J. Korean Math. Soc. **54** (2017), No. 2, pp. 563–574 https://doi.org/10.4134/JKMS.j160127 pISSN: 0304-9914 / eISSN: 2234-3008

MAPS PRESERVING SOME MULTIPLICATIVE STRUCTURES ON STANDARD JORDAN OPERATOR ALGEBRAS

Somaye Ghorbanipour and Shirin Hejazian

ABSTRACT. Let \mathcal{A} be a unital real standard Jordan operator algebra acting on a Hilbert space H of dimension at least 2. We show that every bijection ϕ on \mathcal{A} satisfying $\phi(A^2 \circ B) = \phi(A)^2 \circ \phi(B)$ is of the form $\phi = \varepsilon \psi$ where ψ is an automorphism on \mathcal{A} and $\varepsilon \in \{-1, 1\}$. As a consequence if \mathcal{A} is the real algebra of all self-adjoint operators on a Hilbert space H, then there exists a unitary or conjugate unitary operator U on H such that $\phi(A) = \varepsilon UAU^*$ for all $A \in \mathcal{A}$.

1. Introduction

The study of linear preserver problems on matrix algebras and operator algebras is a long lasting but still a very active research area in matrix algebras and operator algebras, for a review of this subject see [15]. In a purely algebraic point of view Martindale in [11] started to study multiplicative bijections on rings and proved that every multiplicative bijection from a prime ring containing a nontrivial idempotent onto an arbitrary ring is necessarily additive. This result shows that the multiplicative structure of a ring can determine its ring structure.

When we are dealing with an algebra it is also interesting to consider its Jordan structure. Following Martindale's achievement [11] a natural question arises. When a Jordan multiplicative map on an algebra is additive? We recall that if \mathcal{A} is an associative algebra, then the Jordan product on \mathcal{A} is defined by $A \circ B = \frac{1}{2}(AB + BA)$ for $A, B \in \mathcal{A}$. Although this product is not associative, it satisfies

$$A \circ B = B \circ A$$
 and $A^2 \circ (A \circ B) = A \circ (A^2 \circ B)$

for all $A, B \in \mathcal{A}$. This means that \mathcal{A} with this product is a Jordan algebra, see [7] for more about these objects. Every linear subspace \mathcal{B} of an associative algebra \mathcal{A} which is closed under the Jordan product, is called a Jordan

 $\odot 2017$ Korean Mathematical Society

Received February 25, 2016; Revised April 26, 2016.

²⁰¹⁰ Mathematics Subject Classification. 47B49, 39B52.

Key words and phrases. standard Jordan operator algebra, preserver map, Jordan product.

subalgebra of \mathcal{A} . Any Jordan algebra isomorphic to a Jordan subalgebra of an associative algebra is said to be a special Jordan algebra, see [7, Section 2.3]. The Jordan triple product of elements A, B in a Jordan algebra \mathcal{A} is defined by

$$\{ABA\} = 2A \circ (A \circ B) - A^2 \circ B.$$

One may easily check that for any two elements A, B in a Jordan subalgebra of an associative algebra (i.e., in a special Jordan algebra) we have $\{ABA\} = ABA$.

From what we have already said, it follows that an associative algebra \mathcal{A} carries three important Jordan multiplicative structures

(1.1)
$$(A,B) \mapsto \frac{AB + BA}{2} ,$$

$$(1.2) (A,B) \mapsto AB + BA$$

and

(1.3)
$$(A,B) \mapsto ABA = 2A \circ (A \circ B) - A^2 \circ B$$

from $\mathcal{A} \times \mathcal{A}$ to \mathcal{A} .

Now let \mathcal{A} and \mathcal{B} be algebras. A mapping $\phi : \mathcal{A} \to \mathcal{B}$ is a Jordan multiplicative map if for each $A, B \in \mathcal{A}$ it satisfies one of the following equations

(1.4)
$$\phi\left(\frac{AB+BA}{2}\right) = \frac{\phi(A)\phi(B) + \phi(B)\phi(A)}{2};$$

(1.5)
$$\phi \left(AB + BA\right) = \phi(A)\phi(B) + \phi(B)\phi(A);$$

(1.6)
$$\phi(ABA) = \phi(A)\phi(B)\phi(A)$$

It is easy to see that, if ϕ is additive, then (1.4) and (1.5) are equivalent and imply (1.6). Also if \mathcal{A}, \mathcal{B} are unital and ϕ is additive and unital, then these three forms of Jordan multiplicativity are equivalent. But what happens if we drop the assumption of additivity? Molnár in [13] showed that each bijection ϕ between standard operator algebras \mathcal{A} and \mathcal{B} satisfying (1.6) is additive and also gave the general characterization of such mappings. Later Molnár in [14] and Lu in [10] studied those bijections between standard operator algebras which satisfy conditions (1.4) and (1.5), respectively. They proved that such mappings are necessarily additive. The additivity of Jordan †-skew multiplicative maps was proved in [1]. In [2], An and Hou considered bijective Jordan multiplicative maps on the algebra of all self-adjoint operators acting on a Hilbert space H, and also on the nest algebras over H. They proved that such mappings are necessarily additive and obtained their general form. Also Ji and Liu in [9] studied Jordan multiplicative maps on Jordan operator algebras and showed that every bijection, satisfying (1.4), from a standard Jordan operator algebra acting on a Hilbert space of dimension at least 2 onto an arbitrary Jordan algebra is additive. Some other results on additivity of Jordan multiplicative maps on operator algebras can be found in [5, 6, 15].

