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BERGMAN SPACES, BLOCH SPACES AND INTEGRAL

MEANS OF p-HARMONIC FUNCTIONS

Xi Fu and Jinjing Qiao

Abstract. In this paper, we investigate the properties of Bergman

spaces, Bloch spaces and integral means of p-harmonic functions on the
unit ball in Rn. Firstly, we offer some Lipschitz-type and double inte-

gral characterizations for Bergman space Akγ . Secondly, we characterize
Bloch space Bαω in terms of weighted Lipschitz conditions and BMO

functions. Finally, a Hardy-Littlewood type theorem for integral means

of p-harmonic functions is established.

1. Introduction

For n ≥ 2, let Rn denote the usual real vector space of dimension n. For
two column vectors x, y ∈ Rn, we use 〈x, y〉 to denote the inner product of x
and y. The ball in Rn with center a and radius r is denoted by B(a, r). In
particular, we write B = B(0, 1) and rB = B(0, r). Let dv be the normalized
volume measure on B and dσ the normalized surface measure on the unit sphere
S = ∂B.

The purpose of this paper is to consider the p-harmonic functions whose
definition is as follows.

Definition 1.1. Let p > 1 and Ω be a domain in Rn. A continuous function
u ∈W 1,p

loc (Ω) is p-harmonic if

−div
(
|∇u|p−2∇u

)
= 0

in the weak sense, i.e., ∫
Ω

〈|∇u|p−2∇u,∇η〉dv(x) = 0

for each η ∈ C∞0 (Ω).
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Obviously, when p = 2, u is the classical harmonic function. By [15], we
know that p-harmonic functions are differentiable. For each p > 1, we denote
by H(B) the set of all p-harmonic functions in B.

Let γ > −1 and 0 < k <∞, the weighted Bergman space Akγ consists of all
u ∈ H(B) such that

‖u‖kAkγ =

∫
B
|u(x)|kdvγ(x) <∞,

where dvγ(x) = (1 − |x|)γdv(x). In particular, if γ = 0, then we simply write
Ak for Akγ .

A continuous increasing function ω : [0,∞)→ [0,∞) with ω(0) = 0 is called
a majorant if ω(t)/t is non-increasing for t > 0. Given a subdomain Ω of Rn,
a function u : Ω→ R is said to belong to the Lipschitz space Λω(Ω) if there is
a positive constant C such that

|u(x)− u(y)| ≤ Cω(|x− y|)
for all x, y ∈ Ω (cf. [9]).

For α > 0 and a given majorant ω, the harmonic ω-α-Bloch space Bαω consists
of all functions u ∈ H(B) such that

‖u‖ω,α = |u(0)|+ sup
x∈B

ω
(
(1− |x|)α

)
|∇u(x)| <∞.

In particular, when ω(t) = t, the space Bαω is the α-Bloch space Bα (cf. [24,27]).
In the theory of function spaces, characterizations and operator theory of

(weighted) Bergman and Bloch spaces have been studied extensively in recent
years (see [2,3,10,12,21–25,27,28]). Wulan and Zhu [26] characterized weighted
holomorphic Bergman space in the unit disk in terms of Lipschitz type con-
ditions with respect to pseudo-hyperbolic, hyperbolic and Euclidean metrics.
In [16,17] the authors studied further and offered several kinds of double inte-
gral characterizations for standard weighted Bergman spaces in the unit ball of
Cn. Recently, Cho and Park [6] extended these results to Bergman space with
exponential type weight. For generalizations of these results in the setting of
harmonic functions, we refer to [7, 8, 20, 25]. As the first aim of this paper, we
consider similar results of the above type in the setting of H(B).

Theorem 1.1. Let γ > −1, 0 < k < ∞ and u ∈ H(B). Then the following
statements are equivalent.

(a) u ∈ Akγ ;

(b) There exists a positive continuous function g ∈ Lk(B, dvγ) such that

|u(x)− u(y)| ≤ σ(x, y)
(
g(x) + g(y)

)
for all x, y ∈ B;

(c) There exists a positive continuous function h ∈ Lk(B, dvγ) such that

|u(x)− u(y)| ≤ ρ(x, y)
(
h(x) + h(y)

)
for all x, y ∈ B;
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(d) There exists a positive continuous function τ ∈ Lk(B, dvγ+k) such that

|u(x)− u(y)| ≤ |x− y|
(
τ(x) + τ(y)

)
for all x, y ∈ B.

