1tg)(2)) [L — tw(r, R)] <p ((I —tg)(I + tg)(x)).
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Now,

(I —tg)(I +1tg)(z) = z + t[g(z) — g(z + tg(z))].
By the uniform continuity of g on RD, for each given ¢ > 0 there is a
d > 0 (choose it at least as small as the previous one) such that

p(g(z) — g(z +tg(z))) < e
whenever p(z) < 1 and 0 < t < §. Hence

1+te
8 I+t <
®) P+ 19)@) < T
whenever 7’ < p(z) < 1 and 0 < ¢t < §. By the maximum principle
(extend [20, p. 115}), inequality (8) holds whenever p(z) < 1 and 0 <
t<é.

Choose € > 0 with ¢ < —w(r,R) and fix ¢ with 0 < ¢t < 4. Then
the right-hand side of (8) is a constant less than one. It follows that
I + tg is a holomorphic mapping of D into kD for some constant k with
0 < k < 1. Hence by the Earle-Hamilton Theorem, I + tg has a unique
fixed point in D so g(x) = 0 has a unique solution in D. [l

THEOREM 8. ([18]) Let h : D — X be holomorphic and bounded on
each domain strictly inside D. If L(h) < 1, then h has a unique fixed
point in D.

Proof. This theorem follows from the previous lemma with g =h—1
since L(g) = L(h) —1 < 0. d

The above theorem is an extension of the Earle-Hamilton fixed point
theorem (for the domains we consider) since it is not difficult to show
that L(h) < 1 when h maps D strictly inside D.

Increasingly general definitions of L(h) are given in [17, 18] and (6).
We show that under mild restrictions all three definitions agree and are
independent of the choice of Q.

THEOREM 9. Let h : D — X be holomorphic and bounded on each
domain strictly inside D and suppose L(h) < oc for some choice of Q.
Then lim,_,,- sup Re W (h;) exists and is the same for all choices of Q.

Proof. Suppose L(h) < M. Let g = h — M and note that L(g) <0
since
supRe W (gs) = supRe W(h,) — sM.
It follows from the proof of Lemma 7 that (I +tg)(D) C kD where t > 0
and 0 < k < 1. Hence if z € 9D and ¢ € J(z),

s+ tRel(gs(x)) = Rel((I +tg)(sz) <k
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whenever 0 < s < 1. Then
@7 supRe V(gs) <0,

o
lim supReV(hs) < M.

s—1
Hence,
@7 supReV(hs) < lim supReW(hy).
R s—1
Since sup Re W (h;) < supRe V' (hs) when 0 < s < 1, it follows that the
upper and lower limits of each of these terms are the same. Thus the
required limit exists and is the same for all Q. O

It follows from Corollary 14 (below) that if D is the open unit ball of
X and if L(h) is finite for the choice @ = J, then h is bounded on each
domain strictly inside D. Thus, in the case mentioned, this hypothesis
may be omitted from Lemma 7, Theorem 8 and Theorem 9.

It is an open problem whether if B is the open unit ball of a separable
reflexive Banach space X and if o : B — X is a holomorphic function
with a uniformly continuous extension to B satisfying supRe V(h) < 1
then A has a fixed point in B. When X is a Hilbert space, this follows
from a result of Aizenberg, Reich and Shoikhet. (Take f = I — h in
Theorem 2 of [1].) This result contains the theorem of Goebel, Sekowski
and Stachura mentioned after Example 3.

In the case where the underlying space is finite dimensional, there is a
version of Lemma 7 where the domain D does not need to be convex and
the numerical range is computed as in a Hilbert space. (For purposes of
comparison, we reformulate the theorem.)

THEOREM 10. (M. H. Shih [29]) Suppose X is finite dimensional and
let {-,+) be an inner product on X. Let D be a bounded domain in X
containing the origin and let g : D — X be a holomorphic function with
a continuous extension to D. If Re (g(x),x) < 0 for all x € 8D, then the
equation g(x) = 0 has a unique solution x in D.

6. Application to Bloch radii

Let B be the open unit ball of a complex Banach space X and let h :
B — X be a holomorphic function satisfying h(0) = 0 and Dh(0) = I.
We say that positive numbers r and P with r < 1 are Bloch radii for h
if h maps a subdomain of B,(0) biholomorphically onto Bp(0).
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It follows from the Cauchy estimate for Dh~*(0) that P < r since
Dh~1(0) = I. Without further restrictions on h, there is no value of P
that is independent of h, even in the case X = C. To see this, note that

1
h(e) = (142" = 1]
is holomorphic in the open unit disc A of the complex plane with h(0) =
0 and A'(0) = 1 but —1/n is not in h(A).

