MAPS PRESERVING SOME MULTIPLICATIVE STRUCTURES ON STANDARD JORDAN OPERATOR ALGEBRAS

Somaye Ghorbanipour and Shirin Hejazian

Abstract

Let \mathcal{A} be a unital real standard Jordan operator algebra acting on a Hilbert space H of dimension at least 2. We show that every bijection ϕ on \mathcal{A} satisfying $\phi\left(A^{2} \circ B\right)=\phi(A)^{2} \circ \phi(B)$ is of the form $\phi=\varepsilon \psi$ where ψ is an automorphism on \mathcal{A} and $\varepsilon \in\{-1,1\}$. As a consequence if \mathcal{A} is the real algebra of all self-adjoint operators on a Hilbert space H, then there exists a unitary or conjugate unitary operator U on H such that $\phi(A)=\varepsilon U A U^{*}$ for all $A \in \mathcal{A}$.

1. Introduction

The study of linear preserver problems on matrix algebras and operator algebras is a long lasting but still a very active research area in matrix algebras and operator algebras, for a review of this subject see [15]. In a purely algebraic point of view Martindale in [11] started to study multiplicative bijections on rings and proved that every multiplicative bijection from a prime ring containing a nontrivial idempotent onto an arbitrary ring is necessarily additive. This result shows that the multiplicative structure of a ring can determine its ring structure.

When we are dealing with an algebra it is also interesting to consider its Jordan structure. Following Martindale's achievement [11] a natural question arises. When a Jordan multiplicative map on an algebra is additive? We recall that if \mathcal{A} is an associative algebra, then the Jordan product on \mathcal{A} is defined by $A \circ B=\frac{1}{2}(A B+B A)$ for $A, B \in \mathcal{A}$. Although this product is not associative, it satisfies

$$
A \circ B=B \circ A \quad \text { and } \quad A^{2} \circ(A \circ B)=A \circ\left(A^{2} \circ B\right)
$$

for all $A, B \in \mathcal{A}$. This means that \mathcal{A} with this product is a Jordan algebra, see [7] for more about these objects. Every linear subspace \mathcal{B} of an associative algebra \mathcal{A} which is closed under the Jordan product, is called a Jordan

[^0]subalgebra of \mathcal{A}. Any Jordan algebra isomorphic to a Jordan subalgebra of an associative algebra is said to be a special Jordan algebra, see [7, Section 2.3]. The Jordan triple product of elements A, B in a Jordan algebra \mathcal{A} is defined by
$$
\{A B A\}=2 A \circ(A \circ B)-A^{2} \circ B .
$$

One may easily check that for any two elements A, B in a Jordan subalgebra of an associative algebra (i.e., in a special Jordan algebra) we have $\{A B A\}=$ $A B A$.

From what we have already said, it follows that an associative algebra \mathcal{A} carries three important Jordan multiplicative structures

$$
\begin{align*}
& (A, B) \mapsto \frac{A B+B A}{2} \tag{1.1}\\
& (A, B) \mapsto A B+B A \tag{1.2}
\end{align*}
$$

and

$$
\begin{equation*}
(A, B) \mapsto A B A=2 A \circ(A \circ B)-A^{2} \circ B \tag{1.3}
\end{equation*}
$$

from $\mathcal{A} \times \mathcal{A}$ to \mathcal{A}.
Now let \mathcal{A} and \mathcal{B} be algebras. A mapping $\phi: \mathcal{A} \rightarrow \mathcal{B}$ is a Jordan multiplicative map if for each $A, B \in \mathcal{A}$ it satisfies one of the following equations

$$
\begin{gather*}
\phi\left(\frac{A B+B A}{2}\right)=\frac{\phi(A) \phi(B)+\phi(B) \phi(A)}{2} ; \tag{1.4}\\
\phi(A B+B A)=\phi(A) \phi(B)+\phi(B) \phi(A) \tag{1.5}\\
\phi(A B A)=\phi(A) \phi(B) \phi(A) \tag{1.6}
\end{gather*}
$$

It is easy to see that, if ϕ is additive, then (1.4) and (1.5) are equivalent and imply (1.6). Also if \mathcal{A}, \mathcal{B} are unital and ϕ is additive and unital, then these three forms of Jordan multiplicativity are equivalent. But what happens if we drop the assumption of additivity? Molnár in [13] showed that each bijection ϕ between standard operator algebras \mathcal{A} and \mathcal{B} satisfying (1.6) is additive and also gave the general characterization of such mappings. Later Molnár in [14] and Lu in [10] studied those bijections between standard operator algebras which satisfy conditions (1.4) and (1.5), respectively. They proved that such mappings are necessarily additive. The additivity of Jordan \dagger-skew multiplicative maps was proved in [1]. In [2], An and Hou considered bijective Jordan multiplicative maps on the algebra of all self-adjoint operators acting on a Hilbert space H, and also on the nest algebras over H. They proved that such mappings are necessarily additive and obtained their general form. Also Ji and Liu in [9] studied Jordan multiplicative maps on Jordan operator algebras and showed that every bijection, satisfying (1.4), from a standard Jordan operator algebra acting on a Hilbert space of dimension at least 2 onto an arbitrary Jordan algebra is additive. Some other results on additivity of Jordan multiplicative maps on operator algebras can be found in $[5,6,15]$.

