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REFINED ENUMERATION OF VERTICES AMONG ALL

ROOTED ORDERED d-TREES

Sangwook Kim, Seunghyun Seo, and Heesung Shin

Abstract. In this paper, we enumerate the cardinalities for the set of

all vertices of outdegree ≥ k at level ≥ ` among all rooted ordered d-trees
with n edges. Our results unite and generalize several previous works in

the literature.

1. Introduction

For a positive integer d, the nth d-Fuss-Catalan number is given by

Cat(d)n =
1

dn+ 1

(
(d+ 1)n

n

)
for n ≥ 0.

It is a generalization of the well-known nth Catalan number. Like Catalan
numbers, there are several combinatorial objects which are enumerated by Fuss-
Catalan numbers. The most well-known object is the Fuss-Catalan path. A
d-Fuss-Catalan path of length (d+1)n is a lattice path from (0, 0) to ((d+1)n, 0)
using up steps (1, d) and down steps (1,−1) such that it stays weakly above

the x-axis. Denote by FC(d)n the set of d-Fuss-Catalan paths of length (d+1)n.
Another example is dissections of a (dn+2)-gon into (d+2)-gons by diagonals.
There are three more combinatorial objects which are enumerated by d-Fuss-
Catalan numbers.

Rooted ordered d-trees

A rooted tree can be considered as a process of successively gluing an edge
(1-simplex) to a vertex (0-simplex) from the root in a half-plane, where the root
is fixed in the line (1-dimensional hyperplane) as the boundary of the given half-
plane. In the same way, we can define a rooted d-tree in (d + 1)-dimensional

lower Euclidean half-space Rd+1
− as follows: The root r is a (d−1)-simplex fixed

in the boundary of Rd+1
− . From the root (d− 1)-simplex r, we glue d-simplices

(as edges) successively to one of previous (d−1)-simplices (as vertices) in Rd+1
− .
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(See [1, d-dimensional trees].) By definition, if d = 1, a rooted d-tree is a rooted
tree.

In a rooted tree, we can consider a linear order among all edges having one
common vertex by their positions and such a tree is called a rooted ordered tree.
Similarly, in higher dimensional cases, we can also give a linear order among
d-simplices having one common (d − 1)-simplices naturally by their positions
and such a tree is also called a rooted ordered d-tree. Jani, Rieper, and Zeleke
[5] enumerated ordered K-trees, which was obtained in a similar way using
d-simplices with d ∈ K.

Rooted d-ary cacti

A cactus is a connected simple graph in which each edge is contained in
exactly one elementary cycle which is just a polygon. These graphs are also
known as ‘Husimi trees’. They are introduced by Harary and Uhlenbeck [4].
If each elementary cycle has exactly d edges, a cactus is called a d-ary cactus.
Bóna et al. [2] provided enumerations of various combinatorial objects of d-ary
cacti.

Rooted d-tuplet trees

Instead of d-simplices used in rooted ordered d-trees, we may use (d + 1)-
gons. A root is a vertex fixed in the bounding hyperplane of a half-plane. One
can glue (d + 1)-gons to a vertex from the root. A tree obtained in this way
is called a rooted d-tuplet tree, and the (d + 1)-gons are called d-tuplets. As
there is a linear order on the vertices in a tuplet, one can show that there is
a one-to-one correspondence between rooted ordered d-trees with n edges and
rooted d-tuplet trees with n tuplets. Thus rooted ordered d-trees and rooted
d-tuplet trees are essentially the same. Note that the underlying graph of a
d-tuplet tree is a (d+ 1)-ary cactus.

Let T (d)
n be the set of rooted d-tuplet trees with n tuplets. It is easy to

see that the cardinality of T (d)
n is the nth d-Fuss-Catalan number Cat(d)n . For

example, there are 22 rooted 3-tuplet trees with 3 tuplets, see Figure 1. Clearly

the number of vertices among rooted d-tuplet tree with n tuplets in T (d)
n is

(dn+ 1) Cat(d)n =

(
(d+ 1)n

n

)
.(1)

In a rooted d-tuplet tree, the degree of a vertex is the number of tuplets it
connects. We can have the notion of the outdegree of a vertex v, which is the
number of tuplets starting at v and pointing away from the root. The level of
a vertex v in a rooted d-tuplet tree is the distance (number of tuplets) from
the root to v. Table 1 shows the number of all vertices of outdegree k at level

` among all rooted 3-tuplet trees in T (3)
3 . For example, there are 9 vertices of

outdegree 1 at level 2 in T (3)
3 , see Figure 1.
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Figure 1. All rooted 3-tuplet trees with 3 tuplets in T (3)
3

In a rooted d-tuplet tree, there exists the unique vertex u in each tuplet
such that its level is less than levels of the other vertices v1, . . . , vd. Here, u is
called the parent of vi’s and each vi is called a child of u. For each vertex v
(except the root), there exists the unique tuplet containing v toward the root,
called the tuplet of v. Vertices with the same parent are called siblings. For
two siblings v and w, if v is on the left of w, v is called an elder sibling of w;
meanwhile, w is called a younger sibling of v.

