H - V-SUPER MAGIC DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS

Solomon Stalin Kumar and Gurusamy Thevar Marimuthu

Abstract

An H-magic labeling in a H-decomposable graph G is a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that for every copy H in the decomposition, $\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ is constant. f is said to be H - V-super magic if $f(V(G))=\{1,2, \ldots, p\}$. In this paper, we prove that complete bipartite graphs $K_{n, n}$ are $H-V$-super magic decomposable where $H \cong K_{1, n}$ with $n \geq 1$.

1. Introduction

In this paper we consider only finite and simple undirected bipartite graphs. The vertex and edge sets of a graph G are denoted by $V(G)$ and $E(G)$ respectively and we let $|V(G)|=p$ and $|E(G)|=q$. For graph theoretic notations, we follow $[2,3]$. A labeling of a graph G is a mapping that carries a set of graph elements, usually vertices and/or edges into a set of numbers, usually integers. Many kinds of labeling have been studied and an excellent survey of graph labeling can be found in [6].

Although magic labeling of graphs was introduced by Sedlacek [20], the concept of vertex magic total labeling (VMTL) first appeared in 2002 in [12]. In 2004, MacDougall et al. [13] introduced the notion of super vertex magic total labeling (SVMTL). In 1998, Enomoto et al. [5] introduced the concept of super edge-magic graphs. In 2005, Sugeng and Xie [21] constructed some super edge-magic total graphs. The usage of the word "super" was introduced in [5]. The notion of a V-super vertex magic labeling was introduced by MacDougall et al. [13] as in the name of super vertex-magic total labeling and it was renamed as V-super vertex magic labeling by Marr and Wallis in [16] after referencing the article [14]. Most recently, Tao-ming Wang and Guang-Hui Zhang [22], generalized some results found in [14].

A vertex magic total labeling is a bijection f from $V(G) \cup E(G)$ to the integers $1,2, \ldots, p+q$ with the property that for every $u \in V(G), f(u)+$

Received March 18, 2015

2010 Mathematics Subject Classification. 05C78, 05C70.
Key words and phrases. H-decomposable graph, H - V-super magic labeling, complete bipartite graph.
$\sum_{v \in N(u)} f(u v)=k$ for some constant k, such a labeling is V-super if $f(V(G))=$ $\{1,2, \ldots, p\}$. A graph G is called V-super vertex magic if it admits a V-super vertex labeling. A vertex magic total labeling is called E-super if $f(E(G))=$ $\{1,2, \ldots, q\}$. A graph G is called E-super vertex magic if it admits a E-super vertex labeling. The results of the article [14] can also be found in [16]. In [13], MacDougall et al., proved that no complete bipartite graph is V-super vertex magic. An edge-magic total labeling is a bijection f from $V(G) \cup E(G)$ to the integers $1,2, \ldots, p+q$ with the property that for any edge $u v \in E(G)$, $f(u)+f(u v)+f(v)=k$ for some constant k, such a labeling is super if $f(V(G))=\{1,2, \ldots, p\}$. A graph G is called super edge-magic if it admits a super edge-magic labeling.

Most recently, Marimuthu and Balakrishnan [15], introduced the notion of super edge-magic graceful graphs to solve some kind of network problems. A (p, q) graph G with p vertices and q edges is edge magic graceful if there exists a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that $|f(u)+f(v)-f(u v)|=k$, a constant for any edge $u v$ of $G . G$ is said to be super edge-magic graceful if $f(V(G))=\{1,2, \ldots, p\}$.

A covering of G is a family of subgraphs $H_{1}, H_{2}, \ldots, H_{h}$ such that each edge of $E(G)$ belongs to at least one of the subgraphs $H_{i}, 1 \leq i \leq h$. Then it is said that G admits an $\left(H_{1}, H_{2}, \ldots, H_{h}\right)$ covering. If every H_{i} is isomorphic to a given graph H, then G admits an H-covering. A family of subgraphs $H_{1}, H_{2}, \ldots, H_{h}$ of G is a H-decomposition of G if all the subgraphs are isomorphic to a graph $H, E\left(H_{i}\right) \cap E\left(H_{j}\right)=\emptyset$ for $i \neq j$ and $\cup_{i=1}^{h} E\left(H_{i}\right)=E(G)$. In this case, we write $G=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{h}$ and G is said to be H-decomposable.