Throughout this paper H is a Hilbert space with $\operatorname{dim}(H)>1, \mathfrak{B}(H)$ is the C^{*}-algebra of all bounded linear operators acting on H and $\mathfrak{B}_{s}(H)$ denotes the self-adjoint part of $\mathfrak{B}(H)$. One can easily observe that $\mathfrak{B}_{s}(H)$ is closed under the Jordan product which means that it is a special Jordan algebra over the field of real numbers. By $\mathfrak{F}_{s}(H)$ we denote the Jordan ideal of all self-adjoint finite rank operators in $\mathfrak{B}_{s}(H)$. We recall that each self-adjoint rank one operator on H is of the form $\alpha x \otimes x$ for some $0 \neq x \in H$ and some $0 \neq \alpha \in \mathbb{R}$ and rank one projections are exactly of the form $x \otimes x$ for some unit vector $x \in H$. Moreover, each self-adjoint finite rank operator is a real linear combination of pairwise orthogonal rank one projections.

By a real Jordan operator algebra acting on a Hilbert space H, we mean a Jordan subalgebra of $\mathfrak{B}_{s}(H)$ and if it is norm closed, then it is called a $J C$ algebra, we refer the reader to [7] for more details. A real Jordan operator algebra is said to be standard if it contains $\mathfrak{F}_{s}(H)$. Note that if a real standard Jordan operator algebra is unital, then the unit element is necessarily the identity operator I on H because it belongs to the commutant of $\mathfrak{F}_{s}(H)$ in $\mathfrak{B}(H)$.

Being interested in different Jordan multiplicative structures we are going to examine the product $A^{2} \circ B$ in a real standard Jordan operator algebra. This product was used in [3] to define orthogonality in a $J B$-algebra, see [7] for more about $J B$-algebras. Let \mathcal{A} be a unital real standard Jordan operator algebra acting on a Hilbert space H of dimension at least 2. We will show that if $\phi: \mathcal{A} \rightarrow \mathcal{A}$ is a bijection satisfying $\phi\left(A^{2} \circ B\right)=\phi(A)^{2} \circ \phi(B)$ for all $A, B \in \mathcal{A}$, then $\phi=\varepsilon \psi$ where $\varepsilon \in\{-1,1\}$ and ψ is an automorphism; that is ψ is a linear bijection satisfying $\psi(A \circ B)=\psi(A) \circ \psi(B)$ for all $A, B \in \mathcal{A}$. As a consequence, if $\mathcal{A}=\mathfrak{B}_{s}(H)$, then we will show that there exists a unitary or conjugate unitary operator U on H such that $\phi(A)=\varepsilon U A U^{*}$ for all $A \in \mathfrak{B}_{s}(H)$, where $\varepsilon \in\{-1,1\}$.

If $\operatorname{dim}(H)=1$, then any real standard operator algebra acting on H is trivially identified by \mathbb{R}. Molnár in [14] gives an example of a bijective multiplicative function $h: \mathbb{C} \rightarrow \mathbb{C}$ which is not additive. It is easy to see that the restriction of this function to \mathbb{R} is a multiplicative bijection which is not additive. Thus the condition $\operatorname{dim}(H)>1$ can not be dropped from our assumption.

2. Characterizing maps preserving $A^{2} \circ B$

Let \mathcal{A}, \mathcal{B} be special Jordan algebras. We recall that a linear map $\phi: \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism, that is $\phi(A \circ B)=\phi(A) \circ \phi(B)$ for all $A, B \in \mathcal{A}$, if and only if $\phi\left(A^{2}\right)=\phi(A)^{2}$ for all $A \in \mathcal{A}$.

Theorem 2.1. Let \mathcal{A} be a unital real standard Jordan operator algebra acting on a Hilbert space H of dimension >1 and let $\phi: \mathcal{A} \rightarrow \mathcal{A}$ be a bijection satisfying

$$
\begin{equation*}
\phi\left(A^{2} \circ B\right)=\phi(A)^{2} \circ \phi(B) \quad(A, B \in \mathcal{A}) \tag{2.1}
\end{equation*}
$$

Then $\phi=\varepsilon \psi$ where ψ is an automorphism on \mathcal{A} and $\varepsilon \in\{-1,1\}$.
Proof. First of all we note that ϕ^{-1} also satisfies (2.1), so all the results which are proved in the sequel may apply to ϕ^{-1}, as well. Now we proceed in some steps.

Step 1. $\phi(0)=0$.
Since ϕ is surjective, there exists $A \in \mathcal{A}$ such that $\phi(A)=0$. Thus we have $\phi(0)=\phi\left(\frac{1}{2}\left(A^{2} 0+0 A^{2}\right)\right)=\frac{1}{2}\left(\phi(A)^{2} \phi(0)+\phi(0) \phi(A)^{2}\right)=0$.

