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A SUBCLASS OF HARMONIC UNIVALENT MAPPINGS

WITH A RESTRICTED ANALYTIC PART

Bikash Kumar Chinhara, Priyabrat Gochhayat,
and Sudhananda Maharana

Abstract. In this article, a subclass of univalent harmonic mapping is
introduced by restricting its analytic part to lie in the class Sδ[α], 0 ≤
α < 1, −∞ < δ < ∞ which has been introduced and studied by Kumar

[17] (see also [20], [21], [22], [23]). Coefficient estimations, growth and
distortion properties, area theorem and covering estimates of functions

in the newly defined class have been established. Furthermore, we also

found bound for the Bloch’s constant for all functions in that family.

1. Introduction

Let A denote the class of functions f of the form f(z) = z+a2z
2+a3z

3+· · · ,
which are analytic in the open unit disk D := {z ∈ C : |z| < 1}. The subclass
of A consisting of all analytic and univalent functions in D will be denoted by
S. A well known sufficient condition (cf. [25]) for a function to be in the class
S is that

∑∞
n=2 n|an| ≤ 1. An analogous sufficient condition (cf. [17]) for a

function f to be in the class Sδ[α], 0 ≤ α < 1, −∞ < δ <∞ is that
∞∑
n=2

nδ
(
n− α
1− α

)
|an| ≤ 1.

Note that for each fixed n the function nδ is increasing with respect to δ. This
shows that if δ increases, then the corresponding class decreases. Consequently,
the functions in Sδ[α] are univalent starlike of order α if δ ≥ 0 and if δ ≥ 1
then the functions in the family Sδ[α] are univalent convex of order α. The
classical subfamily C(α) (S∗(α)), of univalent convex of order α (univalent
starlike of order α, 0 ≤ α < 1), respectively were introduced and studied in
[24] are found in [7, 10, 11]. Mishra and Choudhury [21] showed that the class
Sδ[α] also contains non-univalent function for negative δ. In [23], Mishra and
Gochhayat found the coefficient estimate problems for inverse of functions in
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the class Sδ[α]. For more basic properties of the class we refer to [22, 23] and
the references therein. In the present sequel, it is our interest to consider planar
harmonic mappings whose analytic parts are members of the family Sδ[α].

Recalling, a complex-valued harmonic function in a simply connected domain
D subset of the complex plane C has a representation f = h+g, where h and g
are analytic functions in D, that is unique up to an additive constant. Notice
that when D = D, the open unit disk, it is convenient to choose the additive
constant so that g(0) = 0. The representation f = h+g is therefore unique and
is called the canonical representation of f . Lewy in [18] proved that f is locally
univalent if and only if the Jacobian satisfies Jf = |h′|2 − |g′|2 6= 0. Thus,
harmonic mappings are either sense-preserving or sense-reversing depending
on the conditions Jf > 0 and Jf < 0, respectively throughout the domain D,
where f is locally univalent. Since Jf > 0 if and only if Jf̄ < 0 we will consider
sense-preserving mappings in D throughout all of this work. In this case the
analytic part h is locally univalent in D since h′ 6= 0, and the second complex
dilatation w of f , given by w = g′/h′, is an analytic function in D with |w| < 1,
see [5].

Let H denote the set of all locally univalent and sense preserving complex
harmonic mappings in D. Therefore, any function f in the class H has unique
power series representation of the form:

(1) f = h+ g, where h(z) =

∞∑
n=0

anz
n and g(z) =

∞∑
n=1

bnz
n (z ∈ D),

and an, bn ∈ C. Following Clunie and Sheil-Small’s notation [5], let SH ⊂ H
denote the class of all sense preserving univalent harmonic functions f = h+ g
in D with the normalization h(0) = g(0) = h′(0) − 1 = 0. The class SH is a
normal family [8]. Further, the subclass of SH for which g′(0) = 0 is denoted
by S0

H is a compact normal family of harmonic functions [5]. Moreover, when
f ∈ SH, the coefficients a0 = 0 and a1 = 1, and for f ∈ S0

H, the coefficients
a0 = 0, a1 = 0, and b1 = 0.

