• Title/Summary/Keyword: bilinear system

Search Result 196, Processing Time 0.027 seconds

A Design Method for a discrete-time $\textrm{H}^{\infty}$ Controller (이산시간 $\textrm{H}^{\infty}$제어기의 설계방법)

  • 최연욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1444-1447
    • /
    • 1997
  • In this paper, the problen of dseigning a H.inf. controller is considered, where the controller is realized through digital equipment. We show that the existing discrete-time controller design method can be improved by usign the inveres bilinear transformation. The usefulness of the given method is confirmed by simulation.

  • PDF

Design of Continuous-Time System Using Bilinear Transformation (쌍선형 변환에 의한 연속 시간계의 설계)

  • Kim, Sang-Bong;An, Hwi-Ung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.3
    • /
    • pp.137-142
    • /
    • 1989
  • A pole assignment problem in a specified region is solved using a bilinear transformation method. It is well known that the problem designing discrete-time system or vice versa is called redesign problem, But there is not so much study that is cyclic type of design, i.e. from continuous system to discrete system and from the latter to the former system. In this paper, the cyclic type of design for the continuous-time system is proposed using the bilinear transformation. In the view of a pole assignment method with poles in a specified region, it will be possible to design a regulator or a servo system considering damping ratio, stability degree and band with which are resulted to the characteristics of the closed-loop system.

  • PDF

Parallel Robust $H_{\infty}$ Control for Weakly Coupled Bilinear Systems with Parameter Uncertainties Using Successive Galerkin Approximation

  • Kim, Young-Joong;Lim, Myo-Taeg
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.689-696
    • /
    • 2006
  • This paper presents a new algorithm for the closed-loop $H_{\infty}$ composite control of weakly coupled bilinear systems with time-varying parameter uncertainties and exogenous disturbance using the successive Galerkin approximation(SGA). By using weak coupling theory, the robust $H_{\infty}$ control can be obtained from two reduced-order robust $H_{\infty}$ control problems in parallel. The $H_{\infty}$ control theory guarantees robust closed-loop performance but the resulting problem is difficult to solve for uncertain bilinear systems. In order to overcome the difficulties inherent in the $H_{\infty}$ control problem, two $H_{\infty}$ control laws are constructed in terms of the approximated solution to two independent Hamilton-Jacobi-Isaac equations using the SGA method. One of the purposes of this paper is to design a closed-loop parallel robust $H_{\infty}$ control law for the weakly coupled bilinear systems with parameter uncertainties using the SGA method. The other is to reduce the computational complexity when the SGA method is applied to the high order systems.

A Temperature Control of Thermal Power Plant Superheater System using Iterative Method (반복적 방법을 이용한 화력발전소 과열기 시스템의 온도제어)

  • Sang-Hyuk Lee;Ju-Sik Kim
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.47-55
    • /
    • 1999
  • In this paper, we construct the controller for the heat exchanger system using iterative method. For awlying the linear quadratic control theory to the heat exchanger system which is represented by the bilinear system, we fomrulate the bilinear system to execute iteration We also propose Extended Kalman Filter to estimate bilinear system state for the purpose of state feedback controller design. We also awly the iterative controller to the thennal power plant superheater system temperature control, and computer simulation show that the estimated value follows the superheater steam temperature under the variation of the external inputs, and that the output steam temperature is properly maintained.tained.

  • PDF

A Study on the Analysis and State Estimation of Bilinear Systems via Orthogonal Functions (직교함수에 의한 쌍일차계의 해석 및 상태 추정에 관한 연구)

  • 안두수;신재선
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.6
    • /
    • pp.598-606
    • /
    • 1990
  • Common problems encountered when orthogonal functions are used in system analysis and state estimation are the time consuming process of high order matrix inversion required in finding the Kronecker products and the truncation errors. In this paper, therefore, a method for the analysis of bilinear systems using Walsh, Block pulse, and Haar functions is devised, Then, state estimation of bilinear system is also studied based on single term expansion of orthogonal functions. From the method presented here, when compared to the other conventional methods, we can obtain the results with simpler computation as the number of interval increases, and the results approach the original function faster even at randomly chosen points regardless of the definition of intervals. In addition, this method requires neither the inversion of large matrices on obtaining the expansion coefficients nor the cumbersome procedures in finding Kronecker products. Thus, both the computing time and required memory size can be significantly reduced.

  • PDF

Enhancing Tracking Performance of a Bilinear System using MPC (쌍선형 시스템의 추종 성능 강화를 위한 예측 제어 알고리즘)

  • Kim, Seok-Kyoon;Kim, Jung-Su;Lee, Youngil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.237-242
    • /
    • 2015
  • This paper presents a method to enhance tracking performance of an input-constrained bilinear system using MPC (Model Predictive Control) when a feasible tracking control is known. Since the error dynamics induced by the known tracking control is asymptotically stable, there exists a Lyapunov function for the stable error dynamics. By defining a cost function including the Lyapunov function and describing tracking performance, an MPC law is derived. In simulation, the performance of the proposed MPC law is demonstrated by applying it to a converter model.

Steam Temperature Controller Design of Power Plant Superheater (발전기 과열기의 증기 온도 제어기 설계)

  • Hong, Hyun-Mun;Lee, Bong-Seob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.3
    • /
    • pp.179-181
    • /
    • 2006
  • In this paper, we present a method of fuzzy controller design for the power plant superheater in the form of bilinear system. For the steam temperature control, the input variables are constructed by the area of difference between the profiles estimated from bilinear observer and reference profiles, and the time rate of change. We estimate the control rules by T. Takagi and M. Sugeno's fuzzy model. The feasibilities of the suggested method are illustrated via the computer simulation result.

  • PDF

Design of an optimal controller for the discrete time bilinear system by using a successive approximation method (이산시 쌍일차 계통에서 연속적 근사화 방법을 이용한 최적제어기 설계)

  • Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.591-593
    • /
    • 1999
  • The finite time optimum regulation problem of a discrete time bilinear system with a quadratic performance criterion is obtained in terms of a sequence discrete algebraic Lyapunov equations. Our new method is based on the successive approximations. This algorithm saves the computation time to solve the optimal problem, and the design procedure is illustrated for an example.

  • PDF

Bilinear System Analysis using Triangular orthogonal Functions (삼각함수를 이용한 쌍일차 시스템의 상태 해석)

  • Cho, Young-Ho;Shim, Jae-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.267-268
    • /
    • 2007
  • This paper presents the new algebraic iterative algorithm of the bilinear system analysis using triangular orthogonal functions(TR) and the Picard's method. TR representation does not need any integration to evaluate the coefficients, thereby reducing a lot of computational burden. the proposed algorithm is more accuracy than BPF's. it is verified through simulation.

  • PDF

A Study on the Analysis of Bilinear Systems via Fast Walsh Transform (고속 월쉬 변환을 이용한 쌍일차계의 해석에 관한 연구)

  • 김태훈;심재선
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.1
    • /
    • pp.85-91
    • /
    • 2002
  • Generally when the orthogonal functions are used in system analysis, the time consuming processes of high order matrix inversion for finding the Kronecker products and the truncation errors are occurred. In this paper, a method for the system analysis of bilinear systems via fast walsh transform is devised. This method requires neither the inversion of large matrices nor the cumbersome procedures for finding Kronecker products. Thus, both the computing time and required memory size can be significantly reduced.