Theorem 1.2. Suppose that γ > −1, 0 < k <∞ and u ∈ H(B). If s and t are
real parameters satisfying the following

s+ t = γ + k − n
and

−1 < s < k − n, −1 < t < k − n,
then u ∈ Akγ if and only if

(1) I =

∫
B

∫
B

|u(x)− u(y)|k

[x, y]k
dvs(x)dvt(y) <∞.

Remark 1.1. Theorem 1.1 and Theorem 1.2 are generalizations of [26, Theorem
1.1] and [16, Theorm 5], respectively, in the setting of holomorphic functions
in the unit disk.

Let µ, ν ≥ 0 and f be a continuous function in B. If there exists a constant
C such that

(1− |x|)µ(1− |y|)ν |f(x)− f(y)| ≤ C|x− y|
for any x, y ∈ B, then we say that f is a weighted Lipschitz function of indices
(µ, ν) (cf. [22]).

Holland and Walsh [13] used the weighted Lipschitz condition to give an
equivalent characterization of the analytic Bloch space. In [22, 23], Ren and
Kähler generalized Holland and Walsh’s result to the setting of (hyperbolic)
harmonic functions ([22, Theorem 1.1], [23, Theorem 1.2]). In [19], Muramoto
characterized Bloch space in terms of BMO functions. Recently, Chen and
Rasila generalized these results to the solutions of certain elliptic PDEs, see
[3–5].

For nonnegative quantities X and Y , X . Y means that X is dominated by
Y times some inessential positive constant. We write X ≈ Y if Y . X . Y .
As the second aim of this paper, we discuss the corresponding problems in the
setting of p-harmonic functions and obtain the following:

Theorem 1.3. Let ω be a majorant, u ∈ H(B) and 0 < β < 1, β ≤ α < 1 +β,
0 ≤ θ ≤ 1. Then u ∈ Bαω if and only if for all x, y ∈ B,

|u(x)− u(y)| . [x, y]θ|x− y|1−θ

ω
(
(1− |x|)β(1− |y|)α−β

) .(2)

Theorem 1.4. Suppose α > 0, q ≥ 1, αq ∈ [1, 2), ω is a majorant and
u ∈ H(B). Then u ∈ Bαω if and only if for all r ∈ (0, 1− |x|](

−
∫

B(x,r)

|u(x)− u(y)|qdv(y)
) 1
q

.
r

ω(rα)
.(3)
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Remark 1.2. If we take α = 1, β = 1
2 , θ = 0, q = 1 and ω(t) = t in Theorems

1.3 and 1.4, then Theorem 1.3 and Theorem 1.4 coincide with [23, Theorem
1.2] and [5, Theorem 2], respectively.

Let 0 < s <∞ and u ∈ H(B), the integral mean of u is defined as

Ms(r, u) =
(∫

S
|u(rξ)|sdσ(ξ)

) 1
s

, 0 < r < 1.

The famous Hardy-Littlewood Theorem for integral means of analytic func-
tions asserts that:

Theorem A ([11,18]). Suppose that α ∈ (1,∞) and f is an analytic function
in the unit disk D. Then the following two statements are equivalent.

(1) Ms(r, f
′) = O

(
1

(1−r)α

)
as r → 1;

(2) Ms(r, f) = O
(

1
(1−r)α−1

)
as r → 1.

In our final result, we prove an analogue of Hardy-Littlewood Theorem for
integral means in the setting of p-harmonic functions.

Theorem 1.5. Let ω be a given majorant, α ∈ (0,∞) and u ∈ H(B).

(I) If for all ρ ∈ (0, 1), ψ(ρ) = (1 − ρ)α
(
1 − ln(1 − ρ)

)β
, α ≥ β, s ≥ 1 and

Ms(ρ,∇u) ≤ C/ω
(
ψ(ρ)

)
, then

Ms(r, u) ≤ |u(0)|+ C

∫ 1

0

r

ψ(rt)
dt.

(II) If for all ρ ∈ (0, 1), sα > 1, and Ms(ρ, u) ≤ C/ω
(
(1− ρ)α

)
, then for all

q ∈ (0,∞)

Mq(r,∇u) = O
( 1

(1− r)α+1+n−1
s

)
as r → 1.