It is pertinent that for a fixed analytic function h an interesting problem
arises to describe all functions g such that f ∈ H. Not much known on the
geometric properties of such planar harmonic functions. Klimek and Michalski
[15], first studied the properties of a subset of SH which is defined for all
univalent anti-analytic perturbation of the identity and also considered the
subclass of SH which is defined by restricting h as a member of C, univalent
convex functions [16]. Very recently, Hotta and Michalski [12] considered h
as a member of S∗, univalent starlike functions and discuss some geometric
properties of certain subfamily of SH. Few more subclasses of planar harmonic
mappings were considered by restricting h as member of univalent starlike
function of order α [27], univalent convex function of order α [27] and to be
in the class of bounded boundary rotation [13]. In continuation to our earlier
works, in the present sequel we considered the following new subclass of H
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which is defined by considering h as a member of Sδ[α]. Thus, we define
following:

Definition. A function f ∈ H given by (1) is said to be in the class SδH [α, β],
with α, β ∈ [0, 1) and −∞ < δ < ∞ if the analytic part of f is a member of
Sδ[α] and |b1| = β. Equivalently,

SδH [α, β] :={f=h+g ∈ H : h(z) ∈ Sδ[α], |b1|=β; α, β ∈ [0, 1); −∞ < δ <∞}.

Some facts about SδH [α, β]:

(i) for δ ≥ 1, the analytic part of f ∈ SδH [α, β] is a convex function of
order α (see [23]), therefore in view of [5, Theorem 5.7] and the iden-
tity |w(z)| = |g′(z)/h′(z)| < 1, f is sense preserving and normalized
univalent function. Thus SδH [α, β] ⊂ SH. Further for β = 0, along with
δ ≥ 1, we have SδH [α, β] ⊂ S0

H.

(ii) for δ ≥ 1, the class SδH [α, β] becomes a subclass of SβH [Cα] studied in
[27].

(iii) for δ ≥ 0, the analytic part of f ∈ SδH [α, β] becomes a starlike func-

tion of order α. Therefore SδH [α, β] is a subclass of SβH [Sα], which is
introduced in [27].

Finally, it is an easy exercise to check that:

Proposition 1.1. For β = 0, δ ≥ 0, 0 ≤ α < 1, the class SδH [α, β] is a convex
set.

In the present investigation we also need following definitions and notations.
A harmonic function f is called a Bloch mapping if and only if

(2) Bf = sup
z,ξ∈D, z 6=ξ

|f(z)− f(ξ)|
Q(z, ξ)

<∞,

where

Q(z, ξ) =
1

2
log

1 +
∣∣∣ z−ξ1−zξ

∣∣∣
1−

∣∣∣ z−ξ1−zξ

∣∣∣
 = arctanh

∣∣∣∣ z − ξ1− zξ

∣∣∣∣
denotes the hyperbolic distance between z and ξ in D, and Bf is called the
Bloch’s constant of f . In [6], Colonna proved that the Bloch’s constant Bf of
a harmonic mapping f = h+ g can be expressed as follows:

Bf = sup
z∈D

(
1− |z|2

)
(|h′(z)|+ |g′(z)|)

= sup
z∈D

(
1− |z|2

)
|h′(z)|(1 + |w(z)|),(3)

which agrees with the well-known notion of the Bloch’s constant for analytic
functions. Moreover, the set of all harmonic Bloch mappings forms a complex
Banach space with the norm ‖ · ‖ given by

‖f‖ = |f(0)|+ sup
z∈D

(1− |z|2)Λf (z),
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where

Λf = max
0≤θ≤2π

∣∣fz(z)− e−2iθfz(z)
∣∣ = |fz(z)|+ |fz(z)|

= |h′(z)|+ |g′(z)| = |h′(z)| (1 + |w(z)|) .
This definition agrees with the notion of the Bloch’s constant for analytic func-
tions. Recently, some authors (see [3, 4, 14, 19]) have studied Bloch’s constant
for harmonic mappings. Thus it is our interest to find the bound on Bloch
constant for functions in the family SδH [α, β].

The following lemmas are being used to proof our main results which can
be found in Graham and Kohr [11], Mishra and Gochhayat [23] and Vincent
[26] (also see [1, 2]), respectively.

Lemma 1.2 ([11]). If Φ(z) = c0 + c1z+ c2z
2 + · · · is an analytic function and

|Φ(z)| ≤ 1 on the open unit disk D, then |cn| ≤ 1− |c0|2, n = 1, 2, 3, . . ..

