• Title/Summary/Keyword: bijection

Search Result 33, Processing Time 0.018 seconds

IDEALS AND SUBMODULES OF MULTIPLICATION MODULES

  • LEE, SANG CHEOL;KIM, SUNAH;CHUNG, SANG-CHO
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.933-948
    • /
    • 2005
  • Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for every submodule N of M there exists an ideal I of R such that N = 1M. Let M be a non-zero multiplication R-module. Then we prove the following: (1) there exists a bijection: N(M)$\bigcap$V(ann$\_{R}$(M))$\rightarrow$Spec$\_{R}$(M) and in particular, there exists a bijection: N(M)$\bigcap$Max(R)$\rightarrow$Max$\_{R}$(M), (2) N(M) $\bigcap$ V(ann$\_{R}$(M)) = Supp(M) $\bigcap$ V(ann$\_{R}$(M)), and (3) for every ideal I of R, The ideal $\theta$(M) = $\sum$$\_{m(Rm :R M) of R has proved useful in studying multiplication modules. We generalize this ideal to prove the following result: Let R be a commutative ring with identity, P $\in$ Spec(R), and M a non-zero R-module satisfying (1) M is a finitely generated multiplication module, (2) PM is a multiplication module, and (3) P$^{n}$M$\neq$P$^{n+1}$ for every positive integer n, then $\bigcap$$^{$\_{n=1}$(P$^{n}$ + ann$\_{R}$(M)) $\in$ V(ann$\_{R}$(M)) = Supp(M) $\subseteq$ N(M).

H-V -SUPER MAGIC DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS

  • KUMAR, SOLOMON STALIN;MARIMUTHU, GURUSAMY THEVAR
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.313-325
    • /
    • 2015
  • An H-magic labeling in a H-decomposable graph G is a bijection $f:V(G){\cup}E(G){\rightarrow}\{1,2,{\cdots},p+q\}$ such that for every copy H in the decomposition, $\sum{_{{\upsilon}{\in}V(H)}}\;f(v)+\sum{_{e{\in}E(H)}}\;f(e)$ is constant. f is said to be H-V -super magic if f(V(G))={1,2,...,p}. In this paper, we prove that complete bipartite graphs $K_{n,n}$ are H-V -super magic decomposable where $$H{\sim_=}K_{1,n}$$ with $n{\geq}1$.

ON QUASI-REPRESENTING GRAPHS FOR A CLASS OF B(1)-GROUPS

  • Yom, Peter Dong-Jun
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.493-502
    • /
    • 2012
  • In this article, we give a characterization theorem for a class of corank-1 Butler groups of the form $\mathcal{G}$($A_1$, ${\ldots}$, $A_n$). In particular, two groups $G$ and $H$ are quasi-isomorphic if and only if there is a label-preserving bijection ${\phi}$ from the edges of $T$ to the edges of $U$ such that $S$ is a circuit in T if and only if ${\phi}(S)$ is a circuit in $U$, where $T$, $U$ are quasi-representing graphs for $G$, $H$ respectively.

MAPS PRESERVING SOME MULTIPLICATIVE STRUCTURES ON STANDARD JORDAN OPERATOR ALGEBRAS

  • Ghorbanipour, Somaye;Hejazian, Shirin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.563-574
    • /
    • 2017
  • Let $\mathcal{A}$ be a unital real standard Jordan operator algebra acting on a Hilbert space H of dimension at least 2. We show that every bijection ${\phi}$ on $\mathcal{A}$ satisfying ${\phi}(A^2{\circ}B)={\phi}(A)^2{\circ}{\phi}(B)$ is of the form ${\phi}={\varepsilon}{\psi}$ where ${\psi}$ is an automorphism on $\mathcal{A}$ and ${\varepsilon}{\in}\{-1,1\}$. As a consequence if $\mathcal{A}$ is the real algebra of all self-adjoint operators on a Hilbert space H, then there exists a unitary or conjugate unitary operator U on H such that ${\phi}(A)={\varepsilon}UAU^*$ for all $A{\in}\mathcal{A}$.