However, when A or its derivative has a given bound in B, it is known
that a P can be found that depends only on this bound.

THEOREM 11. ([15]) Let h: B — X be a holomorphic function with
h(0) = 0 and Dh(0) = I.

1) Suppose | Dh(z)|| < M for all x € B. Then

1 1
"= P
are Bloch radii for h.
2) Suppose ||h(z)|| < M for all z € B. Then

1 1
= , P =
VAaM? + 1 2M +V4AM?2 + 1
are Bloch radii for h.

THEOREM 12. ([18]) Let h: B — X be a holomorphic function with
h(0) = 0 and Dh(0) = I, and suppose L(h) < M for the choice Q = J.

Then
r=1—\/1——;1—_'1, 13:(\/21\4—1—\/2(1\4—1))2

are Bloch radii for h.

It can be verified that the value of P in Theorem 12 is greater than
the value of P in part (2) of Theorem 11 for M < 1 + 1/+/3 but not
otherwise. Thus since L(h) < [|h]|, Theorem 12 improves part (2) of
Theorem 11 when M < 1+ 1/\/§

Proof. Without loss of generality we may assume that L(h) < M.
Then for each § > 0 thereisan s with 1 —d < s <1 and

supReV(hs) < s M.

Let z € X with ||z|| =1 and £ € J(z). The function

FO) = 5 h(sAa)) ~ 1
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is holomorphic in the disc |A| < 1/s and satisfies f(0) = 0. Also,
1
Re f(A) < -supReV(h )—1<M-1

when || =1 (since then ¢/ € J(Az)). In particular, M > 1. Hence by
the Borel-Caratheodory lemma [30, p. 175],

2(M — 1))
[F(M)] < —Tl)\l“—

for [A] < 1. Observing that Re — f(A) <|f(A)|, taking A =t and letting
s — 17, we obtain

2(M — 1)t?
Re [t — £(h:(z))] < (—1_—15—)
for 0 < t < 1. Define
L 2AM - 1)t
<I>(t)_t—————1_t

and note that by calculus the maximum of the function ® in the interval

(0,1) is assumed at t =7 and ®(r) = P. If y € X, then

Ret(y — hr(z)) < |lyll — @(r)
SO
supReV{(y — h,) <0
if ||yl < P. Thus by Lemma 7, the equation y — hy(z) = 0 has a
unique solution € B. Moreover, the proof of that lemma shows that z
depends holomorphically on y since the fixed point in the Earle-Hamilton

theorem depends holomorphically on y. Hence A maps a subdomain of
B,.(0) biholomorphically onto Bp(0). O

7. Cartan’s uniqueness theorem

In this section we use the numerical range to obtain a distortion form
of Cartan’s uniqueness theorem for the open unit ball B of a complex
Banach space. A version of our theorem for holomorphic functions map-
ping B into the closed unit ball of Y appears in [13].

THEOREM 13. ([18]) Let h : B — X be a holomorphic function with
h(0) = 0 and Dh(0) = I, and let L(h) be defined with Q = J. Then
< ~ 8lz)®

= (1 J=l?
for all x € B. In particular, h = I when L(h) < 1.

|[A (2 (L(h) - 1)
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COROLLARY 14. Ifh : B — X is holomorphic and if L(h) < oo when
Q = J, then h is bounded on each B,(0) with 0 < r < 1.

Proof. By Taylor’s theorem there exists an r > 0 such that

h(CL’) = Z Pn(x)
n=1

whenever z € B,(0). Let M > L(h). Proceeding as in the proof of
Theorem 12, we obtain a function f()) that is holomorphic on the open
unit disc A of the complex plane and satisfies f(0) = 0 and Re f(A) <
M —1 for all A € A. Define

L J»
and note that Reg(\) > 0 for all A € A. Moreover,

o0
g(A) = 1 + Zan)\na
n=1

where )
(Ppy1(x))s™
n — T iy s :1,2,....

a T n
Since |a,| < 2 for all positive integers n by [27, p. 170}, it follows that

[V(P)|<2(M-1), n=2,3,....
Applying part (2) of Theorem 5 and the inequality n/(n=1) < 92p for
n > 2, we obtain

|Pnl| < 4n(M —1), n=2,3,....

Thus the power series for h has unit radius of convergence and is equal
to h on B by the identity theorem [20, Th. 3.16.4]. Therefore,

Ih(z) | < D IPll =]
n=2

< M) )
n=2
2z
S AMEDE T

for z € B. The required inequality follows since M > L(h) was arbitrary.
O
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One can deduce the Corollary 14 by applying Theorem 13 to h —
h(0) + I — Dh(0).
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