Lemma 1.3 ([23]). If the function f ∈ Sδ[α], then

|an| ≤
(1− α)

nδ(n− α)
, n = 2, 3, . . . ,

and equality holds for each n only for functions of the form

fn(z) = z +
(1− α)

nδ(n− α)
eiθzn, θ ∈ R, z ∈ D.

Lemma 1.4 ([26], For bisection version see [1, 2]). Let p(x) be a polynomial
of degree n. There exists a positive quantity δ so that for every pair of positive
rational numbers a, b with |b−a| < δ every transformed polynomial of the form

V (x) = (1 + x)n p

(
a+ bx

1 + x

)
has exactly 0 or 1 variations in the sequence of its coefficients. The second
case is possible if and only if p(x) has a simple root within (a, b). Moreover, the
number of the sign variation is the maximal number of roots in (a, b).

2. Main results

2.1. Coefficient bound

In this section we have studied the bound of |bn|, for f = h+ g ∈ SδH [α, β],
with δ ≥ 0, where h and g have the series representations of the form (1).

Theorem 2.1. Let f(z) = h(z) + g(z) ∈ SδH [α, β], δ ≥ 0, where h(z) and g(z)
are given by (1). Then

(4) |bn| ≤


(1− α)β

2δ(2− α)
+

(1− β2)

2
, n = 2,

(1− α)(1− β2)

n

∑n−1
k=1

k1−δ

k−α +
(1− α)β

nδ(n− α)
, n = 3, 4, . . . .
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Proof. Let the function f(z) = h(z)+g(z) be in the class SδH [α, β], where h and
g are represented by (1). Let g′(z) = w(z)h′(z), where w(z) is the dilatation
of f ,

(5) w(z) =

∞∑
n=0

cnz
n (z ∈ D),

where cn ∈ C. Clearly, c0 = |w(0)| = |g′(0)| = |b1| = β < 1. Further, since
f ∈ SδH [α, β] is sense preserving, we have |w(z)| < 1 for all z ∈ D. Therefore,
from Lemma 1.2, we have

|cn| ≤ 1− |c0|2, n = 1, 2, . . . .

Simplifying g′(z) = w(z)h′(z), by using the relations (1) and (5), we have

(6)

∞∑
n=1

nbnz
n−1 =

∞∑
n=0

(
n−1∑
k=0

(k + 1)ak+1cn−k−1

)
zn−1.

Comparing the coefficients in (6), we obtain

(7) nbn =

n−1∑
k=0

(k + 1)ak+1cn−1−k, n = 2, 3, . . . .

Since h(z) ∈ SδH [α], it is clear from Lemma 1.3 that

(8) |an| ≤
1− α

nδ(n− α)
, n = 2, 3, 4, . . . .

Application of (8) in (7) together with Lemma 1.2 gives

n|bn| ≤
n−2∑
k=0

(k + 1)|ak+1||cn−1−k|+ n|an||c0|

≤
n−2∑
k=0

(p+ 1)(1− α)(1− β2)

(k + 1)δ(k + 1− α)
+
n(1− α)β

nδ(n− α)
,

which implies that

|bn| ≤
(1− α)(1− β2)

n

n−1∑
k=1

k1−δ

k − α
+

(1− α)β

nδ(n− α)
.

In particular for n = 2, we have

2|b2| ≤ 2|a2||c0|+ |a1||c1| ≤
2(1− α)β

2δ(2− α)
+ 1− β2,

which together with Lemma 1.2 and Lemma 1.3, provides

|b2| ≤
(1− α)β

(2− α)2δ
+

(1− β2)

2
.

This completes the proof of Theorem 2.1. �
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Corollary 2.2. Let f(z) = h(z) + g(z) ∈ SδH [α, β], δ ≥ 0, where h(z) and g(z)
are given by (1). Then, for β = 0 and δ = 1, the coefficients of the co-analytic
part of f are:

|b1| = 0, |b2| ≤
1

2
, and |bn| ≤

(
1− α
n

)
[Ψ(n− α)−Ψ(1− α)], n = 3, 4, . . . ,

where Ψ(x) represents the Psi (or Digamma) function of a real non-negative x,
and is defined by the logarithmic derivative of the usual Gamma function (see
[9]).