The organization of this paper is as follows. In Section 2, some necessary
terminology and notation will be introduced. In Section 3, we shall prove
Theorems 1.1 and 1.2 and discuss boundedness of the symmetric lifting operator
by using Theorem 1.1. The proofs of Theorems 1.3 and 1.4 will be presented
in Section 4. The final Section 5 is devoted to the proof of Theorem 1.5.
Throughout this paper, constants are denoted by C, they are positive and may
differ from one occurrence to the other.

2. Preliminaries

In this section, we introduce notation and collect some preliminary results
that involve Möbius transformations and p-harmonic functions.

Let a ∈ Rn, we write a in polar coordinate by a = |a|a′. For a, b ∈ Rn, let

[a, b] =
∣∣∣|a|b− a′∣∣∣.
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The symmetric lemma shows

[a, b] = [b, a].

For any a ∈ B, denote by φa the Möbius transformation in B. It’s an involution
of B such that φa(0) = a and φa(a) = 0, which is of the form

φa(x) =
|x− a|2a− (1− |a|2)(x− a)

[x, a]2
, x ∈ B.

An elementary computation gives

|φa(x)| = |x− a|
[x, a]

.

In terms of φa, the pseudo-hyperbolic metric σ and the hyperbolic metric ρ
in B can be given by

σ(a, b) = |φa(b)|, a, b ∈ B
and

ρ(a, b) = ln
1 + σ(a, b)

1− σ(a, b)
,

respectively.

For a ∈ B and r ∈ (0, 1), the pseudo-hyperbolic ball with center a and radius
r is defined as

E(a, r) = {x ∈ B : σ(a, x) < r}.
However, E(a, r) is also a Euclidean ball with center ca and radius ra given by

ca =
(1− r2)a

1− |a|2r2
and ra =

r(1− |a|2)

1− |a|2r2
,

respectively (cf. [1, 23]).

Lemma 2.1 ([23]). Let a ∈ B, r ∈ (0, 1) and x ∈ E(a, r). Then

1− |a|2 ≈ 1− |x|2 ≈ [a, x] and |E(a, r)| ≈ (1− |a|2)n,

where |E(a, r)| denotes the Euclidean volume of E(a, r).

The following standard estimate will be needed in the proofs of our main
results, see [22,23].

Lemma 2.2. Let α > −1 and β ∈ R. Then for any x ∈ B,

∫
B

(1− |y|2)α

[x, y]n+α+β
dv(y) ≈


(1− |x|2)−β , β > 0,

log
1

1− |x|2
, β = 0,

1, β < 0.

We end this section with some useful inequalities concerning p-harmonic
functions (cf. [14]). For convenience, we denote

−
∫

B(x,r)

u(y)dv(y) =
1

|B(x, r)|

∫
B(x,r)

u(y)dv(y).
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Lemma 2.3. Assume that u ∈ H(B). Then we have the following inequalities.
(1) For each δ > 1, there is a positive constant C such that∫

B(x,r)

|∇u(y)|pdv(y) ≤ C

rp

∫
B(x,δr)

|u(y)|pdv(y),

whenever B(x, δr) ⊂ B.
(2) For each δ > 1 and 0 < s < q, there is a positive constant C such that(

−
∫

B(x,r)

|u(y)|qdv(y)
) 1
q ≤ C

(
−
∫

B(x,δr)

|u(y)|sdv(y)
) 1
s

,

whenever B(x, δr) ⊂ B.
(3) For each δ > 1 and 0 < q ≤ p, there is a positive constant C such that(

−
∫

B(x,r)

|∇u(y)|pdv(y)
) 1
p ≤ C

(
−
∫

B(x,δr)

|∇u(y)|qdv(y)
) 1
q

,

whenever B(x, δr) ⊂ B.
(4) For each δ > 1 and q > p, there is a positive constant C such that(

−
∫

B(x,r)

|∇u(y)|qdv(y)
) 1
q ≤ C

(
−
∫

B(x,δr)

|∇u(y)|pdv(y)
) 1
p

,

whenever B(x, δr) ⊂ B.

