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MAPS PRESERVING SOME MULTIPLICATIVE

STRUCTURES ON STANDARD JORDAN

OPERATOR ALGEBRAS

Somaye Ghorbanipour and Shirin Hejazian

Abstract. Let A be a unital real standard Jordan operator algebra act-
ing on a Hilbert space H of dimension at least 2. We show that every
bijection φ on A satisfying φ(A2◦B) = φ(A)2◦φ(B) is of the form φ = εψ

where ψ is an automorphism on A and ε ∈ {−1, 1}. As a consequence if
A is the real algebra of all self-adjoint operators on a Hilbert space H,
then there exists a unitary or conjugate unitary operator U on H such
that φ(A) = εUAU∗ for all A ∈ A.

1. Introduction

The study of linear preserver problems on matrix algebras and operator al-
gebras is a long lasting but still a very active research area in matrix algebras
and operator algebras, for a review of this subject see [15]. In a purely algebraic
point of view Martindale in [11] started to study multiplicative bijections on
rings and proved that every multiplicative bijection from a prime ring contain-
ing a nontrivial idempotent onto an arbitrary ring is necessarily additive. This
result shows that the multiplicative structure of a ring can determine its ring
structure.

When we are dealing with an algebra it is also interesting to consider its
Jordan structure. Following Martindale’s achievement [11] a natural question
arises. When a Jordan multiplicative map on an algebra is additive? We recall
that if A is an associative algebra, then the Jordan product on A is defined by
A ◦B = 1

2 (AB +BA) for A,B ∈ A. Although this product is not associative,
it satisfies

A ◦B = B ◦A and A2 ◦ (A ◦B) = A ◦ (A2 ◦B)

for all A,B ∈ A. This means that A with this product is a Jordan algebra,
see [7] for more about these objects. Every linear subspace B of an associa-
tive algebra A which is closed under the Jordan product, is called a Jordan
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subalgebra of A. Any Jordan algebra isomorphic to a Jordan subalgebra of an
associative algebra is said to be a special Jordan algebra, see [7, Section 2.3].
The Jordan triple product of elements A,B in a Jordan algebra A is defined
by

{ABA} = 2A ◦ (A ◦B)−A2 ◦B.
One may easily check that for any two elements A,B in a Jordan subalgebra
of an associative algebra (i.e., in a special Jordan algebra) we have {ABA} =
ABA.

From what we have already said, it follows that an associative algebra A
carries three important Jordan multiplicative structures

(1.1) (A,B) 7→ AB +BA

2
,

(1.2) (A,B) 7→ AB +BA ,

and

(1.3) (A,B) 7→ ABA = 2A ◦ (A ◦B)−A2 ◦B,
from A×A to A.

Now let A and B be algebras. A mapping φ : A → B is a Jordan multiplica-
tive map if for each A,B ∈ A it satisfies one of the following equations

(1.4) φ

(

AB +BA

2

)

=
φ(A)φ(B) + φ(B)φ(A)

2
;

(1.5) φ (AB +BA) = φ(A)φ(B) + φ(B)φ(A);

(1.6) φ (ABA) = φ(A)φ(B)φ(A).