Throughout this paper H is a Hilbert space with $\dim(H) > 1$, $\mathfrak{B}(H)$ is the C^* -algebra of all bounded linear operators acting on H and $\mathfrak{B}_s(H)$ denotes the self-adjoint part of $\mathfrak{B}(H)$. One can easily observe that $\mathfrak{B}_s(H)$ is closed under the Jordan product which means that it is a special Jordan algebra over the field of real numbers. By $\mathfrak{F}_s(H)$ we denote the Jordan ideal of all self-adjoint finite rank operators in $\mathfrak{B}_s(H)$. We recall that each self-adjoint rank one operator on H is of the form $\alpha x \otimes x$ for some $0 \neq x \in H$ and some $0 \neq \alpha \in \mathbb{R}$ and rank one projections are exactly of the form $x \otimes x$ for some unit vector $x \in H$. Moreover, each self-adjoint finite rank operator is a real linear combination of pairwise orthogonal rank one projections.

By a real Jordan operator algebra acting on a Hilbert space H, we mean a Jordan subalgebra of $\mathfrak{B}_s(H)$ and if it is norm closed, then it is called a JC-algebra, we refer the reader to [7] for more details. A real Jordan operator algebra is said to be standard if it contains $\mathfrak{F}_s(H)$. Note that if a real standard Jordan operator algebra is unital, then the unit element is necessarily the identity operator I on H because it belongs to the commutant of $\mathfrak{F}_s(H)$ in $\mathfrak{B}(H)$.

Being interested in different Jordan multiplicative structures we are going to examine the product $A^2 \circ B$ in a real standard Jordan operator algebra. This product was used in [3] to define orthogonality in a *JB*-algebra, see [7] for more about *JB*-algebras. Let \mathcal{A} be a unital real standard Jordan operator algebra acting on a Hilbert space H of dimension at least 2. We will show that if $\phi : \mathcal{A} \to \mathcal{A}$ is a bijection satisfying $\phi(A^2 \circ B) = \phi(A)^2 \circ \phi(B)$ for all $A, B \in \mathcal{A}$, then $\phi = \varepsilon \psi$ where $\varepsilon \in \{-1, 1\}$ and ψ is an automorphism; that is ψ is a linear bijection satisfying $\psi(A \circ B) = \psi(A) \circ \psi(B)$ for all $A, B \in \mathcal{A}$. As a consequence, if $\mathcal{A} = \mathfrak{B}_s(H)$, then we will show that there exists a unitary or conjugate unitary operator U on H such that $\phi(A) = \varepsilon UAU^*$ for all $A \in \mathfrak{B}_s(H)$, where $\varepsilon \in \{-1, 1\}$.

If dim(H) = 1, then any real standard operator algebra acting on H is trivially identified by \mathbb{R} . Molnár in [14] gives an example of a bijective multiplicative function $h : \mathbb{C} \to \mathbb{C}$ which is not additive. It is easy to see that the restriction of this function to \mathbb{R} is a multiplicative bijection which is not additive. Thus the condition dim(H) > 1 can not be dropped from our assumption.

2. Characterizing maps preserving $A^2 \circ B$

Let \mathcal{A}, \mathcal{B} be special Jordan algebras. We recall that a linear map $\phi : \mathcal{A} \to \mathcal{B}$ is a homomorphism, that is $\phi(A \circ B) = \phi(A) \circ \phi(B)$ for all $A, B \in \mathcal{A}$, if and only if $\phi(A^2) = \phi(A)^2$ for all $A \in \mathcal{A}$.

Theorem 2.1. Let \mathcal{A} be a unital real standard Jordan operator algebra acting on a Hilbert space H of dimension > 1 and let $\phi : \mathcal{A} \to \mathcal{A}$ be a bijection satisfying

(2.1)
$$\phi(A^2 \circ B) = \phi(A)^2 \circ \phi(B) \quad (A, B \in \mathcal{A}).$$

Then $\phi = \varepsilon \psi$ where ψ is an automorphism on \mathcal{A} and $\varepsilon \in \{-1, 1\}$.