3. Proofs of Theorems 1.1 and 1.2

In order to prove Theorem 1.1, we need a Hardy-Littlewood type integral
estimate for p-harmonic functions in B which was proved in [14].

Proposition 3.1. Let γ > −1, 0 < k <∞. Then∫
B
|u(x)|kdvγ(x) ≈ |u(0)|k +

∫
B
(1− |x|)k|∇u(x)|kdvγ(x)

for all u ∈ H(B).

Proof of Theorem 1.1. We first prove (b)⇒(a). Assume that (b) holds. Then
for each fixed x and all y sufficiently close to x∣∣∣u(x)− u(y)

x− y

∣∣∣ ≤ σ(x, y)

|x− y|
(
g(x) + g(y)

)
, x 6= y.

Since u is differentiable at x, and hence letting y approach x in the direction
of a real coordinate axis, we have

(1− |x|2)|Diu(x)| ≤ 2g(x), 1 ≤ i ≤ n,
so that (1−|x|)|∇u(x)| ≤ 2

√
ng(x) for all x ∈ B. It follows from the assumption

g ∈ Lk(B, dvγ) that ∫
B
(1− |x|)k|∇u(x)|kdvγ(x) <∞.

Thus we obtain that u ∈ Akγ by Proposition 3.1.
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For the converse, we assume u ∈ Akγ . Fix r ∈ (0, 1
18 ) and consider any two

points x, y ∈ B with σ(x, y) < r. Since E(x, r) is a Euclidean ball, by Lemma
2.1, it is given that

|u(x)− u(y)| =
∣∣∣∣∫ 1

0

du

ds
(sy + (1− s)x)ds

∣∣∣∣
≤
√
n|x− y|

∫ 1

0

|∇u(sy + (1− s)x)|ds

. σ(x, y) sup{(1− |x|)|∇u(ξ)| : ξ ∈ E(x, r)}

. σ(x, y)h(x),

where
h(x) = C(r) sup{(1− |ξ|)|∇u(ξ)| : ξ ∈ E(x, r)}.

If σ(x, y) ≥ r, the triangle inequality implies

|u(x)− u(y)| ≤ |u(x)|+ |u(y)|

≤ σ(x, y)
( |u(x)|

r
+
|u(y)|
r

)
.

Now, letting g(x) = h(x) + |u(x)|
r , then

|u(x)− u(y)| ≤ σ(x, y)
(
g(x) + g(y)

)
for all x, y ∈ B. Note that g(x) = h(x) + |u(x)|

r is the desired function provided

that h ∈ Lk(B, dvγ). From properties of a pseudo-hyperbolic ball in B, we

know that E(ξ, r) ⊂ B(x, 1−|x|
4 ) for every ξ ∈ E(x, r). It follows from [14] and

Lemma 2.3 that

sup
ξ∈E(x,r)

|∇u(ξ)| ≤ C
(
−
∫

B(x,
1−|x|

4 )

|∇u(x)|pdv(y)
) 1
p

.
(

(1− |x|)−p−
∫

B(x,
1−|x|

3 )

|u(x)|pv(y)
) 1
p

. (1− |x|)−1
(
−
∫

B(x,
1−|x|

2 )

|u(x)|kv(y)
) 1
k

.

Hence by Fubini’s theorem and Lemma 2.1

‖h‖kLkγ .
∫
B
(1− |x|)γ−

∫
B(x,

1−|x|
2 )

|u(y)|kdv(y)dv(x)

.
∫
B
|u(y)|k

∫
B(x,

1−|x|
2 )

(1− |x|)−ndv(x)dvγ(y)

. ‖u‖kAkγ .

This proves (a)⇔(b).
(a)⇔(c). Since σ ≤ ρ, it follows a discussion similar to the above, the result

follows.
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(a)⇔(d). Assume that (d) holds. Then it can be deduced that

(1− |x|)|∇u(x)| ≤ 2(1− |x|)τ(x)

for all x ∈ B. The assumption τ ∈ Lk(B, dvγ+k) implies (1 − |x|)|∇u(x)| ∈
Lk(B, dvγ) and thus, according to Proposition 3.1, means that u ∈ Akγ .