It is easy to see that, if φ is additive, then (1.4) and (1.5) are equivalent and
imply (1.6). Also if A,B are unital and φ is additive and unital, then these
three forms of Jordan multiplicativity are equivalent. But what happens if we
drop the assumption of additivity? Molnár in [13] showed that each bijection φ
between standard operator algebrasA and B satisfying (1.6) is additive and also
gave the general characterization of such mappings. Later Molnár in [14] and
Lu in [10] studied those bijections between standard operator algebras which
satisfy conditions (1.4) and (1.5), respectively. They proved that such mappings
are necessarily additive. The additivity of Jordan †-skew multiplicative maps
was proved in [1]. In [2], An and Hou considered bijective Jordan multiplicative
maps on the algebra of all self-adjoint operators acting on a Hilbert space H ,
and also on the nest algebras over H . They proved that such mappings are
necessarily additive and obtained their general form. Also Ji and Liu in [9]
studied Jordan multiplicative maps on Jordan operator algebras and showed
that every bijection, satisfying (1.4), from a standard Jordan operator algebra
acting on a Hilbert space of dimension at least 2 onto an arbitrary Jordan
algebra is additive. Some other results on additivity of Jordan multiplicative
maps on operator algebras can be found in [5, 6, 15].
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Throughout this paper H is a Hilbert space with dim(H) > 1, B(H) is the
C∗-algebra of all bounded linear operators acting on H and Bs(H) denotes the
self-adjoint part of B(H). One can easily observe that Bs(H) is closed under
the Jordan product which means that it is a special Jordan algebra over the field
of real numbers. By Fs(H) we denote the Jordan ideal of all self-adjoint finite
rank operators in Bs(H). We recall that each self-adjoint rank one operator
on H is of the form αx ⊗ x for some 0 6= x ∈ H and some 0 6= α ∈ R and
rank one projections are exactly of the form x⊗ x for some unit vector x ∈ H .
Moreover, each self-adjoint finite rank operator is a real linear combination of
pairwise orthogonal rank one projections.

By a real Jordan operator algebra acting on a Hilbert space H , we mean a
Jordan subalgebra of Bs(H) and if it is norm closed, then it is called a JC-
algebra, we refer the reader to [7] for more details. A real Jordan operator
algebra is said to be standard if it contains Fs(H). Note that if a real stan-
dard Jordan operator algebra is unital, then the unit element is necessarily the
identity operator I on H because it belongs to the commutant of Fs(H) in
B(H).

Being interested in different Jordan multiplicative structures we are going
to examine the product A2 ◦ B in a real standard Jordan operator algebra.
This product was used in [3] to define orthogonality in a JB-algebra, see [7]
for more about JB-algebras. Let A be a unital real standard Jordan operator
algebra acting on a Hilbert space H of dimension at least 2. We will show that
if φ : A → A is a bijection satisfying φ(A2 ◦B) = φ(A)2 ◦φ(B) for all A,B ∈ A,
then φ = εψ where ε ∈ {−1, 1} and ψ is an automorphism; that is ψ is a linear
bijection satisfying ψ(A◦B) = ψ(A)◦ψ(B) for all A,B ∈ A. As a consequence,
if A = Bs(H), then we will show that there exists a unitary or conjugate
unitary operator U on H such that φ(A) = εUAU∗ for all A ∈ Bs(H), where
ε ∈ {−1, 1}.

If dim(H) = 1, then any real standard operator algebra acting on H is
trivially identified by R. Molnár in [14] gives an example of a bijective multi-
plicative function h : C → C which is not additive. It is easy to see that the
restriction of this function to R is a multiplicative bijection which is not addi-
tive. Thus the condition dim(H) > 1 can not be dropped from our assumption.

2. Characterizing maps preserving A
2
◦ B

Let A,B be special Jordan algebras. We recall that a linear map φ : A → B
is a homomorphism, that is φ(A ◦ B) = φ(A) ◦ φ(B) for all A,B ∈ A, if and
only if φ(A2) = φ(A)2 for all A ∈ A.

Theorem 2.1. Let A be a unital real standard Jordan operator algebra acting

on a Hilbert space H of dimension > 1 and let φ : A → A be a bijection

satisfying

(2.1) φ(A2 ◦B) = φ(A)2 ◦ φ(B) (A,B ∈ A).
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Then φ = εψ where ψ is an automorphism on A and ε ∈ {−1, 1}.
Proof. First of all we note that φ−1 also satisfies (2.1), so all the results which
are proved in the sequel may apply to φ−1, as well. Now we proceed in some
steps.

Step 1. φ(0) = 0.
Since φ is surjective, there exists A ∈ A such that φ(A) = 0. Thus we have
φ(0) = φ

(

1
2 (A

20 + 0A2)
)

= 1
2

(

φ(A)2φ(0) + φ(0)φ(A)2
)

= 0.
Step 2. φ(I) = εI where ε ∈ {−1, 1}.