Proof. First of all we note that ϕ^{-1} also satisfies (2.1), so all the results which are proved in the sequel may apply to ϕ^{-1} , as well. Now we proceed in some steps.

Step 1. $\phi(0) = 0$.

Since ϕ is surjective, there exists $A \in \mathcal{A}$ such that $\phi(A) = 0$. Thus we have $\phi(0) = \phi(\frac{1}{2}(A^20 + 0A^2)) = \frac{1}{2}(\phi(A)^2\phi(0) + \phi(0)\phi(A)^2) = 0$. **Step 2.** $\phi(I) = \varepsilon I$ where $\varepsilon \in \{-1, 1\}$.

There exists $B \in \mathcal{A}$ such that $\phi(B) = I$. We have

$$\phi(B) = \phi\left(\frac{I^2B + BI^2}{2}\right) = \frac{\phi(I)^2\phi(B) + \phi(B)\phi(I)^2}{2} = \phi(I)^2.$$

Thus $\phi(I)^2 = I$. Also, for each $A \in \mathcal{A}$ we have

$$\phi(A^2) = \phi(A^2 \circ I) = \frac{\phi(A)^2 \phi(I) + \phi(I)\phi(A)^2}{2}.$$

Therefore

(2.2)
$$\phi(A^2)\phi(I) = \phi(I)\phi(A^2) \quad (A \in \mathcal{A}).$$

Now for each $A \in \mathcal{A}$

$$\begin{split} \phi(A^4) &= \frac{1}{2} \left(\phi(A)^2 \phi(A^2) + \phi(A^2) \phi(A)^2 \right) \\ &= \frac{1}{2} \left(\phi(A)^2 \left(\frac{\phi(A)^2 \phi(I) + \phi(I) \phi(A)^2}{2} \right) + \left(\frac{\phi(A)^2 \phi(I) + \phi(I) \phi(A)^2}{2} \right) \phi(A)^2 \right) \\ &= \frac{1}{4} \phi(A)^4 \phi(I) + \frac{1}{2} \phi(A)^2 \phi(I) \phi(A)^2 + \frac{1}{4} \phi(I) \phi(A)^4. \end{split}$$

Since $\phi(I)^2 = I$ we get

$$\phi(I)\phi(A^4) = \frac{1}{4}\phi(I)\phi(A)^4\phi(I) + \frac{1}{2}\phi(I)\phi(A)^2\phi(I)\phi(A)^2 + \frac{1}{4}\phi(A)^4,$$

and

$$\phi(A^4)\phi(I) = \frac{1}{4}\phi(A)^4 + \frac{1}{2}\phi(A)^2\phi(I)\phi(A)^2\phi(I) + \frac{1}{4}\phi(I)\phi(A)^4\phi(I).$$

It follows from (2.2) that

$$\phi(A)^2 \phi(I)\phi(A)^2 \phi(I) = \phi(I)\phi(A)^2 \phi(I)\phi(A)^2 \quad (A \in \mathcal{A}).$$

In particular, since ϕ is surjective, for every projection $P \in \mathcal{A}$ we have $P\phi(I)P\phi(I) = \phi(I)P\phi(I)P$. Let x be an arbitrary unit vector in H. Then for each $y \in H$

$$(x \otimes x)\phi(I)(x \otimes x)\phi(I)(y) = \phi(I)(x \otimes x)\phi(I)(x \otimes x)(y)$$

and hence

$$\langle \phi(I)y, x \rangle \langle \phi(I)x, x \rangle x = \langle y, x \rangle \langle \phi(I)x, x \rangle \phi(I)(x) \quad (y \in H).$$

By taking y = x we arrive at

(2.3)
$$\langle \phi(I)x, x \rangle^2 x = \langle \phi(I)x, x \rangle \phi(I)(x) \quad (x \in H).$$

Take $\lambda_x = \langle \phi(I)x, x \rangle$ then by (2.3), $\lambda_x^2 x = \lambda_x \phi(I)(x)$ and since $\phi(I)^2 = I$, $\lambda_x^2 \phi(I)x = \lambda_x x$. Therefore

$$\lambda_x = \lambda_x \langle x, x \rangle = \langle \lambda_x x, x \rangle = \langle \lambda_x^2 \phi(I) x, x \rangle = \lambda_x^2 \langle \phi(I) x, x \rangle = \lambda_x^3.$$

Hence $\lambda_x \in \{-1, 0, 1\}$. Let $W(\cdot)$ denote the numerical range. Since the unit vector $x \in H$ was chosen arbitrarily

$$W(\phi(I)) = \{ \langle \phi(I)x, x \rangle; \| x \| = 1 \} = \{ \lambda_x; \| x \| = 1 \} \subseteq \{ -1, 0, 1 \}.$$

We know that the numerical range of an operator is a convex set so, $W(\phi(I)) = \{1\}$ or $\{-1\}$ or $\{0\}$. But if $W(\phi(I)) = \{0\}$, then $\phi(I) = 0$, a contradiction. Thus $\phi(I) = I$ or $\phi(I) = -I$.