Conversely, suppose that u ∈ Akγ . Then (b) implies that there exists a

positive continuous function g ∈ Lk(B, dvγ) such that

|u(x)− u(y)| ≤ σ(x, y)
(
g(x) + g(y)

)
for all x, y ∈ B. Since for x, y ∈ B,

[x, y] ≥ 1− |x|, [x, y] ≥ 1− |y|,
we see that

|u(x)− u(y)| ≤ |x− y|
( g(x)

[x, y]
+
g(y)

[x, y]

)
. |x− y|

(
τ(x) + τ(y)

)
, x, y ∈ B,

where

τ(x) =
g(x)

1− |x|
.

Hence τ ∈ Lk(B, dvγ+k) from the assumption g ∈ Lk(B, dvγ). The proof of
Theorem 1.1 is finished. �

In the following we discuss some applications of Theorem 1.1.
Consider a symmetric lifting operator L which is defined by

Lu(x, y) =
u(x)− u(y)

x− y
, x 6= y

for u ∈ H(B).

Theorem 3.1. Let γ > −1, 0 < k < n + γ. Then L : Akγ → Lk(B× B, dvγ ×
dvγ) ∩H(B× B) is bounded.

Proof. Let u ∈ Akγ . Then there exists a positive continuous function g ∈
Lk(B, dvγ) such that

|Lu(x, y)|k =
∣∣∣u(x)− u(y)

x− y

∣∣∣k . |g(x)|k + |g(y)|k

[x, y]k
, x 6= y,

by Theorem 1.1. It follows from Lemma 2.2 that∫
B

∫
B
|Lu(x, y)|kdvγ(x)dvγ(y) .

∫
B
|g(x)|k

∫
B

dvγ(y)

[x, y]k
dvγ(x)

.
∫
B
|g(x)|kdvγ(x).

One can see that ∫
B
|g(x)|kdvγ(x) .

∫
B
|u(x)|kdvγ(x)
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from the proof of Theorem 1.1. Consequently, L : Akγ → Lk(B×B, dvγ×dvγ)∩
H(B× B) is bounded. �

For the case of n + γ < k < ∞, we can also prove the following result by
using an argument similar to the one in the proof of Theorem 3.1.

Theorem 3.2. Let γ > −1, n + γ < k < ∞ and t = (k + γ − n)/2. Then
L : Akγ → Lk(B× B, dvt × dvt) ∩H(B× B) is bounded.

Remark 3.1. For γ > −1, k ≥ n + γ, L never maps Akγ into Lk(B × B, dvγ ×
dvγ) ∩H(B× B), see Example 3.9 in [7].

Proof of Theorem 1.2. Assume that (1) holds. Fixing x ∈ B, it follows from
the proof of Theorem 1.1 that

(1− |x|)|∇u(x)| ≤ C
(
−
∫

B(x,
1−|x|

4 )

|u(y)|kdv(y)
) 1
k

.

Replacing u by u− u(x) leads to

(1− |x|)k|∇u(x)|k . −
∫

B(x,
1−|x|

4 )

|u(x)− u(y)|kdv(y)

.
(1− |x|)k−t

(1− |x|)n

∫
B(x,

1−|x|
4 )

|u(x)− u(y)|k

[x, y]k
dvt(y)

. (1− |x|)k−t−n
∫
B

|u(x)− u(y)|k

[x, y]k
dvt(y).

From the assumption k − t− n = s− γ, we concludes that∫
B
(1− |x|)k|∇u(x)|kdvγ(x) .

∫
B

∫
B

|u(x)− u(y)|k

[x, y]k
dvs(x)dvt(y).

Hence u ∈ Akγ by Proposition 3.1.

Conversely, suppose that u ∈ Akγ . An elementary triangle inequality gives
that

I ≤ C
∫
B

∫
B

|u(x)|k + |u(y)|k

[x, y]k
dvs(x)dvt(y).

So the integral I will be finite if both of the following integrals are finite:

I1 =

∫
B

∫
B

|u(x)|k

[x, y]k
dvs(x)dvt(y), I2 =

∫
B

∫
B

|u(y)|k

[x, y]k
dvs(x)dvt(y).

