DOI QR코드

DOI QR Code

Biharmonic Hypersurfaces with Constant Scalar Curvature in E5s

  • Deepika, Deepika (University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University) ;
  • Gupta, Ram Shankar (Department of Mathematics, Central University of Jammu) ;
  • Sharfuddin, A. (Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia (Central University))
  • Received : 2015.02.04
  • Accepted : 2015.11.03
  • Published : 2016.03.23

Abstract

In this paper, we obtain that every biharmonic non-degenerate hypersurfaces in semi-Euclidean space $E^5_s$ with constant scalar curvature of diagonal shape operator has zero mean curvature.

Keywords

References

  1. A. Arvanitoyeorgos, F. Defever, G. Kaimakamis, V. Papantoniou, Biharmonic Lorentzian hypersurfaces in $E^4_1$, Pac. J. Math., 229(2)(2007), 293-305. https://doi.org/10.2140/pjm.2007.229.293
  2. A. Balmus, Biharmonic Maps and Submanifolds Ph. D. thesis, Universita degli Studi di Cagliari, Italy, (2007).
  3. A. Balmus, S. Montaldo, C. Oniciuc, Classification results for biharmonic submanifolds in spheres, Israel. J. Math., 168(2008), 201-220. https://doi.org/10.1007/s11856-008-1064-4
  4. A. Balmus, S. Montaldo, C. Oniciuc, Classification results and new examples of proper biharmonic submanifolds in spheres, Note Mat., 1(1)(2008), 49-61.
  5. A. Balmus, S. Montaldo, C. Oniciuc, Properties of biharmonic submanifolds in spheres, J. Geom. Symmetry Phys., 17(2010), 87-102.
  6. A. Balmus, S. Montaldo, C. Oniciuc, Biharmonic hypersurfaces in 4-dimensional space forms, Math. Nachr., 283(12)(2010), 1696-1705. https://doi.org/10.1002/mana.200710176
  7. B. Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17(2)(1991), 169-188.
  8. B. Y. Chen, Classification of marginally trapped Lorentzian flat surfaces in $E^4_1$ and its application to biharmonic surfaces, J. Math. Anal. Appl., 340(2008), 861-875. https://doi.org/10.1016/j.jmaa.2007.09.021
  9. B. Y. Chen, S. Ishikawa, Biharmonic surfaces in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ., A 45(1991), 323-347.
  10. B. Y. Chen, S. Ishikawa, Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces, Kyushu J. Math., 52(1998), 1-18. https://doi.org/10.2206/kyushujm.52.1
  11. B. Y. Chen, M. I. Munteanu, Biharmonic ideal hypersurfaces in Euclidean spaces, Differ. Geom. Appl., 31(2013), 1-16. https://doi.org/10.1016/j.difgeo.2012.10.008
  12. Deepika, Ram Shankar Gupta, Biharmonic hypersurfaces in $E^5$ with zero scalar curvature, Afr. Diaspora J. Math., 18(1)(2015), 12-26.
  13. F. Defever, G. Kaimakamis, V. Papantoniou, Biharmonic hypersurfaces of the 4-dimensional semi-Euclidean space $E^4_s$, J. Math. Anal. Appl., 315(2006), 276-286. https://doi.org/10.1016/j.jmaa.2005.05.049
  14. I. Dimitric, Quadric representation and submanifolds of finite type, Doctoral thesis, Michigan State University, (1989).
  15. I. Dimitric, Submanifolds of $E^n$with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sin, 20(1992), 53-65.
  16. J. Eells, J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86(1964), 109-160. https://doi.org/10.2307/2373037
  17. K. Akutagawa, S. Maeta, Biharmonic properly immersed submanifolds in Euclidean spaces, Geom. Dedicate, 164(2013), 351-355. https://doi.org/10.1007/s10711-012-9778-1
  18. R. Caddeo, S. Montaldo, C. Oniciuc, Biharmonic submanifolds of $S^3$, Int. J. Math., 12(8)(2001), 867-876. https://doi.org/10.1142/S0129167X01001027
  19. R. Caddeo, S. Montaldo, C. Oniciuc, Biharmonic submanifolds in spheres, Israel J. Math., 130(2002), 109-123. https://doi.org/10.1007/BF02764073
  20. Ram Shankar Gupta, On biharmonic hypersurfaces in Euclidean space of arbitrary dimension, Glasgow Math. J., 57 (2015), 633-642. https://doi.org/10.1017/S0017089514000524
  21. Ram Shankar Gupta, Biharmonic hypersurfaces in $E^5_s$, An. St. Univ. Al. I. Cuza, (accepted).
  22. T. Hasanis, T. Vlachos, Hypersurfaces in $E^4$ with harmonic mean curvature vector field, Math. Nachr., 172(1995), 145-169. https://doi.org/10.1002/mana.19951720112
  23. Yu Fu, Biharmonic hypersurfaces with three distinct principal curvatures in the Euclidean 5-space, Journal of Geometry and Physics, 75(2014), 113-119. https://doi.org/10.1016/j.geomphys.2013.09.004