There exists B ∈ A such that φ(B) = I. We have

φ(B) = φ

(

I2B +BI2

2

)

=
φ(I)2φ(B) + φ(B)φ(I)2

2
= φ(I)2.

Thus φ(I)2 = I. Also, for each A ∈ A we have

φ(A2) = φ(A2 ◦ I) = φ(A)2φ(I) + φ(I)φ(A)2

2
.

Therefore

(2.2) φ(A2)φ(I) = φ(I)φ(A2) (A ∈ A).

Now for each A ∈ A

φ(A4) =
1

2

(

φ(A)2φ(A2) + φ(A2)φ(A)2
)

=
1

2

(

φ(A)2
(

φ(A)2φ(I) + φ(I)φ(A)2

2

)

+

(

φ(A)2φ(I) + φ(I)φ(A)2

2

)

φ(A)2
)

=
1

4
φ(A)4φ(I) +

1

2
φ(A)2φ(I)φ(A)2 +

1

4
φ(I)φ(A)4 .

Since φ(I)2 = I we get

φ(I)φ(A4) =
1

4
φ(I)φ(A)4φ(I) +

1

2
φ(I)φ(A)2φ(I)φ(A)2 +

1

4
φ(A)4,

and

φ(A4)φ(I) =
1

4
φ(A)4 +

1

2
φ(A)2φ(I)φ(A)2φ(I) +

1

4
φ(I)φ(A)4φ(I).

It follows from (2.2) that

φ(A)2φ(I)φ(A)2φ(I) = φ(I)φ(A)2φ(I)φ(A)2 (A ∈ A).

In particular, since φ is surjective, for every projection P ∈ A we have
Pφ(I)Pφ(I) = φ(I)Pφ(I)P . Let x be an arbitrary unit vector in H . Then
for each y ∈ H

(x⊗ x)φ(I)(x ⊗ x)φ(I)(y) = φ(I)(x ⊗ x)φ(I)(x ⊗ x)(y)

and hence

〈φ(I)y, x〉〈φ(I)x, x〉x = 〈y, x〉〈φ(I)x, x〉φ(I)(x) (y ∈ H).
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By taking y = x we arrive at

〈φ(I)x, x〉2x = 〈φ(I)x, x〉φ(I)(x) (x ∈ H).(2.3)

Take λx = 〈φ(I)x, x〉 then by (2.3), λ2xx = λxφ(I)(x) and since φ(I)2 = I,
λ2xφ(I)x = λxx. Therefore

λx = λx〈x, x〉 = 〈λxx, x〉 = 〈λ2xφ(I)x, x〉 = λ2x〈φ(I)x, x〉 = λ3x.

Hence λx ∈ {−1, 0, 1}. Let W (·) denote the numerical range. Since the unit
vector x ∈ H was chosen arbitrarily

W (φ(I)) = {〈φ(I)x, x〉; ‖ x ‖= 1} = {λx; ‖ x ‖= 1} ⊆ {−1, 0, 1}.
We know that the numerical range of an operator is a convex set so,W (φ(I)) =
{1} or {−1} or {0}. But if W (φ(I)) = {0}, then φ(I) = 0, a contradiction.
Thus φ(I) = I or φ(I) = −I.

Step 3. We may assume that φ(I) = I. In this case φ(−I) = −I.
If φ(I) = −I, then ψ = −φ also satisfies (2.1) and ψ(I) = I. So without loss
of generality, we assume that φ(I) = I.

Now suppose that B ∈ A satisfies φ(B) = −I. Then
φ(B) = φ

(

B ◦ (−I)2
)

= φ(B) ◦ φ(−I)2 = −φ(−I)2.
Thus φ(−I)2 = I. For each A ∈ A we have

(2.4) φ(−A2) =
φ(−I)φ(A)2 + φ(A)2φ(−I)

2
.

Multiplying (2.4 ) by φ(−I) from right and left, respectively, we get

(2.5) φ(−A2)φ(−I) = φ(−I)φ(−A2) (A ∈ A) .