Since s− γ = k − t− n, it follows from Fubini’s theorem and Lemma 2.2 that

I1 =

∫
B
|u(x)|kdvs(x)

∫
B

dvt(y)

[x, y]k

.
∫
B

|u(x)|kdvs(x)

(1− |x|2)s−γ

.
∫
B
|u(x)|kdvγ(x).
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A similar argument shows that I2 is also finite. This proves Theorem 1.2. �

4. Characterizations of Bloch space

Proof of Theorem 1.3. Assume that (2) holds. Fixing x ∈ B, it follows from
the proof of Theorem 1.2 that

|∇u(x)| ≤ C

1− |x|
−
∫

B(x,
1−|x|

4 )

|u(x)− u(y)|dv(y).

By Lemma 2.1,

ω
(
(1− |x|)α

)
|∇u(x)|

≤ C−
∫

B(x,
1−|x|

4 )

ω
(
(1− |x|)α

) |u(x)− u(y)|
[x, y]

dv(y)

. −
∫

B(x,
1−|x|

4 )

ω
(
(1− |x|)β(1− |y|)α−β

) |u(x)− u(y)|
[x, y]θ|x− y|1−θ

dv(y)

< ∞.

Hence f ∈ Bαω .
Conversely, we assume that u ∈ Bαω . For any x, y ∈ B,

|u(x)− u(y)| =
∣∣∣∣∫ 1

0

du

dt
((1− t)x+ ty)dt

∣∣∣∣
≤
√
n|x− y|

∫ 1

0

|∇u((1− t)x+ ty)|dt

≤ C|x− y|
∫ 1

0

dt

ω
(
(1− |(1− t)x+ ty|)α

) .
Since for x, y ∈ B and t ∈ [0, 1],

(1− |(1− t)x+ ty|)α ≥ (1− (1− t)|x| − t|y|)α

= ((1− t)(1− |x|) + t(1− |y|))α

≥ tα−β(1− |y|)α−β(1− t)β(1− |x|)β ,

we get

|u(x)− u(y)|
[x, y]θ|x− y|1−θ

≤ C
∫ 1

0

dt

ω
(
(1− |(1− t)x+ ty|)α

)
≤ C

∫ 1

0

dt

ω
(
tα−β(1− |y|)α−β(1− t)β(1− |x|)β

)
≤ C

ω
(

(1− |x|)β(1− |y|)α−β
) ∫ 1

0

dt

tα−β(1− t)β
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.
1

ω
(

(1− |x|)β(1− |y|)α−β
) ,

where the last integral converges since α < 1 + β. Thus

|u(x)− u(y)| ≤ C[x, y]θ|x− y|1−θ

ω
(
(1− |x|)s(1− |y|)α−s

) .
This completes the proof of Theorem 1.3. �

Proof of Theorem 1.4. We first assume that (3) holds. For x ∈ B, by Lemma
2.3, we have

|∇u(x)| ≤ C
(
−
∫

B(x,
1−|x|

4 )

|∇u(y)|pdv(y)
) 1
p

. (1− |x|)−1
(
−
∫

B(x,
1−|x|

3 )

|u(x)− u(y)|pdv(y)
) 1
p

. (1− |x|)−1
(
−
∫

B(x,
1−|x|

2 )

|u(x)− u(y)|qv(y)
) 1
q

.
1

ω
(
( 1−|x|

2

)α
)

.
1

ω
(
(1− |x|)α

) ,
which implies u ∈ Bαω .

Conversely, we assume that u ∈ Bαω . For x ∈ B and y ∈ B(x, r), it follows
from the proof of Theorem 1.1 that

|u(x)− u(y)| ≤
√
n|x− y|

∫ 1

0

|∇u((1− s)x+ sy)|ds

≤ C|x− y|
∫ 1

0

ds

ω
(
((1− s)x+ sy|)α

)
≤ C|x− y|

∫ 1

0

ds

ω
(
(1− |(1− s)x+ sy|)α

)
≤ C|x− y|

∫ 1

0

ds

ω
(
(1− |x| − s|x− y|)α

)
≤ C

∫ |x−y|
0

ds

ω
(
(1− |x| − s)α

) .
Let x − y = ζ ∈ B. By a similar argument as in the proof of [5, Theorem 2],
we have

−
∫

B(x,r)

|u(x)− u(y)|qdv(y) ≤ −
∫

B(x,r)

(∫ |x−y|
0

ds

ω
(
(1− |x| − s)α

))qdv(y)
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= −
∫
rB

(∫ |ζ|
0

ds

ω
(
(1− |x| − s)α

))qdv(ζ)

