Bull. Korean Math. Soc. 56 (2019), No. 4, pp. 899-910
https://doi.org/10.4134/BKMS.b180661
pISSN: 1015-8634 / eISSN: 2234-3016

REFINED ENUMERATION OF VERTICES AMONG ALL
ROOTED ORDERED d-TREES

SANGWOOK KiM, SEUNGHYUN SEO, AND HEESUNG SHIN

ABSTRACT. In this paper, we enumerate the cardinalities for the set of
all vertices of outdegree > k at level > ¢ among all rooted ordered d-trees
with n edges. Our results unite and generalize several previous works in
the literature.

1. Introduction

For a positive integer d, the nth d-Fuss-Catalan number is given by

Cat!? = b (d+1)n for n > 0.
" dn+1 n

It is a generalization of the well-known nth Catalan number. Like Catalan
numbers, there are several combinatorial objects which are enumerated by Fuss-
Catalan numbers. The most well-known object is the Fuss-Catalan path. A
d-Fuss-Catalan path of length (d+1)n is a lattice path from (0, 0) to ((d+1)n, 0)
using up steps (1,d) and down steps (1,—1) such that it stays weakly above
the z-axis. Denote by FC'? the set of d-Fuss-Catalan paths of length (d+1)n.
Another example is dissections of a (dn+ 2)-gon into (d+ 2)-gons by diagonals.
There are three more combinatorial objects which are enumerated by d-Fuss-
Catalan numbers.

Rooted ordered d-trees

A rooted tree can be considered as a process of successively gluing an edge
(1-simplex) to a vertex (0-simplex) from the root in a half-plane, where the root
is fixed in the line (1-dimensional hyperplane) as the boundary of the given half-
plane. In the same way, we can define a rooted d-tree in (d + 1)-dimensional
lower Euclidean half-space R%! as follows: The root r is a (d—1)-simplex fixed
in the boundary of R“!. From the root (d — 1)-simplex r, we glue d-simplices

(as edges) successively to one of previous (d—1)-simplices (as vertices) in R4,
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(See [1, d-dimensional trees].) By definition, if d = 1, a rooted d-tree is a rooted
tree.

In a rooted tree, we can consider a linear order among all edges having one
common vertex by their positions and such a tree is called a rooted ordered tree.
Similarly, in higher dimensional cases, we can also give a linear order among
d-simplices having one common (d — 1)-simplices naturally by their positions
and such a tree is also called a rooted ordered d-tree. Jani, Rieper, and Zeleke
[6] enumerated ordered K-trees, which was obtained in a similar way using
d-simplices with d € K.

Rooted d-ary cacti

A cactus is a connected simple graph in which each edge is contained in
exactly one elementary cycle which is just a polygon. These graphs are also
known as ‘Husimi trees’. They are introduced by Harary and Uhlenbeck [4].
If each elementary cycle has exactly d edges, a cactus is called a d-ary cactus.
Béna et al. [2] provided enumerations of various combinatorial objects of d-ary
cacti.

Rooted d-tuplet trees

Instead of d-simplices used in rooted ordered d-trees, we may use (d + 1)-
gons. A root is a vertex fixed in the bounding hyperplane of a half-plane. One
can glue (d + 1)-gons to a vertex from the root. A tree obtained in this way
is called a rooted d-tuplet tree, and the (d 4+ 1)-gons are called d-tuplets. As
there is a linear order on the vertices in a tuplet, one can show that there is
a one-to-one correspondence between rooted ordered d-trees with n edges and
rooted d-tuplet trees with n tuplets. Thus rooted ordered d-trees and rooted
d-tuplet trees are essentially the same. Note that the underlying graph of a
d-tuplet tree is a (d 4 1)-ary cactus.