OVERRINGS OF THE KRONECKER FUNCTION RING Kr(D, *) OF A PRUFER *-MULTIPLICATION DOMAIN D

  • Chang, Gyu-Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.1013-1018
    • /
    • 2009
  • Let * be an e.a.b. star operation on an integrally closed domain D, and let $K\gamma$(D, *) be the Kronecker function ring of D. We show that if D is a P*MD, then the mapping $D_{\alpha}{\mapsto}K{\gamma}(D_{\alpha},\;{\upsilon})$ is a bijection from the set {$D_{\alpha}$} of *-linked overrings of D into the set of overrings of $K{\gamma}(D,\;{\upsilon})$. This is a generalization of [5, Proposition 32.19] that if D is a Pr$\ddot{u}$fer domain, then the mapping $D_{\alpha}{\mapsto}K_{\gamma}(D_{\alpha},\;b)$ is a one-to-one mapping from the set {$D_{\alpha}$} of overrings of D onto the set of overrings of $K_{\gamma}$(D, b).

GENERALIZATION OF THE SCHENSTED ALGORITHM FOR RIM HOOK TABLEAUX

  • Lee, Jaejin
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.469-487
    • /
    • 2016
  • In [6] Schensted constructed the Schensted algorithm, which gives a bijection between permutations and pairs of standard tableaux of the same shape. Stanton and White [8] gave analog of the Schensted algorithm for rim hook tableaux. In this paper we give a generalization of Stanton and White's Schensted algorithm for rim hook tableaux. If k is a fixed positive integer, it shows a one-to-one correspondence between all generalized hook permutations $\mathcal{H}$ of size k and all pairs (P, Q), where P and Q are semistandard k-rim hook tableaux and k-rim hook tableaux of the same shape, respectively.

CHARACTERIZATION OF FINITE COLORED SPACES WITH CERTAIN CONDITIONS

  • Hirasaka, Mitsugu;Shinohara, Masashi
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.579-594
    • /
    • 2019
  • A colored space is a pair (X, r) of a set X and a function r whose domain is $\(^X_2\)$. Let (X, r) be a finite colored space and $Y,\;Z{\subseteq}X$. We shall write $Y{\simeq}_rZ$ if there exists a bijection $f:Y{\rightarrow}Z$ such that r(U) = r(f(U)) for each $U{\in}\({^Y_2}\)$ where $f(U)=\{f(u){\mid}u{\in}U\}$. We denote the numbers of equivalence classes with respect to ${\simeq}_r$ contained in $\(^X_i\)$ by $a_i(r)$. In this paper we prove that $a_2(r){\leq}a_3(r)$ when $5{\leq}{\mid}X{\mid}$, and show what happens when equality holds.

SEMIBRICKS OVER SPLIT-BY-NILPOTENT EXTENSIONS

  • Gao, Hanpeng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.183-193
    • /
    • 2021
  • In this paper, we prove that there is a bijection between the ��-tilting modules and the sincere left finite semibricks. We also construct (sincere) semibricks over split-by-nilpotent extensions. More precisely, let �� be a split-by-nilpotent extension of a finite-dimensional algebra �� by a nilpotent bimodule ��E��, and �� ⊆ mod ��. We prove that �� ⊗�� �� is a (sincere) semibrick in mod �� if and only if �� is a semibrick in mod �� and Hom��(��, �� ⊗�� E) = 0 (and �� ∪ �� ⊗�� E is sincere). As an application, we can construct ��-tilting modules and support ��-tilting modules over ��-tilting finite cluster-tilted algebras.

SOME NEW RESULTS ON POWER CORDIAL LABELING

  • C.M. BARASARA;Y.B. THAKKAR
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.3
    • /
    • pp.615-631
    • /
    • 2023
  • A power cordial labeling of a graph G = (V (G), E(G)) is a bijection f : V (G) → {1, 2, ..., |V (G)|} such that an edge e = uv is assigned the label 1 if f(u) = (f(v))n or f(v) = (f(u))n, For some n ∈ ℕ ∪ {0} and the label 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. In this paper, we investigate power cordial labeling for helm graph, flower graph, gear graph, fan graph and jewel graph as well as larger graphs obtained from star and bistar using graph operations.