≤ −
∫
rB

(∫ |ζ|
0

|ζ|q−1ds

ωq
(
(1− |x| − s)α

))dv(ζ)

≤ C

rn

∫ r

0

ρn+q−2
(∫ ρ

0

ds

ωq
(
(1− |x| − s)α

))dρ
≤ C

rn

∫ r

0

(∫ r

s

ρn+q−2dρ
) ds

ωq
(
(r − s)α

)
≤ Crq−2

∫ r

0

(r − s)
ωq
(
(r − s)α

)ds
≤ Crq−2

∫ r

0

[ (r − s)α

ω
(
(r − s)α

)]q ds

(r − s)αq−1

≤ Crαq+q−2

ωq(rα)

∫ r

0

(r − s)1−αqds

≤ Crq

ωq(rα)
,

as desired. The proof of Theorem 1.4 is finished. �

5. Integral means of p-harmonic functions

In this section, we shall prove Theorem 1.5. Before the proof, we recall a
lemma which comes from [3].

Lemma 5.1. Suppose that α > 0, β ≤ α and ω is a majorant. Then, for
ρ ∈ (0, 1), ψ(ρ) and ψ(ρ)/ω(ψ(ρ)) are decreasing in (0, 1), where ψ is the same
as in Theorem 1.5.

Proof of Theorem 1.5. We first prove (I). Let x = rξ ∈ B, where r = |x|, ξ ∈ S.
Then

|u(x)| =
∣∣∣∣u(0) +

∫ 1

0

〈∇u(tx), x〉dt
∣∣∣∣

≤ |u(0)|+
∫ r

0

|∇u(ρξ)|dρ.

By Minkowski’s inequality, we see that

Ms(r, u) =
(∫

S
|u(rξ)|sdσ(ξ)

) 1
s

≤ |u(0)|+
(∫

S

(∫ r

0

|∇u(ρξ)|dρ
)s
dσ(ξ)

) 1
s

≤ |u(0)|+
∫ r

0

(∫
S
|∇u(ρξ)|sdσ(ξ)

) 1
s

dρ
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= |u(0)|+
∫ r

0

Ms(ρ,∇u)dρ.

Since Ms(ρ,∇u) ≤ C/ω
(
ψ(ρ)

)
, it follows from Lemma 5.1 that

Ms(r, u) ≤ |u(0)|+ C

∫ r

0

1

ω
(
ψ(ρ)

)dρ
≤ |u(0)|+ C

∫ r

0

ψ(ρ)

ω
(
ψ(ρ)

) 1

ψ(ρ)
dρ

≤ |u(0)|+ C

ω(1)

∫ 1

0

r

ψ(rt)
dt

≤ |u(0)|+ C

∫ 1

0

r

ψ(rt)
dt.

Now, we prove (II). For x ∈ B, it follows from Lemma 2.3 and the proof of
Theorem 1.2 that

(1− |x|)s|∇u(x)|s ≤ C

(1− |x|)n

∫
B(x,

1−|x|
4 )

|u(y)|sdv(y)

≤ C

(1− |x|)n

∫
B(0,

1+2|x|
2+|x| )

|u(y)|sv(y)

≤ C

(1− |x|)n

∫ 1+2|x|
2+|x|

0

nρn−1

∫
S
|u(ρξ)|sdσ(ξ)dρ

≤ C

(1− |x|)n

∫ 1+2|x|
2+|x|

0

ρn−1

ωs
(
(1− ρ)α

)dρ
≤ C

(1− |x|)n

∫ 1+2|x|
2+|x|

0

ρn−1

(1− ρ)αs
dρ

≤ C

(1− |x|)αs+n−1
.

Thus

|∇u(x)| ≤ C

(1− |x|)α+1+n−1
s

.

Consequently, for all q ∈ (0,∞)

Mq(r,∇u) =
(∫

S
|∇u(rξ)|qdσ(ξ)

) 1
q

≤ C

(1− r)α+1+n−1
s

.

This completes the proof of Theorem 1.5. �
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[21] M. Pavlović and K. Zhu, New characterizations of Bergman spaces, Ann. Acad. Sci.

Fenn. Math. 33 (2008), no. 1, 87–99.
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