The notion of H-super magic labeling was first introduced and studied by Gutiérrez and Lladó [7] in 2005. They proved that some classes of connected graphs are H-super magic. Suppose G is H-decomposable. A total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ is called an H-magic labeling of G if there exists a positive integer k (called magic constant) such that for every copy H in the decomposition, $\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)=k$. A graph G that admits such a labeling is called a H-magic decomposable graph. An H-magic labeling f is called a H - V-super magic labeling if $f(V(G))=\{1,2, \ldots, p\}$. A graph that admits a $H-V$-super magic labeling is called a H - V-super magic decomposable graph. An H-magic labeling f is called a H - E-super magic labeling if $f(E(G))=\{1,2, \ldots, q\}$. A graph that admits a H - E-super magic labeling is called a H - E-super magic decomposable graph. The sum of all vertex and edge labels on H is denoted by $\sum f(H)$.

In 2007, Lladó and Moragas [11] studied the cycle-magic and cyclic-super magic behavior of several classes of connected graphs. They gave several families of C_{r}-magic graphs for each $r \geq 3$. In 2010, Ngurah, Salman and Susilowati [18] studied the cycle-super magic labeling of chain graphs, fans, triangle ladders, graph obtained by joining a star $K_{1, n}$ with one isolated vertex, grids and books. Maryati et al. [17] studied the H-super magic labeling of some graphs
obtained from k isomorphic copies of a connected graph H. In 2012, Mania Roswitha and Edy Tri Baskoro [19] studied the H-super magic labeling for some trees such as a double star, a caterpillar, a firecracker and banana tree. In 2013, Toru Kojima [9] studied the C_{4}-super magic labeling of the Cartesian product of paths and graphs. In 2012, Inayah et al. [8] studied magic and anti-magic H-decompositions and Zhihe Liang [10] studied cycle-super magic decompositions of complete multipartite graphs. They are all called a H-magic labeling as a H-super magic if the smallest labels are assigned to the vertices. Note that an edge-magic graph is a K_{2}-magic graph.

In many of the results about H-magic graphs, the host graph G is required to be H-decomposable. Yoshimi Ecawa et al. [4] studied the decomposition of complete bipartite graphs into edge-disjoint subgraphs with star components. The notion of star-subgraph was introduced by Akiyama and Kano in [1]. A subgraph F of a graph G is called a star-subgraph if each component of F is a star. Here by a star, we mean a complete bipartite graph of the form $K_{1, m}$ with $m \geq 1$. A subgraph F of a graph G is called a n-star-subgraph if $F \cong K_{1, n}$ with $2 \leq n<p$.

2. Main result

In this section, we consider the graphs $G \cong K_{n, n}$ and $H \cong K_{1, n}$, where $n \geq 2$. Clearly $p=2 n$ and $q=n^{2}$.

Theorem 2.1. Suppose $\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ is a n-star-decomposition of G. Then G is n-star- V-super magic decomposable with magic constant $\frac{n^{3}+6 n^{2}+3 n+2}{2}$.
Proof. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be two stable sets of G. Let $\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ be a n-star decomposition of G, where each H_{i} is isomorphic to H, such that $V\left(H_{i}\right)=\left\{u_{i}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(H_{i}\right)=$ $\left\{u_{i} v_{1}, u_{i} v_{2}, \ldots, u_{i} v_{n}\right\}$ for all $1 \leq i \leq n$. Define a total labeling $f: V(G) \cup$ $E(G) \rightarrow\{1,2, \ldots, p+q\}$ by $f\left(u_{i}\right)=2 i$ and $f\left(v_{i}\right)=2 i-1$ for all $1 \leq i \leq n$.

Case 1: n is even.

Now the edges of G can be labeled as shown in Table 1.
We prove the result for $n=k$ and the result follows for all $1 \leq k \leq n$.
From Table 1 and from definition of f, we get

$$
\begin{aligned}
\sum f\left(H_{k}\right)= & f\left(u_{k}\right)+\sum_{i=1}^{n} f\left(v_{i}\right)+\sum_{i=1}^{n} f\left(u_{k} v_{i}\right) \\
= & 2 k+(1+3+5+\cdots+(2 n-1))+(3 n-(k-1))+(3 n+k) \\
& +(5 n-(k-1))+(5 n+k)+\cdots+((n+1) n-(k-1)) \\
& +((n+2) n-(k-1))
\end{aligned}
$$

Now,

$$
\sum_{i=1}^{n} f\left(v_{i}\right)=1+3+5+\cdots+(2 n-1)
$$

TABLE 1. The edge label of a n-star-decomposition of G if n is even.