Step 2. $\phi(I)=\varepsilon I$ where $\varepsilon \in\{-1,1\}$.
There exists $B \in \mathcal{A}$ such that $\phi(B)=I$. We have

$$
\phi(B)=\phi\left(\frac{I^{2} B+B I^{2}}{2}\right)=\frac{\phi(I)^{2} \phi(B)+\phi(B) \phi(I)^{2}}{2}=\phi(I)^{2}
$$

Thus $\phi(I)^{2}=I$. Also, for each $A \in \mathcal{A}$ we have

$$
\phi\left(A^{2}\right)=\phi\left(A^{2} \circ I\right)=\frac{\phi(A)^{2} \phi(I)+\phi(I) \phi(A)^{2}}{2}
$$

Therefore

$$
\begin{equation*}
\phi\left(A^{2}\right) \phi(I)=\phi(I) \phi\left(A^{2}\right) \quad(A \in \mathcal{A}) \tag{2.2}
\end{equation*}
$$

Now for each $A \in \mathcal{A}$

$$
\begin{aligned}
\phi\left(A^{4}\right) & =\frac{1}{2}\left(\phi(A)^{2} \phi\left(A^{2}\right)+\phi\left(A^{2}\right) \phi(A)^{2}\right) \\
& =\frac{1}{2}\left(\phi(A)^{2}\left(\frac{\phi(A)^{2} \phi(I)+\phi(I) \phi(A)^{2}}{2}\right)+\left(\frac{\phi(A)^{2} \phi(I)+\phi(I) \phi(A)^{2}}{2}\right) \phi(A)^{2}\right) \\
& =\frac{1}{4} \phi(A)^{4} \phi(I)+\frac{1}{2} \phi(A)^{2} \phi(I) \phi(A)^{2}+\frac{1}{4} \phi(I) \phi(A)^{4} .
\end{aligned}
$$

Since $\phi(I)^{2}=I$ we get

$$
\phi(I) \phi\left(A^{4}\right)=\frac{1}{4} \phi(I) \phi(A)^{4} \phi(I)+\frac{1}{2} \phi(I) \phi(A)^{2} \phi(I) \phi(A)^{2}+\frac{1}{4} \phi(A)^{4}
$$

and

$$
\phi\left(A^{4}\right) \phi(I)=\frac{1}{4} \phi(A)^{4}+\frac{1}{2} \phi(A)^{2} \phi(I) \phi(A)^{2} \phi(I)+\frac{1}{4} \phi(I) \phi(A)^{4} \phi(I)
$$

It follows from (2.2) that

$$
\phi(A)^{2} \phi(I) \phi(A)^{2} \phi(I)=\phi(I) \phi(A)^{2} \phi(I) \phi(A)^{2} \quad(A \in \mathcal{A}) .
$$

In particular, since ϕ is surjective, for every projection $P \in \mathcal{A}$ we have $P \phi(I) P \phi(I)=\phi(I) P \phi(I) P$. Let x be an arbitrary unit vector in H. Then for each $y \in H$

$$
(x \otimes x) \phi(I)(x \otimes x) \phi(I)(y)=\phi(I)(x \otimes x) \phi(I)(x \otimes x)(y)
$$

and hence

$$
\langle\phi(I) y, x\rangle\langle\phi(I) x, x\rangle x=\langle y, x\rangle\langle\phi(I) x, x\rangle \phi(I)(x) \quad(y \in H) .
$$

By taking $y=x$ we arrive at

$$
\begin{equation*}
\langle\phi(I) x, x\rangle^{2} x=\langle\phi(I) x, x\rangle \phi(I)(x) \quad(x \in H) . \tag{2.3}
\end{equation*}
$$

Take $\lambda_{x}=\langle\phi(I) x, x\rangle$ then by (2.3), $\lambda_{x}^{2} x=\lambda_{x} \phi(I)(x)$ and since $\phi(I)^{2}=I$, $\lambda_{x}^{2} \phi(I) x=\lambda_{x} x$. Therefore

$$
\lambda_{x}=\lambda_{x}\langle x, x\rangle=\left\langle\lambda_{x} x, x\right\rangle=\left\langle\lambda_{x}^{2} \phi(I) x, x\right\rangle=\lambda_{x}^{2}\langle\phi(I) x, x\rangle=\lambda_{x}^{3}
$$

Hence $\lambda_{x} \in\{-1,0,1\}$. Let $W(\cdot)$ denote the numerical range. Since the unit vector $x \in H$ was chosen arbitrarily

$$
W(\phi(I))=\{\langle\phi(I) x, x\rangle ;\|x\|=1\}=\left\{\lambda_{x} ;\|x\|=1\right\} \subseteq\{-1,0,1\} .
$$

We know that the numerical range of an operator is a convex set so, $W(\phi(I))=$ $\{1\}$ or $\{-1\}$ or $\{0\}$. But if $W(\phi(I))=\{0\}$, then $\phi(I)=0$, a contradiction. Thus $\phi(I)=I$ or $\phi(I)=-I$.

Step 3. We may assume that $\phi(I)=I$. In this case $\phi(-I)=-I$.
If $\phi(I)=-I$, then $\psi=-\phi$ also satisfies (2.1) and $\psi(I)=I$. So without loss of generality, we assume that $\phi(I)=I$.