Step 3. We may assume that $\phi(I) = I$. In this case $\phi(-I) = -I$.

If $\phi(I) = -I$, then $\psi = -\phi$ also satisfies (2.1) and $\psi(I) = I$. So without loss of generality, we assume that $\phi(I) = I$.

Now suppose that $B \in \mathcal{A}$ satisfies $\phi(B) = -I$. Then

$$\phi(B) = \phi(B \circ (-I)^2) = \phi(B) \circ \phi(-I)^2 = -\phi(-I)^2.$$

Thus $\phi(-I)^2 = I$. For each $A \in \mathcal{A}$ we have

(2.4)
$$\phi(-A^2) = \frac{\phi(-I)\phi(A)^2 + \phi(A)^2\phi(-I)}{2}$$

Multiplying (2.4) by $\phi(-I)$ from right and left, respectively, we get

(2.5)
$$\phi(-A^2)\phi(-I) = \phi(-I)\phi(-A^2) \quad (A \in \mathcal{A}) .$$

Now a similar argument as in Step 2 shows that

$$\phi(-A^4) = \frac{\phi(-I)\phi(A)^4 + 2\phi(A)^2\phi(-I)\phi(A)^2 + \phi(A)^4\phi(-I)}{4}$$

Again by multiplying the last equation by $\phi(-I)$ from right and left, respectively, and using (2.5) we arrive at

$$\phi(A)^2 \phi(-I)\phi(A)^2 \phi(-I) = \phi(-I)\phi(A)^2 \phi(-I)\phi(A)^2 \quad (A \in \mathcal{A})$$

The same reasoning as in Step 2 and using the fact that ϕ is injective implies that $\phi(-I) = -I$.

Step 4. For each $A \in \mathcal{A}$, $\phi(A^2) = \phi(A)^2$ and therefore ϕ preserves projections and positive elements in both directions.

It is clear from Step 3.

Step 5. For every positive finite rank $A \in \mathcal{A}$ we have

$$\phi(A \circ B) = \phi(A) \circ \phi(B) \quad (B \in \mathcal{A}).$$

In particular, $\phi(-A) = -\phi(A)$.

Let A be a positive finite rank operator in \mathcal{A} . Therefore, the positive square root C of A is also of finite rank and hence belongs to \mathcal{A} . By Step 4

$$\phi(A \circ B) = \phi(C^2 \circ B)$$
$$= \phi(C)^2 \circ \phi(B)$$
$$= \phi(C^2) \circ \phi(B)$$
$$= \phi(A) \circ \phi(B).$$

The last assertion is now directly obtained by taking B = -I.

Step 6. ϕ preserves orthogonality of projections in both directions. Suppose P, Q are projections in \mathcal{A} satisfying PQ = QP = 0. We have

$$0 = \phi(PQ) = \phi(P \circ Q) = \frac{\phi(P)\phi(Q) + \phi(Q)\phi(P)}{2}.$$

By Step 4, $\phi(P)$ and $\phi(Q)$ are projections. Now, multiplying the above equality by $\phi(Q)$ form left and right, respectively, implies that $\phi(Q)\phi(P) = \phi(P)\phi(Q) = 0$.

Step 7. ϕ preserves the order of projections in both directions. If $P, Q \in \mathcal{A}$ are projections and $P \leq Q$, then PQ = QP = P and by Step 4

$$\phi(P) = \phi\left(\frac{1}{2}(PQ + QP)\right) = \frac{1}{2}(\phi(P)\phi(Q) + \phi(Q)\phi(P)).$$

Multiplying this equality by $\phi(Q)$ from right and left, respectively, shows that

$$\phi(P)\phi(Q) = \phi(Q)\phi(P).$$

Therefore, $\phi(P)\phi(Q) = \phi(Q)\phi(P) = \phi(P)$ and the result follows.

Step 8. ϕ preserves the rank of finite rank projections in both directions and it is orthogonally additive on finite rank projections. Moreover, $\phi(\mathfrak{F}_s(H)) \subseteq \mathfrak{F}_s(H)$.

For the first two assertions, the same argument as in Step 4 and Step 5 of Theorem 2.1 in [2] gives the result. If $A \in \mathfrak{F}_s(H)$, then there exists a finite rank projection P such that PA = AP = A. By Step 5 we have

$$\phi(A) = \phi(\frac{1}{2}(AP + PA)) = \frac{1}{2}(\phi(A)\phi(P) + \phi(P)\phi(A)),$$

which implies that $\phi(A)$ is also of finite rank.

Step 9. Let $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ and let P_1, \ldots, P_n be pairwise orthogonal finite rank projections. Then

$$\phi(\sum_{i=1}^n \lambda_i P_i) = \sum_{i=1}^n \phi(\lambda_i P_i).$$

This equality follows by the same argument as in Step 6 in [2, Theorem 2.2] as well as a part of the proof of Theorem 1 in [14].