In 2002, using an involution, Seo and Shin [6] gave a formula for the number
of leaves among all trees. Recently Eu, Seo, and Shin [3] gave a formula for
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Table 1. The number of vertices of outdegree k at level `

among all rooted 3-tuplet trees in T (3)
3

`\k 0 1 2 3
∑

0 0 15 6 1 22
1 66 21 3 0 90
2 72 9 0 0 81
3 27 0 0 0 27∑

165 45 9 1 220

the number of vertices among all trees in the set of rooted ordered trees under
some conditions.

Theorem 1 (Eu, Seo, and Shin, 2017). Given n ≥ 1, for any nonnegative
integers k and `, the number of all vertices of outdegree ≥ k at level ≥ ` among
all rooted ordered trees with n edges is(

2n− k
n+ `

)
.(2)

We give a generalization of the formula (2) for T (d)
n by generalizing their

bijection.

Theorem 2 (Main Result). Given n ≥ 1, for any nonnegative integers k and
`, the number of all vertices of outdegree ≥ k at level ≥ ` among all rooted
d-tuplet trees with n tuplets is

d`
(

(d+ 1)n− k
dn+ `

)
.(3)

We also find a refinement of the formula (3).

Theorem 3. Given n ≥ 1, for any two nonnegative integers i, j, one nonneg-
ative integer k which is a multiple of d, and one positive integer `, the number
of all vertices among all rooted d-tuplet trees with n tuplets such that

• having at least i elder siblings,
• having at least j younger siblings,
• having at least k children,
• at level ≥ `

is

d`
(

1− β

d

dn+ `

(d+ 1)n− α

)(
(d+ 1)n− α

dn+ `

)
,(4)

where α and β are nonnegative integers satisfying i + j + k = αd + β and
0 ≤ β < d.

The rest of the paper is organized as follows. In Section 2, we show the
Theorem 2 bijectively. In Section 3, we give a combinatorial proof of the
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ϕ

ϕ

Figure 2. Two bijections ϕ and ϕ

Theorem 3. In Section 4, we present corollaries induced from Theorems 2 and
3.

2. A bijective proof of Theorem 2

Henceforth, a tree is assumed to be a rooted d-tuplet tree. Let V be the set

of pairs (T, v) such that v is a vertex of outdegree ≥ k at level ≥ ` in T ∈ T (d)
n .

Let P be the set of sequences in {0, . . . , d− 1} of length `. Let L be the set
of lattice paths of length ((d + 1)n − k) from (k, dk) to ((d + 1)n,−(d + 1)`),
consisting of (n − k − `) up-steps along the vector (1, d) and (dn + `) down-
steps along the vector (1,−1). To show Theorem 2, it is enough to construct a
bijection Φ between V and P × L, due to

#P = d`, #L =

(
(d+ 1)n− k

n− k − `, dn+ `

)
=

(
(d+ 1)n− k

dn+ `

)
.

Three bijections ϕ, ϕ, and ψ

Let a reverse d-Fuss-Catalan path of length (d+ 1)n be a lattice path from
(0, 0) to ((d + 1)n, 0) using up steps (1, d) and down steps (1,−1) such that

it stays weakly below the x-axis. Denote by FC(d)n the set of reverse d-Fuss-
Catalan paths of length (d+ 1)n.

Before constructing the bijection Φ, we introduce three bijections

ϕ : T (d)
n → FC(d)n , ϕ : T (d)

n → FC(d)n , ψ : T (d)
n → FC(d)n .

The bijection ϕ corresponds a tree to a lattice path weakly above the x-axis
by recording the steps when the tree is traversed in preorder: whenever we go
down a side of a tuplet, record an up-step along the vector (1, d) and whenever
we go right or up a side of a tuplet, record a down-step along the vector (1,−1).

Similarly, the bijection ϕ corresponds a tree to a lattice path weakly below
the x-axis by recording the steps when the tree is traversed in preorder: when-
ever we go down or right a side, record a down-step along the vector (1,−1)
and whenever we go up a side, record an up-step along the vector (1, d). An
example of two bijections ϕ and ϕ is shown in Figure 2.
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ψ

Figure 3. The bijection ψ

The bijection ψ corresponds a tree to a lattice path weakly above the x-axis
by recording the steps when the tree is traversed in preorder: whenever we
meet a vertex of outdegree m, except the last leaf, record m up-steps followed
by one down-step. An example of the bijection ψ is shown in Figure 3.