f	v_{1}	v_{2}	v_{3}	\cdots	v_{n-1}	v_{n}
u_{1}	$3 n$	$3 n+1$	$5 n$	\cdots	$(n+1) n$	$(n+2) n$
u_{2}	$3 n-1$	$3 n+2$	$5 n-1$	\cdots	$(n+1) n-1$	$(n+2) n-1$
u_{3}	$3 n-2$	$3 n+3$	$5 n-2$	\cdots	$(n+1) n-2$	$(n+2) n-2$
\vdots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots
u_{k}	$3 n-$ $(k-1)$	$3 n+k$	$5 n-$ $(k-1)$	\cdots	$(n+1) n-$ $(k-1)$	$(n+2) n-$ $(k-1)$
\vdots	\ldots	\cdots	\cdots	\cdots	\cdots	\cdots
u_{n-1}	$2 n+2$	$4 n-1$	$4 n+2$	\cdots	$n(n)+2$	$(n+1) n+2$
u_{n}	$2 n+1$	$4 n$	$4 n+1$	\cdots	$n(n)+1$	$(n+1) n+1$

$$
\begin{aligned}
& =(1+2+3+4+5+\cdots+(2 n-1))-(2+4+6+\cdots+(2 n-2)) \\
& =\frac{(2 n-1)(2 n)}{2}-2(1+2+\cdots+(n-1)) \\
& =2 n^{2}-n-\frac{2(n-1) n}{2} \\
& =2 n^{2}-n-n^{2}+n \\
& =n^{2}
\end{aligned}
$$

Also

$$
\begin{aligned}
\sum_{i=1}^{n} f\left(u_{k} v_{i}\right)= & (3 n-(k-1))+(3 n+k)+(5 n-(k-1))+(5 n+k)+\cdots \\
& +((n+1) n-(k-1))+((n+2) n-(k-1)) \\
= & (3 n+(3 n+1)+5 n+(5 n+1)+\cdots+(n+1) n+(n+2) n) \\
& -2(k-1) \\
= & 2(3 n+5 n+7 n+\cdots+(n-1) n)+\frac{n-2}{2}(1) \\
& +n((n+1)+(n+2))-2(k-1) \\
= & 2 n\{(1+2+3+\cdots+(n-1))-(2+4+6+\cdots+(n-2))-1\} \\
& +\frac{n-2}{2}+n(2 n+3)-2(k-1) \\
= & 2 n\left\{\frac{n(n-1)}{2}-2 \frac{\left(\frac{n-2}{2}\right)\left(\frac{n-2}{2}+1\right)}{2}-1\right\}+\left\{\frac{n-2+4 n^{2}+6 n}{2}\right\} \\
& -2(k-1) \\
= & 2 n\left\{\frac{n(n-1)}{2}-\frac{n(n-2)}{4}-1\right\}+\left\{\frac{4 n^{2}+7 n-2}{2}\right\}-2(k-1)
\end{aligned}
$$

Table 2. The edge label of a n-star-decomposition of G if n is odd.

f	v_{1}	v_{2}	v_{3}	\cdots	v_{n-1}	v_{n}
u_{n-1}	$2 n+1$	$4 n$	$4 n+1$	\ldots	$n(n)+\left(\frac{n+3}{2}\right)$	$(n+1) n+2$
u_{n-3}	$2 n+2$	$4 n-1$	$4 n+2$. .	$n(n)+\left(\frac{n+5}{2}\right)$	$(n+1) n+4$
u_{n-5}	$2 n+3$	$4 n-2$	$4 n+3$	\cdots	$n(n)+\left(\frac{n+7}{2}\right)$	$(n+1) n+6$
:						
u_{k}	$\begin{gathered} 2 n+1 \\ +\left(\frac{n-(k+1)}{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} 4 n \\ -\left(\frac{n-(k+1)}{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} 4 n+1 \\ +\left(\frac{n-(k+1)}{2}\right) \\ \hline \end{gathered}$	\cdots	$\begin{gathered} n(n) \\ +(n+1)-\frac{k}{2} \\ \hline \end{gathered}$	$\begin{aligned} & (n+2) n \\ & -(k-1) \\ & \hline \end{aligned}$
:						
u_{2}	$2 n+\left(\frac{n-1}{2}\right)$	$3 n+\left(\frac{n+3}{2}\right)$	$4 n+\left(\frac{n-1}{2}\right)$	\cdots	$(n+1) n$	$(n+2) n-1$
u_{n}	$2 n+\left(\frac{n+1}{2}\right)$	$3 n+\left(\frac{n+1}{2}\right)$	$4 n+\left(\frac{n+1}{2}\right)$	\cdots	(n) $n+1$	$(n+1) n+1$
:						
u_{j}	$\begin{gathered} 3 n \\ -\left(\frac{(j-1)}{2}\right) \\ \hline \end{gathered}$	$\begin{array}{r} 3 n+1 \\ +\left(\frac{(j-1)}{2}\right) \\ \hline \end{array}$	$\begin{gathered} 5 n \\ -\left(\frac{(j-1)}{2}\right) \\ \hline \end{gathered}$	\cdots	$\begin{gathered} n(n) \\ +\left(\frac{n+1}{2}-\frac{(j-1)}{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} (n+1) n \\ +(n-(j-1)) \\ \hline \end{gathered}$
:				. . .		
u_{3}	$3 n-1$	$3 n+2$	$5 n-1$	\ldots	$n(n)+\left(\frac{n+1}{2}-1\right)$	$(n+2) n-2$
u_{1}	$3 n$	$3 n+1$	$5 n$. .	$n(n)+\left(\frac{n+1}{2}\right)$	$(n+2) n$