2.2. Growth and distortion results

In this section, we found the growth and distortion estimates of the analytic
and co-analytic part of function f in the class SδH [α, β].

Theorem 2.3. Let f(z) = h(z) + g(z) ∈ SδH [α, β], δ ≥ 0, where h(z) and g(z)
are given by (1). Then for z = reiθ, θ ∈ R, we have

(9) 1− (1− α)r

(2− α)2δ−1
≤ |h′(z)| ≤ 1 +

(1− α)r

(2− α)2δ−1

and
(10)(
|β − r|
1− βr

)(
1− (1− α)r

(2− α)2δ−1

)
≤ |g′(z)| ≤

(
β + r

1 + βr

)(
1 +

(1− α)r

(2− α)2δ−1

)
.

Proof. Let g′(0) = βeiµ, µ real. From a given dilatation w(z), |w(z)| < 1 and
|w(0)| = |g′(0)| = β, we consider

F0(z) :=
e−iµw(z)− β
1− βe−iµw(z)

= e−iµ
(

w(z)− βeiµ

1− βe−iµw(z)

)
, (z ∈ D).

Since β ∈ [0, 1), therefore the complex conjugate of βeiµ is equal to βe−iµ.
Further as |w(z)| < 1 and |βeiµ| < 1, clearly we have |F0(z)| < 1. Therefore,
F0(z) satisfies the conditions of Schwartz lemma. Hence |F0(z)| ≤ |z|. This
implies that

|e−iµw(z)− β| ≤ |z||1− βe−iµw(z)|, (z ∈ D),

which is equivalent to

(11)

∣∣∣∣e−iµw(z)− β(1− r2)

1− β2r2

∣∣∣∣ ≤ r(1− β2)

(1− β2r2)
, (z = reiθ ∈ D).

Equality in the above inequality holds for the function

(12) w(z) = eiµ
eiφz + β

1 + βeiφz
, (z ∈ D, φ ∈ R).

Applying triangle inequality over (11), we obtain

(13)
|β − r|
1− βr

≤ |w(z)| ≤ β + r

1 + βr
, |z| = r < 1.
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The function f = h+ g ∈ SδH [α, β], indicates that h(z) ∈ Sδ[α]. Hence,

(14)

∞∑
n=2

nδ
(
n− α
1− α

)
|an| ≤ 1.

Clearly,

(2− α)

∞∑
n=2

nδ|an| ≤
∞∑
n=2

nδ(n− α)|an| ≤ (1− α).

Therefore,

(15)

∞∑
n=2

nδ|an| ≤
1− α
2− α

.

For δ ≥ 0, nδ is increasing in n. Thus using (14) and (15), we get

2δ
∞∑
n=2

n|an| ≤
∞∑
n=2

nδn|an| =
∞∑
n=2

nδ(n− α)|an|+
∞∑
n=2

αnδ|an|

≤ (1− α) + α

(
1− α
2− α

)
.

Therefore,

(16)

∞∑
n=2

n|an| ≤
1− α

2δ−1(2− α)
.

Consider the function

G(z) := zh′(z) = z +

∞∑
n=2

nanz
n (z ∈ D).

Therefore, using (16), we have

|G(z)| = |zh′(z)| ≤ |z|+
∞∑
n=2

n|an||z|n ≤ r + r2 1− α
2δ−1(2− α)

.

This gives right hand side estimate of (9).
Similarly,

|G(z)| = |zh′(z)| ≥ |z| −
∞∑
n=2

n|an||z|n ≥ r − r2 1− α
2δ−1(2− α)

,

which estimates the left hand side of the inequality (9).
By using (13) and (9), in the identity g′(z) = w(z)h′(z), we have

(17) |g′(z)| ≤
(
β + r

1 + βr

)
|h′(z)| ≤

(
β + r

1 + βr

)(
1 +

(1− α)r

(2− α)2δ−1

)
,

and

(18) |g′(z)| ≥ |β − r|
1− βr

|h′(z)| ≥
(
|β − r|
1− βr

)(
1− (1− α)r

(2− α)2δ−1

)
.
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This completes the proof of Theorem 2.3. �

Following theorem gives the upper and lower bounds of the co-analytic part
of function f = h+ g ∈ SδH [α, β], where h and g are of the form (1).