Now a similar argument as in Step 2 shows that

φ(−A4) =
φ(−I)φ(A)4 + 2φ(A)2φ(−I)φ(A)2 + φ(A)4φ(−I)

4
.

Again by multiplying the last equation by φ(−I) from right and left, respec-
tively, and using (2.5) we arrive at

φ(A)2φ(−I)φ(A)2φ(−I) = φ(−I)φ(A)2φ(−I)φ(A)2 (A ∈ A) .

The same reasoning as in Step 2 and using the fact that φ is injective implies
that φ(−I) = −I.

Step 4. For each A ∈ A, φ(A2) = φ(A)2 and therefore φ preserves projec-

tions and positive elements in both directions.

It is clear from Step 3.
Step 5. For every positive finite rank A ∈ A we have

φ(A ◦B) = φ(A) ◦ φ(B) (B ∈ A).

In particular, φ(−A) = −φ(A).
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Let A be a positive finite rank operator in A. Therefore, the positive square
root C of A is also of finite rank and hence belongs to A. By Step 4

φ(A ◦B) = φ(C2 ◦B)

= φ(C)2 ◦ φ(B)

= φ(C2) ◦ φ(B)

= φ(A) ◦ φ(B).

The last assertion is now directly obtained by taking B = −I.
Step 6. φ preserves orthogonality of projections in both directions.

Suppose P,Q are projections in A satisfying PQ = QP = 0. We have

0 = φ(PQ) = φ(P ◦Q) =
φ(P )φ(Q) + φ(Q)φ(P )

2
.

By Step 4, φ(P ) and φ(Q) are projections. Now, multiplying the above equality
by φ(Q) form left and right, respectively, implies that φ(Q)φ(P ) = φ(P )φ(Q) =
0.

Step 7. φ preserves the order of projections in both directions.

If P,Q ∈ A are projections and P 6 Q, then PQ = QP = P and by Step 4

φ(P ) = φ
(1

2
(PQ+QP )

)

=
1

2

(

φ(P )φ(Q) + φ(Q)φ(P )
)

.

Multiplying this equality by φ(Q) from right and left, respectively, shows that

φ(P )φ(Q) = φ(Q)φ(P ).

Therefore, φ(P )φ(Q) = φ(Q)φ(P ) = φ(P ) and the result follows.
Step 8. φ preserves the rank of finite rank projections in both directions and

it is orthogonally additive on finite rank projections. Moreover, φ(Fs(H)) ⊆
Fs(H).
For the first two assertions, the same argument as in Step 4 and Step 5 of
Theorem 2.1 in [2] gives the result. If A ∈ Fs(H), then there exists a finite
rank projection P such that PA = AP = A. By Step 5 we have

φ(A) = φ
(1

2
(AP + PA)

)

=
1

2

(

φ(A)φ(P ) + φ(P )φ(A)
)

,

which implies that φ(A) is also of finite rank.
Step 9. Let λ1, . . . , λn ∈ R and let P1, . . . , Pn be pairwise orthogonal finite

rank projections. Then

φ(

n
∑

i=1

λiPi) =

n
∑

i=1

φ(λiPi).

This equality follows by the same argument as in Step 6 in [2, Theorem 2.2] as
well as a part of the proof of Theorem 1 in [14].

Step 10. For each rank one projection P and each λ ∈ R there exists

µ ∈ R such that λφ(P ) = φ(µP ).
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Suppose that P is a rank one projection, λ ∈ R, and A ∈ A satisfies φ(A) =
λφ(P ). By Step 8, rank(φ(A)) = 1. Thus there exists a nonzero vector z ∈ H

and 0 6= α ∈ R such that A = αz⊗z. We have φ(P )φ(A) = φ(A)φ(P ) = λφ(P )
and so φ(A ◦P ) = λφ(P ) = φ(A). Since φ is injective A ◦P = A and it follows
that

(2.6) PA = AP = A ◦ P = A.