Step 1

Given (T, v) ∈ V, let Dv be the subtree consisting of v and all its descendants
in T , say the descendant subtree of v. Letting `′(≥ `) be the level of v, consider
the path from v to the root r of T

v(= v0)→ v1 → · · · → v` → · · · → v`′−1 → r(= v`′).

Record the number pi of elder siblings of vi in the tuplet of vi for all 0 ≤ i ≤ `−1.
For all 0 ≤ i ≤ `− 1, let wi be the youngest sibling of vi in the tuplet of vi. By
exchanging two subtrees Dvi and Dwi

, we obtain the tree T ′.

Step 2

For all 1 ≤ i ≤ `−1 and i = `′, let Ri be the subtree consisting vi and all its
descendants on the right of the tuplet of vi−1 in T ′. We obtain the tree L by
cutting the `+ 1 subtrees Dv, R1, . . . , R`−1, R`′ from the tree T ′, see Figure 4.

A construction of the bijection Φ

We will construct the bijection Φ between V to P ×L. Given (T, v) ∈ V, let
k′(≥ k) be the outdegree of v in T and let `′(≥ `) be the level of v in T . We
separate two cases:

Case I. If v is not the root of T , i.e., `′ > 0. We obtain the sequence p =
(p0, . . . , p`−1) ∈ P in Step 1 and (`+ 2) trees Dv, R1, R2, . . . , R`−1, R`′ , L after
Step 2 as Figure 4.

Let ρ be the mapping on the set of lattice paths defined by

ρ(s1s2 · · · sn) = s2 · · · sns1,
where each si is a step. Note that ρm means to apply ρ recursively m times.

Clearly, the outdegree of the root of Dv is k′. In the tree L, there are no
younger siblings of v in the tuplet of v and the outdegree of vertex v is 0.
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Step 1 Step 2

0

1

2

`′ − `

`′ − `+ 1

`′ − `+ 2

`′ − 1

`′

level

`′ − 2

Dv

R1

R2

R`−2

R`−1

R`′

v`−1 w`−1

w`−2v`−2

v1 w1

w0v

r r r

Dv

R1

R`′

R`−1

R`−2

R2

Dv

LT ′T

p`−1

p`−2

p1

p0

vvw0

Figure 4. Tree decomposition

Thus the lattice path ρa+`(ϕ(L)) ends with one down-step and ` consecutive
up-steps, where a is the number of vertices of L which precede v in preorder.

We define a lattice path P from (0, 0) to ((d+ 1)n+ (`+ 1),−(`+ 1)) by

P = ψ(Dv)↘ ϕ(R1)↘ ϕ(R2)↘ · · · ↘ ϕ(R`−1)↘ ϕ(R`′)↘ ρa+`(ϕ(L)),

where ↘ means a down-step.

Case II. If v is the root of T , i.e., `′ = 0. We define a sequence p = () ∈ P and
a lattice path

P = ψ(T )↘ .

In all cases, the lattice path P always starts with at least k (precisely k′)
consecutive up-steps and ends with one down-step and ` consecutive up-steps
as red segments in Figure 5.

By removing the first k steps and the last (` + 1) steps from P , we obtain

the lattice path P̂ of length ((d+ 1)n−k) from (k, dk) to ((d+ 1)n,−(d+ 1)`),
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ψ(Dv)

ϕ(R1)
dk

dk′

−1

−(`+ 1)
ϕ(R`′ )

−(d+ 1)`

r

ρa+`(ϕ(L))

ϕ(L)

a

r

(d+ 1)nk

ρa+`

dl

1 v

`

1

ϕ(R`−1)

`a

v

Figure 5. Outline of a lattice path P induced from tree decomposition

consisting of (n−k−`) up-steps along the vector (1, d) and (dn+`) down-steps

along the vector (1,−1), so P̂ belongs to L.
Hence the map Φ : V → P × L is defined by

Φ(T, v) = (p, P̂ ).

A description of the bijection Φ−1

In the Case I of the construction of the bijection Φ, given a lattice path P
from (0, 0) to ((d+ 1)n+ (`+ 1),−(`+ 1)), we decompose P into (`+ 2) paths
PD, P1, . . . , P`−1, P`′ , PL by removing the leftmost down-steps from height −i
to height −(i+ 1) for 0 ≤ i ≤ `. Some of those paths may be empty.

Clearly all the paths PD, P1, . . . , P`−1, P`′ are d-Fuss-Catalan path. By mov-
ing all the steps after the leftmost highest vertex in the lattice path PL to
the beginning, we obtain a reverse d-Fuss-Catalan path PL from PL. Since
ϕ, ϕ, and ψ are bijections, we can restore trees Dv, R1, . . . , R`−1, R`′ , L from
PD, P1, . . . , P`−1, P`′ , PL.

