• Title/Summary/Keyword: biharmonic operator

Search Result 14, Processing Time 0.021 seconds

BIHARMONIC HYPERSURFACES WITH RECURRENT OPERATORS IN THE EUCLIDEAN SPACE

  • Esmaiel, Abedi;Najma, Mosadegh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1595-1603
    • /
    • 2022
  • We show how some of well-known recurrent operators such as recurrent curvature operator, recurrent Ricci operator, recurrent Jacobi operator, recurrent shape and Weyl operators have the significant role for biharmonic hypersurfaces to be minimal in the Euclidean space.

BIHARMONIC-KIRCHHOFF TYPE EQUATION INVOLVING CRITICAL SOBOLEV EXPONENT WITH SINGULAR TERM

  • Tahri, Kamel;Yazid, Fares
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.247-256
    • /
    • 2021
  • Using variational methods, we show the existence of a unique weak solution of the following singular biharmonic problems of Kirchhoff type involving critical Sobolev exponent: $$(\mathcal{P}_{\lambda})\;\{\begin{array}{lll}{\Delta}^2u-(a{\int}_{\Omega}{\mid}{\nabla}u{\mid}^2dx+b){\Delta}u+cu=f(x){\mid}u{\mid}^{-{\gamma}}-{\lambda}{\mid}u{\mid}^{p-2}u&&\text{ in }{\Omega},\\{\Delta}u=u=0&&\text{ on }{\partial}{\Omega},\end{array}$$ where Ω is a smooth bounded domain of ℝn (n ≥ 5), ∆2 is the biharmonic operator, and ∇u denotes the spatial gradient of u and 0 < γ < 1, λ > 0, 0 < p ≤ 2# and a, b, c are three positive constants with a + b > 0 and f belongs to a given Lebesgue space.

MULTIPLE SOLUTIONS FOR THE SYSTEM OF NONLINEAR BIHARMONIC EQUATIONS WITH JUMPING NONLINEARITY

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.551-560
    • /
    • 2007
  • We prove the existence of solutions for the system of the nonlinear biharmonic equations with Dirichlet boundary condition $$\{^{-{\Delta}^2u-c{\Delta}u+{\gamma}(bu^+-av^-)=s{\phi}_1\;in\;{\Omega},\;}_{-{\Delta}^2u-c{\Delta}u+{\delta}(bu^+-av^-)=s{\phi}_1\;in\;{\Omega}}$$, where $u^+$ = max{u, 0}, ${\Delta}^2$ denotes the biharmonic operator and ${\phi}_1$ is the positive eigenfunction of the eigenvalue problem $-{\Delta}$ with Dirichlet boundary condition.

  • PDF

A BIFURCATION PROBLEM FOR THE BIHARMONIC OPERATOR

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.20 no.2
    • /
    • pp.263-271
    • /
    • 2012
  • We investigate the number of the solutions for the biharmonic boundary value problem with a variable coefficient nonlinear term. We get a theorem which shows the existence of $m$ weak solutions for the biharmonic problem with variable coefficient. We obtain this result by using the critical point theory induced from the invariant function and invariant linear subspace.

EXISTENCE OF NONTRIVIAL SOLUTIONS OF THE NONLINEAR BIHARMONIC SYSTEM

  • Jung, Tacksun;Choi, Q.-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.2
    • /
    • pp.135-143
    • /
    • 2008
  • We investigate the existence of nontrivial solutions of the nonlinear biharmonic system with Dirichlet boundary condition $$(0.1)\;\begin{array}{lcr}{\Delta}^2{\xi}+c{\Delta}{\xi}={\mu}h({\xi}+{\eta})\;in{\Omega},\\{\Delta}^2{\eta}+c{\Delta}{\eta}={\nu}h({\xi}+{\eta})\;in{\Omega},\end{array}$$ where $c{\in}R$ and ${\Delta}^2$ denote the biharmonic operator.

  • PDF

THE PROOF OF THE EXISTENCE OF THE THIRD SOLUTION OF A NONLINEAR BIHARMONIC EQUATION BY DEGREE THEORY

  • Jung, Tacksun;Choi, Q.-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.2
    • /
    • pp.165-172
    • /
    • 2008
  • We investigate the multiplicity of solutions of the nonlinear biharmonic equation with Dirichlet boundary condition,${\Delta}^2u+c{\Delta}u=bu^{+}+s$, in ­${\Omega}$, where $c{\in}R$ and ${\Delta}^2$ denotes the biharmonic operator. We show by degree theory that there exist at least three solutions of the problem.

  • PDF

ON THE EXISTENCE OF THE THIRD SOLUTION OF THE NONLINEAR BIHARMONIC EQUATION WITH DIRICHLET BOUNDARY CONDITION

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.81-95
    • /
    • 2007
  • We are concerned with the multiplicity of solutions of the nonlinear biharmonic equation with Dirichlet boundary condition, ${\Delta}^2u+c{\Delta}u=g(u)$, in ${\Omega}$, where $c{\in}R$ and ${\Delta}^2$ denotes the biharmonic operator. We show that there exists at least three solutions of the above problem under the suitable condition of g(u).

  • PDF

Geometry of (p, f)-bienergy variations between Riemannian manifolds

  • Embarka Remli;Ahmed Mohammed Cherif
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.2
    • /
    • pp.251-261
    • /
    • 2023
  • In this paper, we extend the definition of the Jacobi operator of smooth maps, and biharmonic maps via the variation of bienergy between two Riemannian manifolds. We construct an example of (p, f)-biharmonic non (p, f)-harmonic map. We also prove some Liouville type theorems for (p, f)-biharmonic maps.

LK-BIHARMONIC HYPERSURFACES IN SPACE FORMS WITH THREE DISTINCT PRINCIPAL CURVATURES

  • Aminian, Mehran
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1221-1244
    • /
    • 2020
  • In this paper we consider LK-conjecture introduced in [5, 6] for hypersurface Mn in space form Rn+1(c) with three principal curvatures. When c = 0, -1, we show that every L1-biharmonic hypersurface with three principal curvatures and H1 is constant, has H2 = 0 and at least one of the multiplicities of principal curvatures is one, where H1 and H2 are first and second mean curvature of M and we show that there is not L2-biharmonic hypersurface with three disjoint principal curvatures and, H1 and H2 is constant. For c = 1, by considering having three principal curvatures, we classify L1-biharmonic hypersurfaces with multiplicities greater than one, H1 is constant and H2 = 0, proper L1-biharmonic hypersurfaces which H1 is constant, and L2-biharmonic hypersurfaces which H1 and H2 is constant.