$$
\begin{aligned}
& =2 n\left\{\frac{2 n(n-1)-n(n-2)-4}{4}\right\}+\left\{\frac{4 n^{2}+7 n-2}{2}\right\}-2(k-1) \\
& =n\left\{\frac{2 n^{2}-2 n+2 n-n^{2}-4}{2}\right\}+\left\{\frac{4 n^{2}+7 n-2}{2}\right\}-2(k-1) \\
& =n\left\{\frac{n^{2}-4}{2}\right\}+\left\{\frac{4 n^{2}+7 n-2}{2}\right\}-2(k-1) \\
& =\left\{\frac{n^{3}-4 n+4 n^{2}+7 n-2}{2}\right\}-2(k-1) \\
& =\left\{\frac{n^{3}+4 n^{2}+3 n-2}{2}\right\}-2(k-1) .
\end{aligned}
$$

Using the above values, we get

$$
\begin{aligned}
\sum f\left(H_{k}\right) & =2 k+n^{2}+\left\{\frac{n^{3}+4 n^{2}+3 n-2}{2}\right\}-2(k-1) \\
& =2+n^{2}+\left\{\frac{n^{3}+4 n^{2}+3 n-2}{2}\right\} \\
& =\frac{n^{3}+6 n^{2}+3 n+2}{2} .
\end{aligned}
$$

Thus in this case the graph G is a n-star- V-super magic decomposable graph.
Case 2: n is odd.
Now the edges of G can be labeled as shown in Table 2.
Subcase(i): i is odd, where $1 \leq i \leq n$.

We prove the result for $i=j$ and the result follows for all $1 \leq i \leq n$ and i is odd. From Table 2 and from definition of f, we get

$$
\sum f\left(H_{j}\right)=f\left(u_{j}\right)+\sum_{i=1}^{n} f\left(v_{i}\right)+\sum_{i=1}^{n} f\left(u_{j} v_{i}\right)=2 j+n^{2}+\sum_{i=1}^{n} f\left(u_{j} v_{i}\right) .
$$

Now,

$$
\begin{aligned}
\sum_{i=1}^{n} f\left(u_{j} v_{i}\right)= & \left(3 n-\frac{(j-1)}{2}\right)+\left(3 n+1+\frac{(j-1)}{2}\right)+\left(5 n-\frac{(j-1)}{2}\right) \\
& +\left(5 n+1+\frac{(j-1)}{2}\right)+\cdots+\left(n(n)-\frac{(j-1)}{2}\right) \\
& +\left(n(n)+\left(\frac{(n+1)}{2}-\frac{(j-1)}{2}\right)\right)+((n+2) n-(j-1)) \\
= & (3 n+(3 n+1)+5 n+(5 n+1)+\cdots+(n-2) n \\
& +((n-2) n+1))+\left(n^{2}+\left(n^{2}+\frac{n+1}{2}\right)+(n+2) n\right)-2(j-1) \\
= & (2 n(3+5+7+\cdots+(n-2)))+\frac{n-3}{2}(1) \\
& +\left(n^{2}+\left(n^{2}+\frac{n+1}{2}\right)+(n+2) n\right)-2(j-1)
\end{aligned}
$$