Let 7;L(d) be the set of rooted d-tuplet trees with n tuplets. It is easy to
see that the cardinality of 7}(d) is the nth d-Fuss-Catalan number Catsld). For
example, there are 22 rooted 3-tuplet trees with 3 tuplets, see Figure 1. Clearly
the number of vertices among rooted d-tuplet tree with n tuplets in ’7;l(d) is

(1) (dn + 1) Cat(® = <(d+ 1)").

n

In a rooted d-tuplet tree, the degree of a vertex is the number of tuplets it
connects. We can have the notion of the outdegree of a vertex v, which is the
number of tuplets starting at v and pointing away from the root. The level of
a vertex v in a rooted d-tuplet tree is the distance (number of tuplets) from
the root to v. Table 1 shows the number of all vertices of outdegree k at level
¢ among all rooted 3-tuplet trees in 75(3). For example, there are 9 vertices of
outdegree 1 at level 2 in 73(3), see Figure 1.
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F1Gure 1. All rooted 3-tuplet trees with 3 tuplets in ’75(3)

In a rooted d-tuplet tree, there exists the unique vertex u in each tuplet
such that its level is less than levels of the other vertices vy, ...,v4. Here, u is
called the parent of v;’s and each v; is called a child of u. For each vertex v
(except the root), there exists the unique tuplet containing v toward the root,
called the tuplet of v. Vertices with the same parent are called siblings. For
two siblings v and w, if v is on the left of w, v is called an elder sibling of w;
meanwhile, w is called a younger sibling of v.

In 2002, using an involution, Seo and Shin [6] gave a formula for the number
of leaves among all trees. Recently Eu, Seo, and Shin [3] gave a formula for
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TABLE 1. The number of vertices of outdegree k at level £
among all rooted 3-tuplet trees in 75(3)

Nkl O 1 2 3 Y
00 15 6 1] 22
1166 21 3 0] 9
2 |72 9 0 0] sl
3127 0 0 0] 27
ST 1165 45 9 1220

the number of vertices among all trees in the set of rooted ordered trees under
some conditions.

Theorem 1 (Eu, Seo, and Shin, 2017). Given n > 1, for any nonnegative
integers k and £, the number of all vertices of outdegree > k at level > £ among
all rooted ordered trees with n edges is

2n —k
@ ( n+/{ ) '
We give a generalization of the formula (2) for 'El(d) by generalizing their
bijection.

Theorem 2 (Main Result). Given n > 1, for any nonnegative integers k and
£, the number of all vertices of outdegree > k at level > £ among all rooted
d-tuplet trees with n tuplets is

(e

We also find a refinement of the formula (3).

Theorem 3. Given n > 1, for any two nonnegative integers i, j, one nonneg-
ative integer k which is a multiple of d, and one positive integer £, the number
of all vertices among all rooted d-tuplet trees with n tuplets such that

having at least © elder siblings,

e having at least j younger siblings,
e having at least k children,
o qat level > ¢
18
() d£<1—ﬂ dn + ¢ )((d—kl)n—a),
d{d+1)n—« dn + ¢

where a and B are monnegative integers satisfying i + j + k = ad + 8 and
0<B<d.

The rest of the paper is organized as follows. In Section 2, we show the
Theorem 2 bijectively. In Section 3, we give a combinatorial proof of the
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FIiGURE 2. Two bijections ¢ and @

Theorem 3. In Section 4, we present corollaries induced from Theorems 2 and
3.

2. A bijective proof of Theorem 2

Henceforth, a tree is assumed to be a rooted d-tuplet tree. Let V be the set
of pairs (T, v) such that v is a vertex of outdegree > k at level > £ in T € n(d).
Let P be the set of sequences in {0,...,d — 1} of length ¢. Let £ be the set
of lattice paths of length ((d + 1)n — k) from (k,dk) to ((d + 1)n, —(d + 1)¢),
consisting of (n — k — £) up-steps along the vector (1,d) and (dn + ¢) down-
steps along the vector (1,—1). To show Theorem 2, it is enough to construct a
bijection ® between V and P x L, due to

(d+1)n—k _(d+1)n—k
)= (")

— ¢ —
#P=d, #L_<n—k—€, dn+¢) dn+1(

Three bijections ¢, p, and ¥

Let a reverse d-Fuss-Catalan path of length (d + 1)n be a lattice path from
(0,0) to ((d + 1)n,0) using up steps (1,d) and down steps (1, —1) such that
it stays weakly below the z-axis. Denote by ﬁ%d) the set of reverse d-Fuss-
Catalan paths of length (d + 1)n.

Before constructing the bijection ®, we introduce three bijections

Q: 7;L(d) — fCS{i)7 [ 771((1) — ﬁgﬁm P 7;L(d) — .7:C7(1d).