Now suppose that $B \in \mathcal{A}$ satisfies $\phi(B)=-I$. Then

$$
\phi(B)=\phi\left(B \circ(-I)^{2}\right)=\phi(B) \circ \phi(-I)^{2}=-\phi(-I)^{2} .
$$

Thus $\phi(-I)^{2}=I$. For each $A \in \mathcal{A}$ we have

$$
\begin{equation*}
\phi\left(-A^{2}\right)=\frac{\phi(-I) \phi(A)^{2}+\phi(A)^{2} \phi(-I)}{2} . \tag{2.4}
\end{equation*}
$$

Multiplying (2.4) by $\phi(-I)$ from right and left, respectively, we get

$$
\begin{equation*}
\phi\left(-A^{2}\right) \phi(-I)=\phi(-I) \phi\left(-A^{2}\right) \quad(A \in \mathcal{A}) . \tag{2.5}
\end{equation*}
$$

Now a similar argument as in Step 2 shows that

$$
\phi\left(-A^{4}\right)=\frac{\phi(-I) \phi(A)^{4}+2 \phi(A)^{2} \phi(-I) \phi(A)^{2}+\phi(A)^{4} \phi(-I)}{4} .
$$

Again by multiplying the last equation by $\phi(-I)$ from right and left, respectively, and using (2.5) we arrive at

$$
\phi(A)^{2} \phi(-I) \phi(A)^{2} \phi(-I)=\phi(-I) \phi(A)^{2} \phi(-I) \phi(A)^{2} \quad(A \in \mathcal{A}) .
$$

The same reasoning as in Step 2 and using the fact that ϕ is injective implies that $\phi(-I)=-I$.

Step 4. For each $A \in \mathcal{A}, \phi\left(A^{2}\right)=\phi(A)^{2}$ and therefore ϕ preserves projections and positive elements in both directions.
It is clear from Step 3.
Step 5. For every positive finite rank $A \in \mathcal{A}$ we have

$$
\phi(A \circ B)=\phi(A) \circ \phi(B) \quad(B \in \mathcal{A})
$$

In particular, $\phi(-A)=-\phi(A)$.

Let A be a positive finite rank operator in \mathcal{A}. Therefore, the positive square root C of A is also of finite rank and hence belongs to \mathcal{A}. By Step 4

$$
\begin{aligned}
\phi(A \circ B) & =\phi\left(C^{2} \circ B\right) \\
& =\phi(C)^{2} \circ \phi(B) \\
& =\phi\left(C^{2}\right) \circ \phi(B) \\
& =\phi(A) \circ \phi(B) .
\end{aligned}
$$

The last assertion is now directly obtained by taking $B=-I$.
Step 6. ϕ preserves orthogonality of projections in both directions.
Suppose P, Q are projections in \mathcal{A} satisfying $P Q=Q P=0$. We have

$$
0=\phi(P Q)=\phi(P \circ Q)=\frac{\phi(P) \phi(Q)+\phi(Q) \phi(P)}{2} .
$$

By Step $4, \phi(P)$ and $\phi(Q)$ are projections. Now, multiplying the above equality by $\phi(Q)$ form left and right, respectively, implies that $\phi(Q) \phi(P)=\phi(P) \phi(Q)=$ 0 .

Step 7. ϕ preserves the order of projections in both directions.
If $P, Q \in \mathcal{A}$ are projections and $P \leqslant Q$, then $P Q=Q P=P$ and by Step 4

$$
\phi(P)=\phi\left(\frac{1}{2}(P Q+Q P)\right)=\frac{1}{2}(\phi(P) \phi(Q)+\phi(Q) \phi(P)) .
$$

Multiplying this equality by $\phi(Q)$ from right and left, respectively, shows that

$$
\phi(P) \phi(Q)=\phi(Q) \phi(P) .
$$

Therefore, $\phi(P) \phi(Q)=\phi(Q) \phi(P)=\phi(P)$ and the result follows.
Step 8. ϕ preserves the rank of finite rank projections in both directions and it is orthogonally additive on finite rank projections. Moreover, $\phi\left(\mathfrak{F}_{s}(H)\right) \subseteq$ $\mathfrak{F}_{s}(H)$.
For the first two assertions, the same argument as in Step 4 and Step 5 of Theorem 2.1 in [2] gives the result. If $A \in \mathfrak{F}_{s}(H)$, then there exists a finite rank projection P such that $P A=A P=A$. By Step 5 we have

$$
\phi(A)=\phi\left(\frac{1}{2}(A P+P A)\right)=\frac{1}{2}(\phi(A) \phi(P)+\phi(P) \phi(A)),
$$

which implies that $\phi(A)$ is also of finite rank.
Step 9. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ and let P_{1}, \ldots, P_{n} be pairwise orthogonal finite rank projections. Then

$$
\phi\left(\sum_{i=1}^{n} \lambda_{i} P_{i}\right)=\sum_{i=1}^{n} \phi\left(\lambda_{i} P_{i}\right) .
$$

This equality follows by the same argument as in Step 6 in [2, Theorem 2.2] as well as a part of the proof of Theorem 1 in [14].

Step 10. For each rank one projection P and each $\lambda \in \mathbb{R}$ there exists $\mu \in \mathbb{R}$ such that $\lambda \phi(P)=\phi(\mu P)$.