Let x be the unit vector inH such that P = x⊗x. By (2.6) (x⊗x)(z⊗z) = z⊗z,
hence for each y ∈ H

〈y, z〉〈z, x〉x = 〈y, z〉z
which implies that x and z are linearly dependent. So there exists µ ∈ R such
that A = µP .

Step 11. φ(PTP ) = φ(P )φ(T )φ(P ) for all positive T in Fs(H) and all

projections P in Fs(H).
Let T ∈ Fs(H) be a positive operator and let P ∈ Fs(H) be a projection.
Choose a finite rank projection Q ∈ Fs(H) such that QP = PQ = P and
TQ = QT = T . We have

P ◦
(

(2P −Q) ◦ T
)

= PTP.

Thus by Step 5 we get

φ(P ) ◦
(

φ(2P −Q) ◦ φ(T )
)

= φ(PTP ).

We show that φ(2P−Q) = 2φ(P )−φ(Q). Since Q−P is a projection orthogonal
to P and P ≤ Q, by Step 9, Step 5 and Step 8

φ(2P −Q) = φ
(

P − (Q− P )
)

= φ(P ) + φ
(

− (Q − P )
)

= φ(P )− φ(Q − P )

= φ(P )−
(

φ(Q) − φ(P )
)

= 2φ(P )− φ(Q).

So, we have φ(PTP ) = φ(P )φ(T )φ(P ).
Step 12. φ(λI) = λφ(I) for all λ ∈ R.

Fix an arbitrary real number λ, and let Bλ ∈ A satisfy Bλ = φ(λI). We show
that Bλ = λI. Let x be a unit vector in H and P = x⊗ x. Since φ−1 satisfies
(2.1) it also satisfies all the steps proved to this stage. By Step 5 and Step
10 we have φ−1(Bλ ◦ P ) = φ−1(Bλ) ◦ φ−1(P ) = λφ−1(P ) = φ−1(µ

x,λ
P ) for

some µ
x,λ

∈ R. Since φ−1 is injective, P ◦ Bλ = µ
x,λ
P . It is easily seen that

BλP = PBλ = P ◦Bλ = µ
x,λ
P , and so

Bλ(x⊗ x(y)) = µ
x,λ
x⊗ x (y) (y ∈ H).

Take y = x, we get Bλx = µ
x,λ
x. We have shown that, for every λ ∈ R and

every unit vector x ∈ H , there exists µ
x,λ

∈ R such that φ(λI)(x) = µ
x,λ
x.
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First of all, we show that µ
x,λ

does not depend on x. Let x, y be unit vectors

in H with x 6= y, α = ‖x− y‖ and z = α−1(x− y). Then z is a unit vector and

Bλ(x)−Bλ(y) = αBλ(z) = αµ
z,λ
z = µ

z,λ
(x− y),

hence

(2.7) (µ
x,λ

− µ
z,λ

)x = (µ
y,λ

− µ
z,λ

)y.

Now, if x and y are linearly independent, then by (2.7), µ
x,λ

= µ
z,λ

= µ
y,λ

; and
if y = βx for some scalar β, then µ

y,λ
y = Bλ(y) = βBλ(x) = βµ

x,λ
x = µ

x,λ
y

and hence µ
x,λ

= µ
y,λ

. This means that µ
x,λ

does not depend on x. Since λ
was arbitrarily chosen, it follows that there exists a function h : R → R such
that

φ(λI) = h(λ)I (λ ∈ R).

By Step 3, h(1) = 1 and h(−1) = −1. Also from Step 5 for every finite rank
projection P we have φ(λP ) = φ(λI◦P ) = h(λ)φ(P ) for all λ ∈ R. If λ1, λ2 ∈ R

and λ1 ≥ 0, then again by Step 5 for each finite rank projection P

h(λ1λ2)φ(P ) = φ(λ1λ2P ) = φ(λ2I) ◦ φ(λ1P ) = h(λ1)h(λ2)φ(P ).