Theorem 2.4. Let f(z) = h(z) + g(z) ∈ SδH [α, β], δ ≥ 0, where h(z) and g(z)
are of the form (1). Then for z = reiθ, θ real, we have∣∣∣∣ F

2δ(2− α)β3

∣∣∣∣ ≤ |g(z)| ≤ E

2δ(2− α)β3
,

where

E := rβ
(
2δ(2− α)β − (1− α)(2− (r + 2β)β)

)
+ (2− 2α− 2δ(2− α)β)(1− β2) log(1 + rβ)

and

F := rβ
(
−2δ(2− α)β + (1− α)(2 + (r − 2β)β)

)
+ (2− 2α− 2δ(2− α)β)(1− β2) log(1− rβ).

Proof. Choose a path γ := [0, z]. From (17) and (18), for |z| = r < 1, we have
(19)(
|β − r|
1− βr

)(
1− (1− α)r

(2− α)2δ−1

)
≤ |g′(z)| ≤

(
β + r

1 + βr

)(
1 +

(1− α)r

(2− α)2δ−1

)
.

Right hand inequality of Theorem 2.4 is obtained immediately upon integration
along a radial line η = teiθ.

In order to find the lower bound, let Γ = g({z : |z| = r}) and let ξ1 ∈ Γ be
the nearest point to the origin. By a rotation we may assume that ξ1 > 0. Let γ
be the line segment 0 ≤ ξ ≤ ξ1 and suppose that z1 = g−1(ξ1) and L = g−1(γ).
Then, with η as the variable of integration on L, we have dξ = g′(η)dη > 0 on
L. Hence

ξ1 =

∫ ξ1

0

dξ =

∫ z1

0

g′(η) dη =

∫ z1

0

|g′(η)| |dη| ≥
∫ r

0

|g′(teiθ)| dt

≥
∫ r

0

(
|η − β|
1− βη

)(
1− (1− α)η

(2− α)2δ−1

)
dη =

∣∣∣∣ F

2δ(2− α)β3

∣∣∣∣ .
This completes the proof of Theorem 2.4. �

2.3. Area estimation

In this section, we deal with the area estimates of the function f ∈ SδH [α, β].

Theorem 2.5. Let f(z) = h(z) + g(z) ∈ SδH [α, β], δ ≥ 0, where h(z) and g(z)
are of the form (1). Then the estimation of area A :=

∫ ∫
D Jf (z)dxdy, is given

by

(20) 2π

∫ 1

0

r

(
((2− α)222(δ−1) − r(1− α))2

(2− α)222(δ−1)

)(
(1− β2)(1− r2)

(1 + βr)2

)
dr ≤ A
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≤ 2π

∫ 1

0

r

(
((2− α)222(δ−1) + r(1− α))2

(2− α)222(δ−1)

)(
(1− β2)(1− r2)

(1− βr)2

)
dr.

Proof. Let f(z) = h(z)+g(z) ∈ SδH [α, β], with the Jacobian Jf (z) = |h′(z)|2(1−
|w(z)|2), where w(z) is the dilatation of f , for z ∈ D.

By making use of estimates (9) and (13), we obtain

A : =

∫ ∫
D
Jf (z) dxdy =

∫ 2π

0

∫ 1

0

Jf (reiθ)r drdθ

= 2π

∫ 1

0

rJf (reiθ) dr = 2π

∫ 1

0

r|h′(reiθ)|2
(
1− |w(reiθ)|2

)
dr

≥ 2π

∫ 1

0

r

(
1− (1− α)r

(2− α)2δ−1

)2
(

1−
(
β + r

1 + βr

)2
)
dr

= 2π

∫ 1

0

r

(
((2− α)222(δ−1) − r(1− α))2

(2− α)222(δ−1)

)(
(1− r2)(1− β2)

(1 + βr)2

)
dr,

which is the left hand inequality of the estimates in (20). Next to find the right
hand estimate, we have

A : = 2π

∫ 1

0

r|h′(reiθ)|2
(
1− |w(reiθ)|2

)
dr

≤ 2π

∫ 1

0

r

(
1 +

(1− α)r

(2− α)2δ−1

)2
(

1−
(
β − r
1− βr

)2
)
dr

= 2π

∫ 1

0

r

(
((2− α)222(δ−1) + r(1− α))2

(2− α)222(δ−1)

)(
(1− r2)(1− β2)

(1− βr)2

)
dr.