Step 10. For each rank one projection P and each $\lambda \in \mathbb{R}$ there exists $\mu \in \mathbb{R}$ such that $\lambda \phi(P) = \phi(\mu P)$.

Suppose that P is a rank one projection, $\lambda \in \mathbb{R}$, and $A \in \mathcal{A}$ satisfies $\phi(A) = \lambda \phi(P)$. By Step 8, rank $(\phi(A)) = 1$. Thus there exists a nonzero vector $z \in H$ and $0 \neq \alpha \in \mathbb{R}$ such that $A = \alpha z \otimes z$. We have $\phi(P)\phi(A) = \phi(A)\phi(P) = \lambda \phi(P)$ and so $\phi(A \circ P) = \lambda \phi(P) = \phi(A)$. Since ϕ is injective $A \circ P = A$ and it follows that

$$(2.6) PA = AP = A \circ P = A$$

Let x be the unit vector in H such that $P = x \otimes x$. By (2.6) $(x \otimes x)(z \otimes z) = z \otimes z$, hence for each $y \in H$

$$\langle y, z \rangle \langle z, x \rangle x = \langle y, z \rangle z$$

which implies that x and z are linearly dependent. So there exists $\mu \in \mathbb{R}$ such that $A = \mu P$.

Step 11. $\phi(PTP) = \phi(P)\phi(T)\phi(P)$ for all positive T in $\mathfrak{F}_s(H)$ and all projections P in $\mathfrak{F}_s(H)$.

Let $T \in \mathfrak{F}_s(H)$ be a positive operator and let $P \in \mathfrak{F}_s(H)$ be a projection. Choose a finite rank projection $Q \in \mathfrak{F}_s(H)$ such that QP = PQ = P and TQ = QT = T. We have

$$P \circ ((2P - Q) \circ T) = PTP.$$

Thus by Step 5 we get

$$\phi(P) \circ \left(\phi(2P - Q) \circ \phi(T)\right) = \phi(PTP)$$

We show that $\phi(2P-Q) = 2\phi(P) - \phi(Q)$. Since Q-P is a projection orthogonal to P and $P \leq Q$, by Step 9, Step 5 and Step 8

$$\phi(2P - Q) = \phi(P - (Q - P))$$
$$= \phi(P) + \phi(-(Q - P))$$
$$= \phi(P) - \phi(Q - P)$$
$$= \phi(P) - (\phi(Q) - \phi(P))$$
$$= 2\phi(P) - \phi(Q).$$

So, we have $\phi(PTP) = \phi(P)\phi(T)\phi(P)$.

Step 12. $\phi(\lambda I) = \lambda \phi(I)$ for all $\lambda \in \mathbb{R}$.

Fix an arbitrary real number λ , and let $B_{\lambda} \in \mathcal{A}$ satisfy $B_{\lambda} = \phi(\lambda I)$. We show that $B_{\lambda} = \lambda I$. Let x be a unit vector in H and $P = x \otimes x$. Since ϕ^{-1} satisfies (2.1) it also satisfies all the steps proved to this stage. By Step 5 and Step 10 we have $\phi^{-1}(B_{\lambda} \circ P) = \phi^{-1}(B_{\lambda}) \circ \phi^{-1}(P) = \lambda \phi^{-1}(P) = \phi^{-1}(\mu_{x,\lambda}P)$ for some $\mu_{x,\lambda} \in \mathbb{R}$. Since ϕ^{-1} is injective, $P \circ B_{\lambda} = \mu_{x,\lambda}P$. It is easily seen that $B_{\lambda}P = PB_{\lambda} = P \circ B_{\lambda} = \mu_{x,\lambda}P$, and so

$$B_{\lambda}(x \otimes x(y)) = \mu_{x,\lambda} x \otimes x \ (y) \quad (y \in H).$$

Take y = x, we get $B_{\lambda}x = \mu_{x,\lambda}x$. We have shown that, for every $\lambda \in \mathbb{R}$ and every unit vector $x \in H$, there exists $\mu_{x,\lambda} \in \mathbb{R}$ such that $\phi(\lambda I)(x) = \mu_{x,\lambda}x$.