Hence

(2.8) h(λ1λ2) = h(λ1)h(λ2) (λ1, λ2 ∈ R, λ1 ≥ 0).

Now suppose that λ1, λ2 ≤ 0. Since h(−1) = −1 by (2.8) for each projection
P ∈ Fs(H)

h(λ1λ2)φ(P ) = φ(λ1λ2P ) = φ(|λ1| |λ2|P )
= h(|λ1|)h(|λ2|)φ(P )
=

(

− h(|λ1|)
)(

− h(|λ2|)
)

φ(P )

= h(λ1)h(λ2)φ(P ).

Therefore, h(λ1λ2) = h(λ1)h(λ2) for all λ1, λ2 ∈ R. Now, the same reasoning
as in Step 8 of [2, Theorem 2.2] shows that h(λ) = λ for all λ ∈ R and it follows
that φ(λI) = λI for all λ ∈ R.

Step 13. φ(λA) = λφ(A) for every λ ∈ R and A ∈ Fs(H).
By Step 12, for all rank one projections P ∈ Fs(H) and all λ ∈ R, φ(λP ) =
λφ(P ) and the result follows by Step 9.

Step 14. φ is a Jordan homomorphism on Fs(H).
Using Step 4 and Step 13, it is enough to show that φ is additive on Fs(H).
Let A,B be positive finite rank operators and let P = x ⊗ x be a rank one
projection. It follows from Step 11 that

φ(P )φ(A +B)φ(P ) = 〈(A+B)x, x〉φ(P )
= 〈Ax, x〉φ(P ) + 〈Bx, x〉φ(P )
= φ(PAP ) + φ(PBP )

= φ(P )φ(A)φ(P ) + φ(P )φ(B)φ(P )
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= φ(P )
(

φ(A) + φ(B)
)

φ(P ).

Therefore φ(P )φ(A + B)φ(P ) = φ(P )(φ(A) + φ(B))φ(P ) for each rank one
projection P . Thus

(2.9) φ(A +B) = φ(A) + φ(B) (A,B ∈ Fs(H), A,B ≥ 0).

Next we show that φ(A − B) = φ(A) − φ(B), if A,B ∈ Fs(H) are positive
operators. First let A > B > 0. Since A − B > 0, by Step 11 for every rank
one projection P

φ(P )φ(A −B)φ(P ) = φ
(

P (A−B)P
)

.

A similar argument as for φ(A +B) shows that

φ(P )φ(A −B)φ(P ) = φ(P )
(

φ(A) − φ(B)
)

φ(P )

for each rank one projection P . Hence

(2.10) φ(A −B) = φ(A)− φ(B)
(

A, B ∈ Fs(H), A ≥ B ≥ 0
)

.

Now, let A and B be arbitrary positive operators in Fs(H). There exist orthog-
onal rank one projections P1, . . . , Pn in Fs(H) and λ1, . . . , λn ∈ R such that
A − B =

∑n

i=1 λiPi. Let E ⊆ {1, . . . , n} be the set of all indices i for which
λi ≥ 0 and S = {1, . . . , n} \ E. Then

A−B =
∑

i∈E

λiPi +
∑

i∈S

λiPi.

We have

−
∑

i∈S

λiPi ≥ 0, A−
∑

i∈S

λiPi ≥ B ≥ 0.

Thus by (2.10) and (2.9)

(2.11) φ
(

∑

i∈E

λiPi

)

= φ
(

A−
∑

i∈S

λiPi)
)

−φ(B) = φ(A)+φ
(

−
∑

i∈S

λiPi

)

−φ(B).

On the other hand by Step 9 and Step 5 and (2.11)

φ(A−B) =

n
∑

i=1

φ(λiPi)

=
∑

i∈E

φ(λiPi) +
∑

i∈S

φ(λiPi)

= φ
(

∑

i∈E

λiPi

)

− φ
(

−
∑

i∈S

λiPi

)

= φ(A) − φ(B).