Suppose that P is a rank one projection, $\lambda \in \mathbb{R}$, and $A \in \mathcal{A}$ satisfies $\phi(A)=$ $\lambda \phi(P)$. By Step $8, \operatorname{rank}(\phi(A))=1$. Thus there exists a nonzero vector $z \in H$ and $0 \neq \alpha \in \mathbb{R}$ such that $A=\alpha z \otimes z$. We have $\phi(P) \phi(A)=\phi(A) \phi(P)=\lambda \phi(P)$ and so $\phi(A \circ P)=\lambda \phi(P)=\phi(A)$. Since ϕ is injective $A \circ P=A$ and it follows that

$$
\begin{equation*}
P A=A P=A \circ P=A \tag{2.6}
\end{equation*}
$$

Let x be the unit vector in H such that $P=x \otimes x$. By $(2.6)(x \otimes x)(z \otimes z)=z \otimes z$, hence for each $y \in H$

$$
\langle y, z\rangle\langle z, x\rangle x=\langle y, z\rangle z
$$

which implies that x and z are linearly dependent. So there exists $\mu \in \mathbb{R}$ such that $A=\mu P$.

Step 11. $\phi(P T P)=\phi(P) \phi(T) \phi(P)$ for all positive T in $\mathfrak{F}_{s}(H)$ and all projections P in $\mathfrak{F}_{s}(H)$.
Let $T \in \mathfrak{F}_{s}(H)$ be a positive operator and let $P \in \mathfrak{F}_{s}(H)$ be a projection. Choose a finite rank projection $Q \in \mathfrak{F}_{s}(H)$ such that $Q P=P Q=P$ and $T Q=Q T=T$. We have

$$
P \circ((2 P-Q) \circ T)=P T P
$$

Thus by Step 5 we get

$$
\phi(P) \circ(\phi(2 P-Q) \circ \phi(T))=\phi(P T P) .
$$

We show that $\phi(2 P-Q)=2 \phi(P)-\phi(Q)$. Since $Q-P$ is a projection orthogonal to P and $P \leq Q$, by Step 9 , Step 5 and Step 8

$$
\begin{aligned}
\phi(2 P-Q) & =\phi(P-(Q-P)) \\
& =\phi(P)+\phi(-(Q-P)) \\
& =\phi(P)-\phi(Q-P) \\
& =\phi(P)-(\phi(Q)-\phi(P)) \\
& =2 \phi(P)-\phi(Q)
\end{aligned}
$$

So, we have $\phi(P T P)=\phi(P) \phi(T) \phi(P)$.
Step 12. $\phi(\lambda I)=\lambda \phi(I)$ for all $\lambda \in \mathbb{R}$.
Fix an arbitrary real number λ, and let $B_{\lambda} \in \mathcal{A}$ satisfy $B_{\lambda}=\phi(\lambda I)$. We show that $B_{\lambda}=\lambda I$. Let x be a unit vector in H and $P=x \otimes x$. Since ϕ^{-1} satisfies (2.1) it also satisfies all the steps proved to this stage. By Step 5 and Step 10 we have $\phi^{-1}\left(B_{\lambda} \circ P\right)=\phi^{-1}\left(B_{\lambda}\right) \circ \phi^{-1}(P)=\lambda \phi^{-1}(P)=\phi^{-1}\left(\mu_{x, \lambda} P\right)$ for some $\mu_{x, \lambda} \in \mathbb{R}$. Since ϕ^{-1} is injective, $P \circ B_{\lambda}=\mu_{x, \lambda} P$. It is easily seen that $B_{\lambda} P=P B_{\lambda}=P \circ B_{\lambda}=\mu_{x, \lambda} P$, and so

$$
B_{\lambda}(x \otimes x(y))=\mu_{x, \lambda} x \otimes x(y) \quad(y \in H)
$$

Take $y=x$, we get $B_{\lambda} x=\mu_{x, \lambda} x$. We have shown that, for every $\lambda \in \mathbb{R}$ and every unit vector $x \in H$, there exists $\mu_{x, \lambda} \in \mathbb{R}$ such that $\phi(\lambda I)(x)=\mu_{x, \lambda} x$.

First of all, we show that $\mu_{x, \lambda}$ does not depend on x. Let x, y be unit vectors in H with $x \neq y, \alpha=\|x-y\|$ and $z=\alpha^{-1}(x-y)$. Then z is a unit vector and

$$
B_{\lambda}(x)-B_{\lambda}(y)=\alpha B_{\lambda}(z)=\alpha \mu_{z, \lambda} z=\mu_{z, \lambda}(x-y)
$$

hence

$$
\begin{equation*}
\left(\mu_{x, \lambda}-\mu_{z, \lambda}\right) x=\left(\mu_{y, \lambda}-\mu_{z, \lambda}\right) y . \tag{2.7}
\end{equation*}
$$

Now, if x and y are linearly independent, then by (2.7), $\mu_{x, \lambda}=\mu_{z, \lambda}=\mu_{y, \lambda}$; and if $y=\beta x$ for some scalar β, then $\mu_{y, \lambda} y=B_{\lambda}(y)=\beta B_{\lambda}(x)=\beta \mu_{x, \lambda} x=\mu_{x, \lambda} y$ and hence $\mu_{x, \lambda}=\mu_{y, \lambda}$. This means that $\mu_{x, \lambda}$ does not depend on x. Since λ was arbitrarily chosen, it follows that there exists a function $h: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\phi(\lambda I)=h(\lambda) I \quad(\lambda \in \mathbb{R}) .
$$