This completes the proof of Theorem 2.5. �

2.4. Covering results

In order to establish the covering result for the class SδH [α, β], we first focused
on the growth inequalities for the function f ∈ SδH [α, β] in the theorem stated
below.

Theorem 2.6. Suppose that f ∈ SδH [α, β], δ ≥ 0. The growth of f is estimated
as:

(21) |f(z)| ≥
∫ r

0

((2− α)2δ−1 + (1− α)ξ)(1− β)(1− ξ)
(2− α)2δ−1(1 + βξ)

dξ

and

(22) |f(z)| ≤ r +
r2(1− α)

2δ(2− α)
+

∫ r

0

(
β + ξ

1 + βξ

)(
1 +

(1− α)ξ

(2− α)2δ−1

)
dξ

for all z = reiθ ∈ D.
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Proof. Let Dr represents the disk of radius r, r < 1, with center at origin.
Denote d := min {|f(Dr)| : z ∈ Dr}. Clearly, Dd ⊆ f(Dr) ⊆ f(D). It is due
to minimum modulus principle that, there exists tr ∈ ∂Dr := {z ∈ C : |z| =
r, r < 1}, such that d = |f(tr)|.

Consider a Jordan arc as l(t) := f−1(L(t)), t ∈ [0, 1], where L(t) := tf(tr).

Since f ≡ f(z, z̄) = h(z) + g(z), then we have

d = |f(tr)| =
∫
L

|dw| =
∫
l

|df | =
∫
l

∣∣∣fη(η) dη + gη̄(η) dη̄
∣∣∣(23)

≥
∫
l

(|h′(η)| − |g′(η)|) |dη|.

From (9) and (13), the integrand of the above inequality becomes

|h′(η)| − |g′(η)| = |h′(η)|(1− |w(η)|) ≥
(

1 +
(1− α)|η|

(2− α)2δ−1

)(
1− β + |η|

1 + β|η|

)
.

Therefore, (23) yields

d ≥
∫
l

((2− α)2δ−1 + (1− α)|η|)(1− β)(1− |η|)
(2− α)2δ−1(1 + β|η|)

|dη|(24)

=

∫ 1

0

((2− α)2δ−1 + (1− α)|l(t)|)(1− β)(1− |l(t)|)
(2− α)2δ−1(1 + β|l(t)|)

dt

≥
∫ r

0

((2− α)2δ−1 + (1− α)ξ)(1− β)(1− ξ)
(2− α)2δ−1(1 + βξ)

dξ, z = reiθ ∈ D,

which proofs the inequality (21).
Next, we proceed to proof the inequality (22). Note that

(25) |f(z)| = |h(z) + g(z)| ≤ |h(z)|+ |g(z)|.
For h ∈ Sδ[α], it is an easy exercise to check that

(26) |h(z)| ≤ r +
r2(1− α)

2δ(2− α)
, z = reiθ ∈ D.

Thus, the inequality (22) follows from the applications of (19), (25) and (26).
This completes the proof of Theorem 2.6. �

Corollary 2.7. SδH [α, β], δ ≥ 0;α, β ∈ [0, 1) is a normal family of H.

Proof. Due to Montel’s criterion for the normality of family of harmonic func-
tions, it is enough to prove that the class SδH [α, β] is uniformly bounded in D.
That is for each z0 ∈ D, there exist a constant M > 0 and a neighborhood N
of z0 such that |f(z)| ≤M for each f ∈ SδH [α, β] and z0 ∈ N.

Let f ∈ SδH [α, β], δ ≥ 0; α, β ∈ [0, 1). Then from the growth inequality
(22), it is clear that each function f ∈ SδH [α, β] is uniformly bounded and the
corresponding constant M is obtained by letting r −→ 1− in (22), i.e.,

(27) M = 1 +
1− α

2δ(2− α)
+

∫ 1

0

(
β + ξ

1 + βξ

)(
1 +

(1− α)ξ

(2− α)2δ−1

)
dξ.
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This completes the proof of Corollary 2.7. �

The Covering theorem for f ∈ SδH [α, β] is established from the growth in-
equality (21), by the limiting approach of r to 1−, and is stated as follows.