Thus

(2.12) φ(A −B) = φ(A) − φ(B) (A,B ∈ Fs(H), A,B ≥ 0).
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Finally, let A,B ∈ Fs(H) be arbitrary elements. Then A = A1 − A2 and
B = B1−B2 where A1, A2, B1, B2 are positive finite rank operators. Hence by
(2.12) and (2.9)

φ(A +B) = φ
(

A1 +B1 − (A2 +B2)
)

= φ(A1 +B1)− φ(A2 +B2)

= φ(A1)− φ(A2) + φ(B1)− φ(B2)

= φ(A) + φ(B).

Step 15. φ is a Jordan automorphism on A.

First we show that φ(λA) = λφ(A) for all A ∈ A and all λ ∈ R. Let P be an
arbitrary rank one projection, A ∈ A and λ ∈ R. Then by Step 5 and Step 13
we have

φ(λA) ◦ φ(P ) = φ(λA ◦ P ) = λφ(A ◦ P ) = λφ(A) ◦ φ(P ).
Thus φ(λA) = λφ(A). Also from Step 5 and Step 14, for all A,B ∈ A and all
finite rank projections P ,

φ(A +B) ◦ φ(P ) = φ((A +B) ◦ P )
= φ(A ◦ P +B ◦ P )
= φ(A ◦ P ) + φ(B ◦ P )
= φ(A) ◦ φ(P ) + φ(B) ◦ φ(P )
=

(

φ(A) + φ(B)
)

◦ φ(P ).
Therefore φ(A + B) = φ(A) + φ(B), for all A,B ∈ A and so φ is additive on
A. It follows that φ is linear and since φ(A2) = φ(A)2 for all A ∈ A, φ is an
automorphism on the special Jordan algebra A.

Finally, if in Step 3 we assume that φ(I) = −I, then −φ is an automorphism.
So in general, φ = εψ where ψ is an automorphism and ε ∈ {−1, 1}. �

Corollary 2.2. Let H be a Hilbert space with dimH > 1 and let A be a unital

standard JC-subalgebra of Bs(H) and let φ be a bijection on A satisfying

φ(A2 ◦B) = φ(A)2 ◦ φ(B) (A,B ∈ A).

Then φ = εψ where ψ is an automorphism and ε ∈ {−1, 1}. Moreover, φ is an

isometry.

Proof. It is a well known result that any isomorphism between JC-algebras is
an isometry. �

We recall from [4] that two self-adjoint operators A,B acting on a Hilbert
space H are said to be adjacent if A − B is a rank one operator. A map
φ : Bs(H) → Bs(H) preserves adjacency if for each A,B ∈ Bs(H), φ(A) is
adjacent to φ(B) whenever A,B are so.

Corollary 2.3. Let H be a Hilbert space with dimH > 1 and let φ : Bs(H) →
Bs(H) be a bijection. Then the following statements are equivalent.
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(i) φ(A2 ◦B) = φ(A)2 ◦ φ(B) for all A,B ∈ Bs(H).
(ii) There exists a unitary or conjugate unitary operator U on H such that

φ(A) = εUAU∗ for all A ∈ Bs(H), where ε ∈ {−1, 1}.

Proof. If φ satisfies (i), then by Theorem 2.1 and Corollary 2.2, φ clearly pre-
serves adjacency in both directions and is continuous. Therefore, by Theorem
1.3 and Corollary 1.1 of [4] or Step 11 of Theorem 2.2 in [2] there exists a
unitary or conjugate unitary operator U : H → H , such that φ(A) = εUAU∗

for all A ∈ Bs(H). The reverse conclusion is trivial �

Remark 2.4. There is also an alternative argument for the proof of Corollary
2.3. Consider the automorphism ψ in Corollary 2.2 then define Ψ : B(H) →
B(H) by Ψ(A+ iB) = ψ(A) + iψ(B) for A,B ∈ Bsa(H). Then Ψ is a Jordan
∗-automorphism on B(H). It is a classical well known result that Ψ must be a
∗-automorphism or a ∗-antiautomorphism (both with respect to the associative
structure of B(H)) and now the result follows from [15, Theorem A.8].
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