The bijection ¢ corresponds a tree to a lattice path weakly above the z-axis
by recording the steps when the tree is traversed in preorder: whenever we go
down a side of a tuplet, record an up-step along the vector (1,d) and whenever
we go right or up a side of a tuplet, record a down-step along the vector (1, —1).

Similarly, the bijection @ corresponds a tree to a lattice path weakly below
the x-axis by recording the steps when the tree is traversed in preorder: when-
ever we go down or right a side, record a down-step along the vector (1,—1)
and whenever we go up a side, record an up-step along the vector (1,d). An
example of two bijections ¢ and @ is shown in Figure 2.
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FiGURE 3. The bijection ¢

The bijection 9 corresponds a tree to a lattice path weakly above the x-axis
by recording the steps when the tree is traversed in preorder: whenever we
meet a vertex of outdegree m, except the last leaf, record m up-steps followed
by one down-step. An example of the bijection v is shown in Figure 3.

Step 1

Given (T,v) € V, let D, be the subtree consisting of v and all its descendants
in T, say the descendant subtree of v. Letting ¢'(> £) be the level of v, consider
the path from v to the root r of T

v(=vg) 2 v == s D vp_y = (= V).

Record the number p; of elder siblings of v; in the tuplet of v; for all0 < < /—1.
For all 0 <¢ < /—1, let w; be the youngest sibling of v; in the tuplet of v;. By
exchanging two subtrees D,,, and D,,,, we obtain the tree T".

Step 2

Forall1<i</{—1andi=/,let R; be the subtree consisting v; and all its
descendants on the right of the tuplet of v;_; in 7. We obtain the tree L by
cutting the ¢+ 1 subtrees D, R1,..., Ry_1, Ry from the tree T’, see Figure 4.

A construction of the bijection &

We will construct the bijection ® between V to P x L. Given (T,v) € V, let
k(> k) be the outdegree of v in T" and let ¢'(> £) be the level of v in T. We
separate two cases:

Case I. If v is not the root of T, i.e., £/ > 0. We obtain the sequence p =
(po,---,pe—1) € Pin Step 1 and (¢ +2) trees D,,, Ry, Ra, ..., Re—1, Ry, L after
Step 2 as Figure 4.

Let p be the mapping on the set of lattice paths defined by

p(s182---5p) = 82+ Sp51,

where each s; is a step. Note that p”* means to apply p recursively m times.
Clearly, the outdegree of the root of D, is k’. In the tree L, there are no
younger siblings of v in the tuplet of v and the outdegree of vertex v is 0.
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FIGURE 4. Tree decomposition

Thus the lattice path p®+(%(L)) ends with one down-step and ¢ consecutive
up-steps, where a is the number of vertices of L which precede v in preorder.
We define a lattice path P from (0,0) to ((d+ 1)n+ (( + 1), —(£+ 1)) by

P =1(Dy) \ o(R1) N\ p(Ra) N\ -+ N\ o(Re—1) Ny p(Rer) N\ p* (B (L)),

where \, means a down-step.

Case II. If v is the root of T, i.e., ¢/ = 0. We define a sequence p = () € P and
a lattice path

P =4(T)

In all cases, the lattice path P always starts with at least k (precisely k')
consecutive up-steps and ends with one down-step and ¢ consecutive up-steps
as red segments in Figure 5.

By removing the first k steps and the last (¢ 4+ 1) steps from P, we obtain
the lattice path P of length ((d+1)n— k) from (k, dk) to ((d+ 1)n, —(d+1)¢),
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FIGURE 5. Outline of a lattice path P induced from tree decomposition

consisting of (n—k—¢) up-steps along the vector (1, d) and (dn+¢) down-steps
along the vector (1, —1), so P belongs to L.
Hence the map ® : V — P x L is defined by

(T, v) = (p, P).

A description of the bijection &1

In the Case I of the construction of the bijection ®, given a lattice path P
from (0,0) to ((d+1)n+ (£+1),—(£+ 1)), we decompose P into (¢ + 2) paths
Pp,Py,...,Py_1, Py, P;, by removing the leftmost down-steps from height —i
to height —(i + 1) for 0 < i < £. Some of those paths may be empty.