Theorem 2.8. The disk D is mapped by any function f in SδH [α, β], δ ≥
0; α, β ∈ [0, 1), onto a domain that contains the disk{

ω ∈ C : |ω| < k :=

∫ 1

0

((2− α)2δ−1 + (1− α)ξ)(1− β)(1− ξ)
(2− α)2δ−1(1 + βξ)

dξ

}
.

2.5. Estimate of Bloch’s constant

In this section, we shall find bounds on the Bloch’s constant for the functions
f = h+ g in the class SδH [α, β], δ ≥ 0; α, β ∈ [0, 1).

Theorem 2.9. Let f = h + g ∈ SδH [α, β], where h and g are given by (1).
Then the Bloch’s constant Bf is bounded by

(28) Bf ≤
(1 + β)

(2− α)2δ−1

(
1 + r0 − r2

0 − r3
0

) (
(2− α)2δ−1 + (1− α)r0

)
(1 + βr0)

,

where r0 is the only root of the equation

2δ−1(2− α)(1− β) + (1− α)− 2
(
2δ−1(2− α)− (1− α)

)
r

−
(
2δ−1(2− α)(3 + β) + (1− α)(3− β)

)
r2

−
(
2δ(2− α)β + (1− α)(4 + 2β)

)
r3 − 3(1− α)βr4,

in the interval (0, 1).

Proof. If f = h + g ∈ SδH [α, β], then h ∈ SδH [α]. Using the distortion result
from Theorem 2.3 along with (3) and (13), we obtain

Bf = sup
z∈D

(
1− |z|2

)
|h′(z)| (1 + |w(z)|)

≤ sup
0≤r<1

(
1− r2

)(
1 +

(1− α)r

(2− α)2δ−1

)(
1 +

r + β

1 + βr

)
=

(1 + β)

(2− α)2δ−1
sup

0≤r<1
G(r),

where

G(r) :=
(1 + r − r2 − r3)(2− α)2δ−1 + (1− α)(r + r2 − r3 − r4)

(1 + βr)
.

The derivative of G(r) is equal to zero, if and only if

2δ−1(2− α)(1− β) + (1− α)− 2
(
2δ−1(2− α)− (1− α)

)
r

−
(
2δ−1(2− α)(3 + β) + (1− α)(3− β)

)
r2

−
(
2δ(2− α)β + (1− α)(4 + 2β)

)
r3 − 3(1− α)βr4 = 0
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for r ∈ (0, 1). Denoting the last polynomial by H(r), we observed that

H(0) = 2δ−1(2− α)(1− β) + (1− α) > 0

and

H(1) = −4(1 + β)
(
2δ−1(2− α) + (1− α)

)
< 0.

Thus, there exists r0 ∈ (0, 1) such that H(r0) = 0. Now it suffices to prove that
r0 is unique. To claim this it is enough to prove that the derivative H ′(r) < 0
for r ∈ (0, 1) and β ∈ (0, 1). Let r ∈ (0, 1) be fixed, and we denote by L(β) the
derivative H ′(r), that is

L(β) = 2(1− α)(1− 3r − 6r2)− 2δ(2− α)(1 + 3r) +
(
−2δ(2− α)(1 + 3r)r

+2(1− α)(1− 3r − 6r2)r
)
β.

One can see that

L(0) = 2(1− α)(1− 3r − 6r2)− 2δ(2− α)(1 + 3r) < 0

and

L(1) = 2(1− α)(1− 2r − 9r2 − 6r3)− 2δ(2− α)(1 + 4r + 3r2) < 0

for all r ∈ (0, 1). Denoting the coefficient of L(β) by a0 and a1 we have

a0 = 2(1− α)(1− 3r − 6r2)− 2δ(2− α)(1 + 3r) < 0,

a1 = −2δ(2− α)(1 + 3r)r + 2(1− α)(1− 3r − 6r2)r < 0.

The sequence of the sign of a0 and a1 is (−,−). Thus, There is no sign variations
on (0, 1) for every r ∈ (0, 1) and β ∈ (0, 1). Thus, by the classical rule of
Descartes-Harriot, there is no zeros of polynomial L(β) in the interval (0, 1). It
means that L(β) < 0 for every β ∈ (0, 1) and r ∈ (0, 1), equivalently H ′(r) < 0
in r ∈ (0, 1). This is what we wanted to proof. �
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