By Step $3, h(1)=1$ and $h(-1)=-1$. Also from Step 5 for every finite rank projection P we have $\phi(\lambda P)=\phi(\lambda I \circ P)=h(\lambda) \phi(P)$ for all $\lambda \in \mathbb{R}$. If $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ and $\lambda_{1} \geq 0$, then again by Step 5 for each finite rank projection P

$$
h\left(\lambda_{1} \lambda_{2}\right) \phi(P)=\phi\left(\lambda_{1} \lambda_{2} P\right)=\phi\left(\lambda_{2} I\right) \circ \phi\left(\lambda_{1} P\right)=h\left(\lambda_{1}\right) h\left(\lambda_{2}\right) \phi(P) .
$$

Hence

$$
\begin{equation*}
h\left(\lambda_{1} \lambda_{2}\right)=h\left(\lambda_{1}\right) h\left(\lambda_{2}\right) \quad\left(\lambda_{1}, \lambda_{2} \in \mathbb{R}, \lambda_{1} \geq 0\right) \tag{2.8}
\end{equation*}
$$

Now suppose that $\lambda_{1}, \lambda_{2} \leq 0$. Since $h(-1)=-1$ by (2.8) for each projection $P \in \mathfrak{F}_{s}(H)$

$$
\begin{aligned}
h\left(\lambda_{1} \lambda_{2}\right) \phi(P)=\phi\left(\lambda_{1} \lambda_{2} P\right) & =\phi\left(\left|\lambda_{1}\right|\left|\lambda_{2}\right| P\right) \\
& =h\left(\left|\lambda_{1}\right|\right) h\left(\left|\lambda_{2}\right|\right) \phi(P) \\
& =\left(-h\left(\left|\lambda_{1}\right|\right)\right)\left(-h\left(\left|\lambda_{2}\right|\right)\right) \phi(P) \\
& =h\left(\lambda_{1}\right) h\left(\lambda_{2}\right) \phi(P) .
\end{aligned}
$$

Therefore, $h\left(\lambda_{1} \lambda_{2}\right)=h\left(\lambda_{1}\right) h\left(\lambda_{2}\right)$ for all $\lambda_{1}, \lambda_{2} \in \mathbb{R}$. Now, the same reasoning as in Step 8 of $[2$, Theorem 2.2] shows that $h(\lambda)=\lambda$ for all $\lambda \in \mathbb{R}$ and it follows that $\phi(\lambda I)=\lambda I$ for all $\lambda \in \mathbb{R}$.

Step 13. $\phi(\lambda A)=\lambda \phi(A)$ for every $\lambda \in \mathbb{R}$ and $A \in \mathfrak{F}_{s}(H)$.
By Step 12, for all rank one projections $P \in \mathfrak{F}_{s}(H)$ and all $\lambda \in \mathbb{R}, \phi(\lambda P)=$ $\lambda \phi(P)$ and the result follows by Step 9.

Step 14. ϕ is a Jordan homomorphism on $\mathfrak{F}_{s}(H)$.
Using Step 4 and Step 13, it is enough to show that ϕ is additive on $\mathfrak{F}_{s}(H)$. Let A, B be positive finite rank operators and let $P=x \otimes x$ be a rank one projection. It follows from Step 11 that

$$
\begin{aligned}
\phi(P) \phi(A+B) \phi(P) & =\langle(A+B) x, x\rangle \phi(P) \\
& =\langle A x, x\rangle \phi(P)+\langle B x, x\rangle \phi(P) \\
& =\phi(P A P)+\phi(P B P) \\
& =\phi(P) \phi(A) \phi(P)+\phi(P) \phi(B) \phi(P)
\end{aligned}
$$

$$
=\phi(P)(\phi(A)+\phi(B)) \phi(P)
$$

Therefore $\phi(P) \phi(A+B) \phi(P)=\phi(P)(\phi(A)+\phi(B)) \phi(P)$ for each rank one projection P. Thus

$$
\begin{equation*}
\phi(A+B)=\phi(A)+\phi(B) \quad\left(A, B \in \mathfrak{F}_{s}(H), A, B \geq 0\right) \tag{2.9}
\end{equation*}
$$

Next we show that $\phi(A-B)=\phi(A)-\phi(B)$, if $A, B \in \mathfrak{F}_{s}(H)$ are positive operators. First let $A \geqslant B \geqslant 0$. Since $A-B \geqslant 0$, by Step 11 for every rank one projection P

$$
\phi(P) \phi(A-B) \phi(P)=\phi(P(A-B) P) .
$$

A similar argument as for $\phi(A+B)$ shows that

$$
\phi(P) \phi(A-B) \phi(P)=\phi(P)(\phi(A)-\phi(B)) \phi(P)
$$

for each rank one projection P. Hence

$$
\begin{equation*}
\phi(A-B)=\phi(A)-\phi(B) \quad\left(A, B \in \mathfrak{F}_{s}(H), A \geq B \geq 0\right) \tag{2.10}
\end{equation*}
$$