Clearly all the paths Pp, Py, ..., Py_1, Py are d-Fuss-Catalan path. By mov-
ing all the steps after the leftmost highest vertex in the lattice path P to
the beginning, we obtain a reverse d-Fuss-Catalan path Py from Pp. Since
v, @, and 1 are bijections, we can restore trees D,, Ry,..., Ry_1, Ry, L from
Pp,Py,...,Py_1, Py, Pyp.

Therefore, ® is a bijection between V and P x L since all the remaining
processes are also reversible.
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FIGURE 6. Cut-and-paste bijection ~; ;

3. Proof of Theorem 3

For any three nonnegative integers i, j, k and one positive integer ¢, denote
by pi@ (1,4, k; £) the set of pairs (T,v) whose tree T in T and vertex v in T
such that

v has at least 7 elder siblings in T,

v has at least j younger siblings in T,
v has at least k children in T,

vis at level > ¢ in T.

We show the following lemma, which is a particular case of Theorem 3, that is,
i and j are multiples of d.

Lemma 4. Givenn > 1, for any three nonnegative integers i, j, k, all of which
are multiples of d, and one positive integer ¢, the cardinality of Vfld) (i,7,k; £) is

J d+1)n—«
dn +¢ ’
where « is the nonnegative integer satisfying i + j + k = ad.

Proof. That a vertex v has at least i elder (or younger resp.) siblings means
that there exists at least i/d (or j/d resp.) d-tuplets directly connected from
the parent of v on its left (or right resp.).

A pair (T,v) in V,(ld)(i,j7k,€) corresponds to a pair (T7,v) in V,@(0,0J +
J + k,€) under a cut-and-paste bijection ~; ; : (T,v) — (T”,v) which cuts the
leftmost /d tuplets connected from the parent p of v and pastes them at v on
the left and does again the rightmost j/d tuplets connected from the parent p
of v on the right, as Figure 6.
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Since that v has at least i + j + k children means that the outdegree of
v greater than or equal to a = %, this case corresponds to k <+ « of

Theorem 2. O
In Theorem 3, what to find is the cardinality of v (4,4, k; £) for any two

nonnegative integers 4, j, one nonnegative integer k which is a multiple of d,
and one positive integer £.

Given (T,v) € Vfld)(i,j,k;é), let w be the jth younger sibling of v. By
exchanging two subtrees D, and D,,, we obtain (7”,v) in A (i + 7,0,k 0)
from (T,v) in v (i,4,k;£). Let o and § be the quotient and the remainder
when i + j + k is divided by d, that is,

i+j4+k=ad+p.
By applying the cut-and-paste bijection ;1 ;_g,0, we obtain (IT", v) in v (8,0,
ad; ?) from (T',v) in pi@ (i + 7,0, k;£). One can show that the values
#V(0,0,ad; £) = #V (i + 1,0, ad; )
are the same for all 0 < i < d — 1 under exchanging two descendant subtrees
of two sibling in the same tuplet. By telescoping, we get the formula
#V0(0,0,ad; ) — #Vi9 (8,0, ad; £)

= 2 [#v9(0,0,0d: 0) — #V49(d,0,0d:)]

By Lemma 4, we have

#Vn (07 Oa Oéd, é) d ( dn + f )
() Nyt d+n—a-1
#VY(d,0,ad; ) =d ( dn+ 0

Thus we get the cardinality of V,Sd)(ﬂ, 0, ad; £) and the desired formula (4).

4. Further results
From Theorem 2, we can obtain the following result.

Corollary 5. Given n > 1, for any two nonnegative integers k and £, the
number of all vertices of outdegree k at level £ among d-trees in 7}(61) 18

odk + (d+ 1) ((d+1)n—k)
(d+1)n—k dn+/¢ '

Proof. By the sieve method with (3), we obtain the formula (5) from
2 (d+1)n—k o d+1)n—k—-1
dn +¢ dn + ¢

_de+1<(d+ n — k:) +d4+1<(d+ Dn—k— 1).

(5) d

dn+/0¢+1 dn+¢+1
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The next result follows from Theorem 3 for d = 1.

Corollary 6. Givenn > 1, for any three nonnegative integers i, j, k, and one
positive integer £, the number of all vertices among trees in T, such that

e having at least i elder siblings,
having at least 7 younger siblings,
having at least k children,

at level > ¥
2n—i—j5—Fk
n+/ ’
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