$$
=(2 n(3+5+7+\cdots+(n-2)))+\frac{6 n^{2}+4 n+n+1+n-3}{2}
$$

$$
-2(j-1)
$$

$$
=(2 n((1+2+3+\cdots+(n-2))-(2+4+6+\cdots+(n-3))-1))
$$

$$
+\frac{6 n^{2}+6 n+-2}{2}-2(j-1)
$$

$$
=\left(2 n\left(\frac{(n-2)(n-1)}{2}-2 \frac{\left(\frac{n-3}{2}\right)\left(\frac{n-3}{2}+1\right)}{2}-1\right)\right)+\left(3 n^{2}+3 n-1\right)
$$

$$
-2(j-1)
$$

$$
=\left(2 n\left(\frac{n^{2}-3 n+2}{2}-\frac{n^{2}-4 n+3}{4}-1\right)\right)+\left(3 n^{2}+3 n-1\right)
$$

$$
-2(j-1)
$$

$$
=\frac{n^{3}-2 n^{2}-3 n+6 n^{2}+6 n-2}{2}-2(j-1)
$$

$$
=\frac{n^{3}+4 n^{2}+3 n-2}{2}-2(j-1) .
$$

Thus,

$$
\begin{aligned}
\sum f\left(H_{j}\right) & =2 j+n^{2}+\left\{\frac{n^{3}+4 n^{2}+3 n-2}{2}\right\}-2(j-1) \\
& =2+n^{2}+\left\{\frac{n^{3}+4 n^{2}+3 n-2}{2}\right\}
\end{aligned}
$$

$$
=\frac{n^{3}+6 n^{2}+3 n+2}{2}
$$

which is same as in Case 1. So in this case the graph G is a n-star- V-super magic decomposable graph.

Subcase(ii): i is even, where $1 \leq i \leq n$.
We prove the result for $i=k$ and the result follows for all $1 \leq i \leq n$ and i is even. From Table 2 and from definition of f, we get

$$
\begin{aligned}
\sum f\left(H_{k}\right) & =f\left(u_{k}\right)+\sum_{i=1}^{n} f\left(v_{i}\right)+\sum_{i=1}^{n} f\left(u_{k} v_{i}\right) \\
& =2 k+n^{2}+\sum_{i=1}^{n} f\left(u_{k} v_{i}\right)
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \sum_{i=1}^{n} f\left(u_{k} v_{i}\right)=\left(2 n+1+\frac{(n-(k+1))}{2}\right)+\left(4 n-\frac{(n-(k+1))}{2}\right) \\
& +\left(4 n+1+\frac{(n-(k+1))}{2}\right)+\left(6 n-\frac{(n-(k+1))}{2}\right)+\cdots \\
& +\left(n(n)+(n+1)-\frac{k}{2}\right)+((n+2) n-(k-1)) \\
& =\left(2 n+\frac{(n-(k-1))}{2}\right)+\left(3 n+\frac{(n+(k+1))}{2}\right) \\
& +\left(4 n+\frac{(n-(k-1))}{2}\right)+\left(5 n+\frac{(n-(k+1))}{2}\right)+\cdots \\
& +\left((n-1) n+\frac{(n-(k-1))}{2}\right)+\left((n+1) n-\frac{(k-2)}{2}\right) \\
& +((n+2) n-1-(k-2)) \\
& =(2 n+3 n+4 n+\cdots+(n-1) n) \\
& +\left(\frac{n-3}{2}\right)\left(\frac{n-(k-1)}{2}+\frac{n+(k+1)}{2}\right) \\
& +\frac{n-(k-1)}{2}-\frac{(k-2)}{2}-(k-2)+(n+1) n+((n+2) n-1) \\
& =(2 n+3 n+4 n+\cdots+(n-1) n)+\left(\frac{n-3}{2}\right)\left(\frac{2 n+2}{2}\right)+\left(\frac{n-1}{2}\right) \\
& +(n+1) n+((n+2) n-1)-\frac{(k-2)}{2}-\frac{(k-2)}{2}-(k-2) \\
& =\left(n\left(\frac{(n-1) n}{2}-1\right)\right)+\frac{(n-3)(n+1)}{2}+\left(\frac{n-1}{2}\right) \\
& +n(2 n+3)-1-2(k-2) \\
& =\frac{n^{3}-n^{2}-2 n+n^{2}-2 n-3+n-1}{2}+2 n^{2}+3 n-1-2(k-2)
\end{aligned}
$$

Table 3. The edge label of a H-decomposition of G.