First of all, we show that $\mu_{x,\lambda}$ does not depend on x. Let x, y be unit vectors in H with $x \neq y$, $\alpha = ||x - y||$ and $z = \alpha^{-1}(x - y)$. Then z is a unit vector and

$$B_{\lambda}(x) - B_{\lambda}(y) = \alpha B_{\lambda}(z) = \alpha \mu_{z,\lambda} z = \mu_{z,\lambda}(x-y),$$

hence

(2.7)
$$(\mu_{x,\lambda} - \mu_{z,\lambda})x = (\mu_{y,\lambda} - \mu_{z,\lambda})y.$$

Now, if x and y are linearly independent, then by (2.7), $\mu_{x,\lambda} = \mu_{z,\lambda} = \mu_{y,\lambda}$; and if $y = \beta x$ for some scalar β , then $\mu_{y,\lambda}y = B_{\lambda}(y) = \beta B_{\lambda}(x) = \beta \mu_{x,\lambda}x = \mu_{x,\lambda}y$ and hence $\mu_{x,\lambda} = \mu_{y,\lambda}$. This means that $\mu_{x,\lambda}$ does not depend on x. Since λ was arbitrarily chosen, it follows that there exists a function $h : \mathbb{R} \to \mathbb{R}$ such that

$$\phi(\lambda I) = h(\lambda)I \quad (\lambda \in \mathbb{R})$$

By Step 3, h(1) = 1 and h(-1) = -1. Also from Step 5 for every finite rank projection P we have $\phi(\lambda P) = \phi(\lambda I \circ P) = h(\lambda)\phi(P)$ for all $\lambda \in \mathbb{R}$. If $\lambda_1, \lambda_2 \in \mathbb{R}$ and $\lambda_1 \geq 0$, then again by Step 5 for each finite rank projection P

$$h(\lambda_1\lambda_2)\phi(P) = \phi(\lambda_1\lambda_2P) = \phi(\lambda_2I) \circ \phi(\lambda_1P) = h(\lambda_1)h(\lambda_2)\phi(P).$$

Hence

(2.8)
$$h(\lambda_1\lambda_2) = h(\lambda_1)h(\lambda_2) \quad (\lambda_1,\lambda_2 \in \mathbb{R}, \lambda_1 \ge 0).$$

Now suppose that $\lambda_1, \lambda_2 \leq 0$. Since h(-1) = -1 by (2.8) for each projection $P \in \mathfrak{F}_s(H)$

$$h(\lambda_1\lambda_2)\phi(P) = \phi(\lambda_1\lambda_2P) = \phi(|\lambda_1| |\lambda_2|P)$$

= $h(|\lambda_1|)h(|\lambda_2|)\phi(P)$
= $(-h(|\lambda_1|))(-h(|\lambda_2|))\phi(P)$
= $h(\lambda_1)h(\lambda_2)\phi(P).$

Therefore, $h(\lambda_1\lambda_2) = h(\lambda_1)h(\lambda_2)$ for all $\lambda_1, \lambda_2 \in \mathbb{R}$. Now, the same reasoning as in Step 8 of [2, Theorem 2.2] shows that $h(\lambda) = \lambda$ for all $\lambda \in \mathbb{R}$ and it follows that $\phi(\lambda I) = \lambda I$ for all $\lambda \in \mathbb{R}$.

Step 13. $\phi(\lambda A) = \lambda \phi(A)$ for every $\lambda \in \mathbb{R}$ and $A \in \mathfrak{F}_s(H)$. By Step 12, for all rank one projections $P \in \mathfrak{F}_s(H)$ and all $\lambda \in \mathbb{R}$, $\phi(\lambda P) = \lambda \phi(P)$ and the result follows by Step 9.

Step 14. ϕ is a Jordan homomorphism on $\mathfrak{F}_s(H)$.

Using Step 4 and Step 13, it is enough to show that ϕ is additive on $\mathfrak{F}_s(H)$. Let A, B be positive finite rank operators and let $P = x \otimes x$ be a rank one projection. It follows from Step 11 that

$$\phi(P)\phi(A+B)\phi(P) = \langle (A+B)x, x \rangle \phi(P)$$

= $\langle Ax, x \rangle \phi(P) + \langle Bx, x \rangle \phi(P)$
= $\phi(PAP) + \phi(PBP)$
= $\phi(P)\phi(A)\phi(P) + \phi(P)\phi(B)\phi(P)$

$$= \phi(P) \big(\phi(A) + \phi(B) \big) \phi(P).$$

Therefore $\phi(P)\phi(A+B)\phi(P) = \phi(P)(\phi(A) + \phi(B))\phi(P)$ for each rank one projection P. Thus

(2.9)
$$\phi(A+B) = \phi(A) + \phi(B) \quad (A, B \in \mathfrak{F}_s(H), \ A, B \ge 0).$$

Next we show that $\phi(A - B) = \phi(A) - \phi(B)$, if $A, B \in \mathfrak{F}_s(H)$ are positive operators. First let $A \ge B \ge 0$. Since $A - B \ge 0$, by Step 11 for every rank one projection P

$$\phi(P)\phi(A-B)\phi(P) = \phi(P(A-B)P).$$

A similar argument as for $\phi(A+B)$ shows that

$$\phi(P)\phi(A-B)\phi(P) = \phi(P)(\phi(A) - \phi(B))\phi(P)$$

for each rank one projection P. Hence

(2.10)
$$\phi(A-B) = \phi(A) - \phi(B) \quad (A, B \in \mathfrak{F}_s(H), A \ge B \ge 0).$$