Now, let A and B be arbitrary positive operators in $\mathfrak{F}_{s}(H)$. There exist orthogonal rank one projections P_{1}, \ldots, P_{n} in $\mathfrak{F}_{s}(H)$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ such that $A-B=\sum_{i=1}^{n} \lambda_{i} P_{i}$. Let $E \subseteq\{1, \ldots, n\}$ be the set of all indices i for which $\lambda_{i} \geq 0$ and $S=\{1, \ldots, n\} \backslash E$. Then

$$
A-B=\sum_{i \in E} \lambda_{i} P_{i}+\sum_{i \in S} \lambda_{i} P_{i}
$$

We have

$$
-\sum_{i \in S} \lambda_{i} P_{i} \geq 0, \quad A-\sum_{i \in S} \lambda_{i} P_{i} \geq B \geq 0
$$

Thus by (2.10) and (2.9)
(2.11) $\left.\phi\left(\sum_{i \in E} \lambda_{i} P_{i}\right)=\phi\left(A-\sum_{i \in S} \lambda_{i} P_{i}\right)\right)-\phi(B)=\phi(A)+\phi\left(-\sum_{i \in S} \lambda_{i} P_{i}\right)-\phi(B)$.

On the other hand by Step 9 and Step 5 and (2.11)

$$
\begin{aligned}
\phi(A-B) & =\sum_{i=1}^{n} \phi\left(\lambda_{i} P_{i}\right) \\
& =\sum_{i \in E} \phi\left(\lambda_{i} P_{i}\right)+\sum_{i \in S} \phi\left(\lambda_{i} P_{i}\right) \\
& =\phi\left(\sum_{i \in E} \lambda_{i} P_{i}\right)-\phi\left(-\sum_{i \in S} \lambda_{i} P_{i}\right) \\
& =\phi(A)-\phi(B) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\phi(A-B)=\phi(A)-\phi(B) \quad\left(A, B \in \mathfrak{F}_{s}(H), A, B \geq 0\right) \tag{2.12}
\end{equation*}
$$

Finally, let $A, B \in \mathfrak{F}_{s}(H)$ be arbitrary elements. Then $A=A_{1}-A_{2}$ and $B=B_{1}-B_{2}$ where $A_{1}, A_{2}, B_{1}, B_{2}$ are positive finite rank operators. Hence by (2.12) and (2.9)

$$
\begin{aligned}
\phi(A+B) & =\phi\left(A_{1}+B_{1}-\left(A_{2}+B_{2}\right)\right) \\
& =\phi\left(A_{1}+B_{1}\right)-\phi\left(A_{2}+B_{2}\right) \\
& =\phi\left(A_{1}\right)-\phi\left(A_{2}\right)+\phi\left(B_{1}\right)-\phi\left(B_{2}\right) \\
& =\phi(A)+\phi(B) .
\end{aligned}
$$

Step 15. ϕ is a Jordan automorphism on \mathcal{A}.
First we show that $\phi(\lambda A)=\lambda \phi(A)$ for all $A \in \mathcal{A}$ and all $\lambda \in \mathbb{R}$. Let P be an arbitrary rank one projection, $A \in \mathcal{A}$ and $\lambda \in \mathbb{R}$. Then by Step 5 and Step 13 we have

$$
\phi(\lambda A) \circ \phi(P)=\phi(\lambda A \circ P)=\lambda \phi(A \circ P)=\lambda \phi(A) \circ \phi(P) .
$$

Thus $\phi(\lambda A)=\lambda \phi(A)$. Also from Step 5 and Step 14 , for all $A, B \in \mathcal{A}$ and all finite rank projections P,

$$
\begin{aligned}
\phi(A+B) \circ \phi(P) & =\phi((A+B) \circ P) \\
& =\phi(A \circ P+B \circ P) \\
& =\phi(A \circ P)+\phi(B \circ P) \\
& =\phi(A) \circ \phi(P)+\phi(B) \circ \phi(P) \\
& =(\phi(A)+\phi(B)) \circ \phi(P) .
\end{aligned}
$$

Therefore $\phi(A+B)=\phi(A)+\phi(B)$, for all $A, B \in \mathcal{A}$ and so ϕ is additive on \mathcal{A}. It follows that ϕ is linear and since $\phi\left(A^{2}\right)=\phi(A)^{2}$ for all $A \in \mathcal{A}, \phi$ is an automorphism on the special Jordan algebra \mathcal{A}.

Finally, if in Step 3 we assume that $\phi(I)=-I$, then $-\phi$ is an automorphism. So in general, $\phi=\varepsilon \psi$ where ψ is an automorphism and $\varepsilon \in\{-1,1\}$.
Corollary 2.2. Let H be a Hilbert space with $\operatorname{dim} H>1$ and let \mathcal{A} be a unital standard JC-subalgebra of $\mathfrak{B}_{s}(H)$ and let ϕ be a bijection on \mathcal{A} satisfying

$$
\phi\left(A^{2} \circ B\right)=\phi(A)^{2} \circ \phi(B) \quad(A, B \in \mathcal{A})
$$

Then $\phi=\varepsilon \psi$ where ψ is an automorphism and $\varepsilon \in\{-1,1\}$. Moreover, ϕ is an isometry.