$$
\begin{aligned}
& =\frac{n^{3}-3 n-4+4 n^{2}+6 n-2}{2}-2(k-2) \\
& =\frac{n^{3}+4 n^{2}+3 n-2}{2}-2-2(k-2) \\
& =\frac{n^{3}+4 n^{2}+3 n-2}{2}-2(k-1) \text {. }
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sum f\left(H_{k}\right) & =2 k+n^{2}+\left\{\frac{n^{3}+4 n^{2}+3 n-2}{2}\right\}-2(k-1) \\
& =2+n^{2}+\left\{\frac{n^{3}+4 n^{2}+3 n-2}{2}\right\} \\
& =\frac{n^{3}+6 n^{2}+3 n+2}{2} .
\end{aligned}
$$

which is same as in Case 1. So in this case the graph G is a n-star- V-super magic decomposable graph.

The following example illustrates Theorem 2.1.
Example 2.2. Consider the graphs $G \cong K_{5,5}$ and $H \cong K_{1,5}$. Let $U=$ $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $W=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ be two stable sets of G such that $V(G)=U \cup W$. Let $\left\{H_{1}, H_{2}, H_{3}, H_{4}, H_{5}\right\}$ be a H-decomposition of G, where each H_{i} is isomorphic to H, such that $V\left(H_{i}\right)=\left\{u_{i}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and $E\left(H_{i}\right)=\left\{u_{i} v_{1}, u_{i} v_{2}, u_{i} v_{3}, u_{i} v_{4}, u_{i} v_{5}\right\}$, for all $1 \leq i \leq 5$. Define a total labeling $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, 35\}$ by $f\left(u_{i}\right)=2 i$ and $f\left(v_{i}\right)=2 i-1$, for all $1 \leq i \leq 5$. Let us label the edges of G as shown in Table 3.

We find $\sum f\left(H_{3}\right)$ to illustrate Subcase (i) of Theorem 2.1.
Using Table 3 and from the definition of f, we have

$$
\begin{aligned}
\sum f\left(H_{3}\right) & =f\left(u_{3}\right)+\sum_{i=1}^{5} f\left(v_{i}\right)+\sum_{i=1}^{5} f\left(u_{3} v_{i}\right) \\
& =2(3)+5^{2}+\sum_{i=1}^{5} f\left(u_{3} v_{i}\right)
\end{aligned}
$$

Now,

$$
\begin{aligned}
\sum_{i=1}^{5} f\left(u_{3} v_{i}\right)= & \left(3(5)-\frac{(3-1)}{2}\right)+\left(3(5)+1+\frac{(3-1)}{2}\right)+\left(5(5)-\frac{(3-1)}{2}\right) \\
& +\left(5(5)+\left(\frac{(5+1)}{2}-\frac{(3-1)}{2}\right)\right)+((5+2) 5-(3-1)) \\
= & (3(5)+(3(5)+1))+\left(5^{2}+\left(5^{2}+\frac{5+1}{2}\right)+(5+2) 5\right)-2(3-1) \\
= & (2(5)(3))+\frac{5-3}{2}(1)+\left(5^{2}+\left(5^{2}+\frac{5+1}{2}\right)+(5+2) 5\right)-2(3-1) \\
= & (2(5)(3))+\frac{6\left(5^{2}\right)+6(5)+1-3}{2}-2(3-1) \\
= & (2(5)((1+2+3)-(2)-1))+\frac{6\left(5^{2}\right)+6(5)-2}{2}-2(3-1) \\
= & \left(2(5)\left(\frac{(5-2)(5-1)}{2}-2 \frac{\left(\frac{5-3}{2}\right)\left(\frac{5-3}{2}+1\right)}{2}-1\right)\right) \\
& +\left(3\left(5^{2}\right)+3(5)-1\right)-2(3-1) \\
= & \left(2(5)\left(\frac{5^{2}-3(5)+2}{2}-\frac{5^{2}-4(5)+3}{4}-1\right)\right) \\
& +\left(3\left(5^{2}\right)+3(5)-1\right)-2(3-1) \\
= & \frac{5^{3}-2\left(5^{2}\right)-3(5)+6\left(5^{2}\right)+6(5)-2}{2}-2(3-1) \\
= & \frac{5^{3}+4\left(5^{2}\right)+3(5)-2}{2}-2(3-1) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sum f\left(H_{3}\right) & =2(3)+5^{2}+\left\{\frac{5^{3}+4\left(5^{2}\right)+3(5)-2}{2}\right\}-2(3-1) \\
& =2+5^{2}+\left\{\frac{5^{3}+4\left(5^{2}\right)+3(5)-2}{2}\right\} \\
& =\frac{5^{3}+6\left(5^{2}\right)+3(5)+2}{2} .
\end{aligned}
$$

In a similar way we can show that, $\sum f\left(H_{1}\right)=\sum f\left(H_{5}\right)=\frac{5^{3}+6\left(5^{2}\right)+3(5)+2}{2}=$ 146.