Now, let A and B be arbitrary positive operators in $\mathfrak{F}_s(H)$. There exist orthogonal rank one projections P_1, \ldots, P_n in $\mathfrak{F}_s(H)$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that $A - B = \sum_{i=1}^n \lambda_i P_i$. Let $E \subseteq \{1, \ldots, n\}$ be the set of all indices *i* for which $\lambda_i \geq 0$ and $S = \{1, \ldots, n\} \setminus E$. Then

$$A - B = \sum_{i \in E} \lambda_i P_i + \sum_{i \in S} \lambda_i P_i.$$

We have

$$-\sum_{i\in S}\lambda_i P_i \ge 0, \ A - \sum_{i\in S}\lambda_i P_i \ge B \ge 0.$$

Thus by (2.10) and (2.9)

$$(2.11) \ \phi\left(\sum_{i\in E}\lambda_i P_i\right) = \phi\left(A - \sum_{i\in S}\lambda_i P_i\right) - \phi(B) = \phi(A) + \phi\left(-\sum_{i\in S}\lambda_i P_i\right) - \phi(B).$$

On the other hand by Step 9 and Step 5 and (2.11)

$$\phi(A - B) = \sum_{i=1}^{n} \phi(\lambda_i P_i)$$

= $\sum_{i \in E} \phi(\lambda_i P_i) + \sum_{i \in S} \phi(\lambda_i P_i)$
= $\phi(\sum_{i \in E} \lambda_i P_i) - \phi(-\sum_{i \in S} \lambda_i P_i)$
= $\phi(A) - \phi(B).$

Thus

(2.12)
$$\phi(A-B) = \phi(A) - \phi(B) \quad (A, B \in \mathfrak{F}_s(H), \ A, B \ge 0).$$

Finally, let $A, B \in \mathfrak{F}_s(H)$ be arbitrary elements. Then $A = A_1 - A_2$ and $B = B_1 - B_2$ where A_1, A_2, B_1, B_2 are positive finite rank operators. Hence by (2.12) and (2.9)

$$\phi(A+B) = \phi(A_1 + B_1 - (A_2 + B_2))$$

= $\phi(A_1 + B_1) - \phi(A_2 + B_2)$
= $\phi(A_1) - \phi(A_2) + \phi(B_1) - \phi(B_2)$
= $\phi(A) + \phi(B).$

Step 15. ϕ is a Jordan automorphism on \mathcal{A} . First we show that $\phi(\lambda A) = \lambda \phi(A)$ for all $A \in \mathcal{A}$ and all $\lambda \in \mathbb{R}$. Let P be an arbitrary rank one projection, $A \in \mathcal{A}$ and $\lambda \in \mathbb{R}$. Then by Step 5 and Step 13 we have

$$\phi(\lambda A) \circ \phi(P) = \phi(\lambda A \circ P) = \lambda \phi(A \circ P) = \lambda \phi(A) \circ \phi(P).$$

Thus $\phi(\lambda A) = \lambda \phi(A)$. Also from Step 5 and Step 14, for all $A, B \in \mathcal{A}$ and all finite rank projections P,

$$\phi(A+B) \circ \phi(P) = \phi((A+B) \circ P)$$

= $\phi(A \circ P + B \circ P)$
= $\phi(A \circ P) + \phi(B \circ P)$
= $\phi(A) \circ \phi(P) + \phi(B) \circ \phi(P)$
= $(\phi(A) + \phi(B)) \circ \phi(P).$

Therefore $\phi(A + B) = \phi(A) + \phi(B)$, for all $A, B \in \mathcal{A}$ and so ϕ is additive on \mathcal{A} . It follows that ϕ is linear and since $\phi(A^2) = \phi(A)^2$ for all $A \in \mathcal{A}$, ϕ is an automorphism on the special Jordan algebra \mathcal{A} .

Finally, if in Step 3 we assume that $\phi(I) = -I$, then $-\phi$ is an automorphism. So in general, $\phi = \varepsilon \psi$ where ψ is an automorphism and $\varepsilon \in \{-1, 1\}$. \Box

Corollary 2.2. Let H be a Hilbert space with dim H > 1 and let \mathcal{A} be a unital standard JC-subalgebra of $\mathfrak{B}_s(H)$ and let ϕ be a bijection on \mathcal{A} satisfying

$$\phi(A^2 \circ B) = \phi(A)^2 \circ \phi(B) \quad (A, B \in \mathcal{A}).$$

Then $\phi = \varepsilon \psi$ where ψ is an automorphism and $\varepsilon \in \{-1, 1\}$. Moreover, ϕ is an isometry.