Therefore, Φ is a bijection between V and P × L since all the remaining
processes are also reversible.
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v v

T T ′

ji

i j

p p

≥ k ≥ k

Figure 6. Cut-and-paste bijection γi,j

3. Proof of Theorem 3

For any three nonnegative integers i, j, k and one positive integer `, denote

by V(d)
n (i, j, k; `) the set of pairs (T, v) whose tree T in T (d)

n and vertex v in T
such that

• v has at least i elder siblings in T ,
• v has at least j younger siblings in T ,
• v has at least k children in T ,
• v is at level ≥ ` in T .

We show the following lemma, which is a particular case of Theorem 3, that is,
i and j are multiples of d.

Lemma 4. Given n ≥ 1, for any three nonnegative integers i, j, k, all of which

are multiples of d, and one positive integer `, the cardinality of V(d)
n (i, j, k; `) is

d`
(

(d+ 1)n− α
dn+ `

)
,

where α is the nonnegative integer satisfying i+ j + k = αd.

Proof. That a vertex v has at least i elder (or younger resp.) siblings means
that there exists at least i/d (or j/d resp.) d-tuplets directly connected from
the parent of v on its left (or right resp.).

A pair (T, v) in V(d)
n (i, j, k, `) corresponds to a pair (T ′, v) in V(d)

n (0, 0, i +
j + k, `) under a cut-and-paste bijection γi,j : (T, v) 7→ (T ′, v) which cuts the
leftmost i/d tuplets connected from the parent p of v and pastes them at v on
the left and does again the rightmost j/d tuplets connected from the parent p
of v on the right, as Figure 6.
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Since that v has at least i + j + k children means that the outdegree of
v greater than or equal to α = i+j+k

d , this case corresponds to k ← α of
Theorem 2. �

In Theorem 3, what to find is the cardinality of V(d)
n (i, j, k; `) for any two

nonnegative integers i, j, one nonnegative integer k which is a multiple of d,
and one positive integer `.

Given (T, v) ∈ V(d)
n (i, j, k; `), let w be the jth younger sibling of v. By

exchanging two subtrees Dv and Dw, we obtain (T ′, v) in V(d)
n (i + j, 0, k; `)

from (T, v) in V(d)
n (i, j, k; `). Let α and β be the quotient and the remainder

when i+ j + k is divided by d, that is,

i+ j + k = αd+ β.

By applying the cut-and-paste bijection γi+j−β,0, we obtain (T ′′, v) in V(d)
n (β, 0,

αd; `) from (T ′, v) in V(d)
n (i+ j, 0, k; `). One can show that the values

#V(d)
n (i, 0, αd; `)−#V(d)

n (i+ 1, 0, αd; `)

are the same for all 0 ≤ i ≤ d − 1 under exchanging two descendant subtrees
of two sibling in the same tuplet. By telescoping, we get the formula

#V(d)
n (0, 0, αd; `)−#V(d)

n (β, 0, αd; `)

=
β

d

[
#V(d)

n (0, 0, αd; `)−#V(d)
n (d, 0, αd; `)

]
.

By Lemma 4, we have

#V(d)
n (0, 0, αd; `) = d`

(
(d+ 1)n− α

dn+ `

)
,

#V(d)
n (d, 0, αd; `) = d`

(
(d+ 1)n− α− 1

dn+ `

)
.

Thus we get the cardinality of V(d)
n (β, 0, αd; `) and the desired formula (4).

4. Further results

From Theorem 2, we can obtain the following result.

Corollary 5. Given n ≥ 1, for any two nonnegative integers k and `, the

number of all vertices of outdegree k at level ` among d-trees in T (d)
n is

d`
dk + (d+ 1)`

(d+ 1)n− k

(
(d+ 1)n− k

dn+ `

)
.(5)

Proof. By the sieve method with (3), we obtain the formula (5) from

d`
(

(d+ 1)n− k
dn+ `

)
− d`

(
(d+ 1)n− k − 1

dn+ `

)
− d`+1

(
(d+ 1)n− k
dn+ `+ 1

)
+ d`+1

(
(d+ 1)n− k − 1

dn+ `+ 1

)
.

�
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The next result follows from Theorem 3 for d = 1.

Corollary 6. Given n ≥ 1, for any three nonnegative integers i, j, k, and one
positive integer `, the number of all vertices among trees in Tn such that

• having at least i elder siblings,
• having at least j younger siblings,
• having at least k children,
• at level ≥ `

is (
2n− i− j − k

n+ `

)
.
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