We find $\sum f\left(H_{4}\right)$ to illustrate Subcase (ii) of Theorem 2.1.
Using Table 3 and from the definition of f, we have

$$
\begin{aligned}
\sum f\left(H_{4}\right) & =f\left(u_{4}\right)+\sum_{i=1}^{5} f\left(v_{i}\right)+\sum_{i=1}^{5} f\left(u_{4} v_{i}\right) \\
& =2(4)+5^{2}+\sum_{i=1}^{5} f\left(u_{4} v_{i}\right) .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \sum_{i=1}^{5} f\left(u_{4} v_{i}\right)=\left(2(5)+1+\frac{(5-(4+1))}{2}\right)+\left(4(5)-\frac{(5-(4+1))}{2}\right) \\
& +\left(4(5)+1+\frac{(5-(4+1))}{2}\right)+\left(5(5)+(5+1)-\frac{4}{2}\right) \\
& +((5+2) 5-(4-1)) \\
& =\left(2(5)+\frac{(5-(4-1))}{2}\right)+\left(3(5)+\frac{(5+(4+1))}{2}\right) \\
& +\left((5-1)(5)+\frac{(5-(4-1))}{2}\right)+\left((5+1)(5)-\frac{(4-2)}{2}\right) \\
& +((5+2)(5)-1-(4-2)) \\
& =(2(5)+3(5)+(5-1)(5))+\left(\frac{5-3}{2}\right)\left(\frac{5-(4-1)}{2}+\frac{5+(4+1)}{2}\right) \\
& +\frac{5-(4-1)}{2}-\frac{(4-2)}{2}-(4-2)+(5+1)(5)+((5+2)(5)-1) \\
& =(2(5)+3(5)+(5-1)(5))+\left(\frac{5-3}{2}\right)\left(\frac{2(5)+2}{2}\right)+\left(\frac{5-1}{2}\right) \\
& +(5+1)(5)+((5+2)(5)-1)-\frac{(4-2)}{2}-\frac{(4-2)}{2}-(4-2) \\
& =\left((5)\left(\frac{(5-1)(5)}{2}-1\right)\right)+\frac{(5-3)(5+1)}{2}+\left(\frac{5-1}{2}\right) \\
& +(5)(2(5)+3)-1-2(4-2) \\
& =\frac{5^{3}-5^{2}-2(5)+5^{2}-2(5)-3+5-1}{2} \\
& +2\left(5^{2}\right)+3(5)-1-2(4-2) \\
& =\frac{5^{3}-3(5)-4+4\left(5^{2}\right)+6(5)-2}{2}-2(4-2) \\
& =\frac{5^{3}+4\left(5^{2}\right)+3(5)-2}{2}-2-2(4-2) \\
& =\frac{5^{3}+4\left(5^{2}\right)+3(5)-2}{2}-2(4-1) \text {. }
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sum f\left(H_{4}\right) & =2(4)+5^{2}+\left\{\frac{5^{3}+4\left(5^{2}\right)+3(5)-2}{2}\right\}-2(4-1) \\
& =2+5^{2}+\left\{\frac{5^{3}+4\left(5^{2}\right)+3(5)-2}{2}\right\} \\
& =\frac{5^{3}+6\left(5^{2}\right)+3(5)+2}{2}
\end{aligned}
$$

In a similar way we can show that, $\sum f\left(H_{2}\right)=\frac{5^{3}+6\left(5^{2}\right)+3(5)+2}{2}=146$.

So the graph G is a H - V-super magic decomposable graph.