Proof. It is a well known result that any isomorphism between $J C$-algebras is an isometry.

We recall from [4] that two self-adjoint operators A, B acting on a Hilbert space H are said to be adjacent if $A-B$ is a rank one operator. A map $\phi: \mathfrak{B}_{s}(H) \rightarrow \mathfrak{B}_{s}(H)$ preserves adjacency if for each $A, B \in \mathfrak{B}_{s}(H), \phi(A)$ is adjacent to $\phi(B)$ whenever A, B are so.
Corollary 2.3. Let H be a Hilbert space with $\operatorname{dim} H>1$ and let $\phi: \mathfrak{B}_{s}(H) \rightarrow$ $\mathfrak{B}_{s}(H)$ be a bijection. Then the following statements are equivalent.
(i) $\phi\left(A^{2} \circ B\right)=\phi(A)^{2} \circ \phi(B)$ for all $A, B \in \mathcal{B}_{s}(H)$.
(ii) There exists a unitary or conjugate unitary operator U on H such that $\phi(A)=\varepsilon U A U^{*}$ for all $A \in \mathfrak{B}_{s}(H)$, where $\varepsilon \in\{-1,1\}$.

Proof. If ϕ satisfies (i), then by Theorem 2.1 and Corollary $2.2, \phi$ clearly preserves adjacency in both directions and is continuous. Therefore, by Theorem 1.3 and Corollary 1.1 of [4] or Step 11 of Theorem 2.2 in [2] there exists a unitary or conjugate unitary operator $U: H \rightarrow H$, such that $\phi(A)=\varepsilon U A U^{*}$ for all $A \in \mathfrak{B}_{s}(H)$. The reverse conclusion is trivial

Remark 2.4. There is also an alternative argument for the proof of Corollary 2.3. Consider the automorphism ψ in Corollary 2.2 then define $\Psi: \mathfrak{B}(H) \rightarrow$ $\mathfrak{B}(H)$ by $\Psi(A+i B)=\psi(A)+i \psi(B)$ for $A, B \in \mathfrak{B}_{s a}(H)$. Then Ψ is a Jordan *-automorphism on $\mathfrak{B}(H)$. It is a classical well known result that Ψ must be a *-automorphism or a $*$-antiautomorphism (both with respect to the associative structure of $\mathfrak{B}(H))$ and now the result follows from [15, Theorem A.8].

References

[1] R. L. An and J. C. Hou, Characterizations of Jordan \dagger-skew multiplicative maps on operator algebras of indefinite inner product spaces, Chin. Ann. Math. Ser. B 26 (2005), no. 4, 569-582.
[2] _, Additivity of Jordan multiplicative maps on Jordan operator algebras, Taiwanese J. Math. 10 (2006), no. 1, 45-64.
[3] M. Battaglia, Annihilators in JB-algebras, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 2, 317-323.
[4] Q. H. Di, X. F. Du, and J. C. Hou, Adjacency preserving maps on the space of selfadjoint operators, Chin. Ann. Math. Ser. B 26 (2005), no. 2, 305-314.
[5] J. Hakeda, Additivity of Jordan *-maps on $A W^{*}$-algebras, Proc. Amer. Math. Soc. 96 (1986), no. 3, 413-420.
[6] J. Hakeda and K. Saito, Additivity of Jordan *-maps between operator algebras, J. Math. Soc. Japan 38 (1986), no. 3, 403-408.
[7] H. Hanche-Olsen and E. Størmer, Jordan Operator Algebras, Pitman, Boston-LondonMelbourne, 1984.
[8] S. H. Hochwald, Multiplicative maps on matrices that preserve the spectrum, Linear Algebra Appl. 212/213 (1994), 339-351.
[9] P. Ji and Z. Liu, Additivity of Jordan maps on standard Jordan operator algebras, Linear Algebra Appl. 430 (2009), no. 1, 335-343.
[10] F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002), 123-131.
[11] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969), no. 3, 695-698.
[12] L. Molnár, Some multiplicative preservers on $B(H)$, Linear Algebra Appl. 301 (1999), no. 1-3, 1-13.
[13] , On isomorphisms of standard operator algebras, Studia Math. 142 (2000), no. 3, 295-302.
[14] , Jordan maps on standard operator algebras, in: Functional Equations - Results and Advances, Z. Daróczy and Zs. Páles (eds.), Adv. Math. 3, 305-320, Kluwer, Dordrecht, 2002.
[15] \qquad Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Math. 1895, Springer, Berlin-Heidelberg-New York, 2007.
[16] P. Semrl, Isomorphisms of standard operator algebras, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1851-1855.

Somaye Ghorbanipour
Department of Pure Mathematics
Ferdowsi University of Mashhad
P.O. Box 1159, Mashhad 91775, Iran

E-mail address: ghorbanipour.s@gmail.com
Shirin Hejazian
Department of Pure Mathematics
Ferdowsi University of Mashhad
P.O. Box 1159, Mashhad 91775, Iran

E-mail address: hejazian@um.ac.ir

[^0]: Received February 25, 2016; Revised April 26, 2016.
 2010 Mathematics Subject Classification. 47B49, 39B52.
 Key words and phrases. standard Jordan operator algebra, preserver map, Jordan product.