Proof. It is a well known result that any isomorphism between JC-algebras is an isometry. \Box

We recall from [4] that two self-adjoint operators A, B acting on a Hilbert space H are said to be adjacent if A - B is a rank one operator. A map $\phi : \mathfrak{B}_s(H) \to \mathfrak{B}_s(H)$ preserves adjacency if for each $A, B \in \mathfrak{B}_s(H), \phi(A)$ is adjacent to $\phi(B)$ whenever A, B are so.

Corollary 2.3. Let H be a Hilbert space with dim H > 1 and let $\phi : \mathfrak{B}_s(H) \to \mathfrak{B}_s(H)$ be a bijection. Then the following statements are equivalent.

- (i) $\phi(A^2 \circ B) = \phi(A)^2 \circ \phi(B)$ for all $A, B \in \mathcal{B}_s(H)$.
- (ii) There exists a unitary or conjugate unitary operator U on H such that $\phi(A) = \varepsilon UAU^*$ for all $A \in \mathfrak{B}_s(H)$, where $\varepsilon \in \{-1, 1\}$.

Proof. If ϕ satisfies (i), then by Theorem 2.1 and Corollary 2.2, ϕ clearly preserves adjacency in both directions and is continuous. Therefore, by Theorem 1.3 and Corollary 1.1 of [4] or Step 11 of Theorem 2.2 in [2] there exists a unitary or conjugate unitary operator $U: H \to H$, such that $\phi(A) = \varepsilon UAU^*$ for all $A \in \mathfrak{B}_s(H)$. The reverse conclusion is trivial

Remark 2.4. There is also an alternative argument for the proof of Corollary 2.3. Consider the automorphism ψ in Corollary 2.2 then define $\Psi : \mathfrak{B}(H) \to \mathfrak{B}(H)$ by $\Psi(A+iB) = \psi(A) + i\psi(B)$ for $A, B \in \mathfrak{B}_{sa}(H)$. Then Ψ is a Jordan *-automorphism on $\mathfrak{B}(H)$. It is a classical well known result that Ψ must be a *-automorphism or a *-antiautomorphism (both with respect to the associative structure of $\mathfrak{B}(H)$) and now the result follows from [15, Theorem A.8].

References

- R. L. An and J. C. Hou, Characterizations of Jordan †-skew multiplicative maps on operator algebras of indefinite inner product spaces, Chin. Ann. Math. Ser. B 26 (2005), no. 4, 569–582.
- [2] _____, Additivity of Jordan multiplicative maps on Jordan operator algebras, Taiwanese J. Math. 10 (2006), no. 1, 45–64.
- [3] M. Battaglia, Annihilators in JB-algebras, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 2, 317–323.
- [4] Q. H. Di, X. F. Du, and J. C. Hou, Adjacency preserving maps on the space of selfadjoint operators, Chin. Ann. Math. Ser. B 26 (2005), no. 2, 305–314.
- [5] J. Hakeda, Additivity of Jordan *-maps on AW*-algebras, Proc. Amer. Math. Soc. 96 (1986), no. 3, 413–420.
- [6] J. Hakeda and K. Saito, Additivity of Jordan *-maps between operator algebras, J. Math. Soc. Japan 38 (1986), no. 3, 403–408.
- [7] H. Hanche-Olsen and E. Størmer, Jordan Operator Algebras, Pitman, Boston-London-Melbourne, 1984.
- [8] S. H. Hochwald, Multiplicative maps on matrices that preserve the spectrum, Linear Algebra Appl. 212/213 (1994), 339–351.
- [9] P. Ji and Z. Liu, Additivity of Jordan maps on standard Jordan operator algebras, Linear Algebra Appl. 430 (2009), no. 1, 335–343.
- [10] F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002), 123–131.
- [11] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969), no. 3, 695–698.
- [12] L. Molnár, Some multiplicative preservers on B(H), Linear Algebra Appl. 301 (1999), no. 1-3, 1–13.
- [13] _____, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), no. 3, 295–302.
- [14] _____, Jordan maps on standard operator algebras, in: Functional Equations Results and Advances, Z. Daróczy and Zs. Páles (eds.), Adv. Math. 3, 305–320, Kluwer, Dordrecht, 2002.

- [15] _____, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Math. 1895, Springer, Berlin-Heidelberg-New York, 2007.
- [16] P. Šemrl, Isomorphisms of standard operator algebras, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1851–1855.

Somaye Ghorbanipour Department of Pure Mathematics Ferdowsi University of Mashhad P.O. Box 1159, Mashhad 91775, Iran *E-mail address*: ghorbanipour.s@gmail.com

SHIRIN HEJAZIAN DEPARTMENT OF PURE MATHEMATICS FERDOWSI UNIVERSITY OF MASHHAD P.O. BOX 1159, MASHHAD 91775, IRAN *E-mail address:* hejazian@um.ac.ir