Figure 1. 2-star- V-super magic decomposition of $K_{4,4}$

3. Conclusion

In this paper, we studied the n-star- V-super magic decomposition of $K_{n, n}$ with $n \geq 1$. Figure 1 shows that $K_{4,4}$ is a 2 -star- V-super magic decomposable graph. Let $U=\{a, b, c, d\}$ and $W=\{e, f, g, h\}$ be two stable sets of $K_{4,4}$ such that $V(G)=U \cup W$. Let $\left\{H_{1}=\{(a, e),(a, f)\}, H_{2}=\{(b, e),(b, f)\}, H_{3}=\right.$ $\{(c, e),(c, f)\}, H_{4}=\{(d, e),(d, f)\}, H_{5}=\{(a, g),(a, h)\}, H_{6}=\{(b, g),(b, h)\}$,
$\left.H_{7}=\{(c, g),(c, h)\}, H_{8}=\{(d, g),(d, h)\}\right\}$ be a H-decomposition of $K_{4,4}$, where each H_{i} is isomorphic to $H \cong K_{1,2}$ for all $1 \leq i \leq 8$.

It is natural to have the following problem.
Open Problem 3.1. Discuss the m-star- V-super magic decomposition of $K_{n, n}$ with $1 \leq m<n$.

References

[1] J. Akiyama and M. Kano, Path Factors of a Graph, Graphs and Applications, Wiley, Newyork, 1985.
[2] G. Chartrand and L. Lesniak, Graphs and Digraphs, 3rd Edition, Chapman and Hall, Boca Raton, London, New-York, Washington, D.C., 1996.
[3] G. Chartrand and P. Zhang, Chromatic Graph Theory, Chapman and Hall, CRC, Boca Raton, 2009.
[4] Y. Egawa, M. Urabe, T. Fukuda, and S. Nagoya, A decomposition of complete bipartite graphs into edge-disjoint subgraphs with star components, Discrete Math. 58 (1986), no. 1, 93-95.
[5] H. Emonoto, Anna S Lladó, T. Nakamigawa, and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998), 105-109.
[6] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2013), \#DS6.
[7] A. Gutiérrez and A. Lladó, Magic coverings, J. Combin. Math. Combin. Comput. 55 (2005), 43-56.
[8] N. Inayah, A. Lladó, and J. Moragas, Magic and antimagic H-decompositions, Discrete Math. 312 (2012), no. 7, 1367-1371.
[9] T. Kojima, On C_{4}-Supermagic labelings of the Cartesian product of paths and graphs, Discrete Math. 313 (2013), no. 2, 164-173.
[10] Z. Liang, Cycle-supermagic decompositions of complete multipartite graphs, Discrete Math. 312 (2012), no. 22, 3342-3348.
[11] A. Lladó and J. Moragas, Cycle-magic graphs, Discrete Math. 307 (2007), no. 23, 29252933.
[12] J. A. MacDougall, M. Miller, Slamin, and W. D. Wallis, Vertex-magic total labelings of graphs, Util. Math. 61 (2002), 3-21.
[13] J. A. MacDougall, M. Miller, and K. Sugeng, Super vertex-magic total labeling of graphs, Proc. 15th AWOCA (2004), 222-229.
[14] G. Marimuthu and M. Balakrishnan, E-super vertex magic labelings of graphs, Discrete Appl. Math. 160 (2012), no. 12, 1766-1774.
[15] _, Super edge magic graceful graphs, Inform. Sci. 287 (2014), 140-151.
[16] A. M. Marr and W. D. Wallis, Magic Graphs, 2nd edition, Birkhauser, Boston, Basel, Berlin, 2013.
[17] T. K. Maryati, A. N. M. Salman, E. T. Baskoro, J. Ryan, and M. Miller, On HSupermagic labeling for certain shackles and amalgamations of a connected graph, Util. Math. 83 (2010), 333-342.
[18] A. A. G. Ngurah, A. N. M. Salman, and L. Susilowati, H-Supermagic labeling of graphs, Discrete Math. 310 (2010), no. 8, 1293-1300.
[19] M. Roswitha and E. T. Baskoro, H-Magic covering on some classes of graphs, AIP Conf. Proc. 1450 (2012), 135-138.
[20] J. Sedlacek, Problem 27, Theory of Graphs and its Applications, 163-167, Proceedings of Symposium Smolenice, 1963.
[21] K. A. Sugeng and W. Xie, Construction of Super edge magic total graphs, Proc. 16th AWOCA (2005), 303-310.
[22] T.-M. Wang and G.-H. Zhang, Note on E-super vertex magic graphs, Discrete Appl. Math. 178 (2014), 160-162.

Solomon Stalin Kumar
Department of Mathematics
The American College
Madurai 625-002, India
E-mail address: sskumbas@gmail.com
Gurusamy Thevar Marimuthu
Department of Mathematics
The Madura College
Madurai 625-011, India
E-mail address: yellowmuthu@yahoo.com

