References
-
A. Arvanitoyeorgos, F. Defever, G. Kaimakamis, V. Papantoniou, Biharmonic Lorentzian hypersurfaces in
$E^4_1$ , Pac. J. Math., 229(2)(2007), 293-305. https://doi.org/10.2140/pjm.2007.229.293 - A. Balmus, Biharmonic Maps and Submanifolds Ph. D. thesis, Universita degli Studi di Cagliari, Italy, (2007).
- A. Balmus, S. Montaldo, C. Oniciuc, Classification results for biharmonic submanifolds in spheres, Israel. J. Math., 168(2008), 201-220. https://doi.org/10.1007/s11856-008-1064-4
- A. Balmus, S. Montaldo, C. Oniciuc, Classification results and new examples of proper biharmonic submanifolds in spheres, Note Mat., 1(1)(2008), 49-61.
- A. Balmus, S. Montaldo, C. Oniciuc, Properties of biharmonic submanifolds in spheres, J. Geom. Symmetry Phys., 17(2010), 87-102.
- A. Balmus, S. Montaldo, C. Oniciuc, Biharmonic hypersurfaces in 4-dimensional space forms, Math. Nachr., 283(12)(2010), 1696-1705. https://doi.org/10.1002/mana.200710176
- B. Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17(2)(1991), 169-188.
-
B. Y. Chen, Classification of marginally trapped Lorentzian flat surfaces in
$E^4_1$ and its application to biharmonic surfaces, J. Math. Anal. Appl., 340(2008), 861-875. https://doi.org/10.1016/j.jmaa.2007.09.021 - B. Y. Chen, S. Ishikawa, Biharmonic surfaces in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ., A 45(1991), 323-347.
- B. Y. Chen, S. Ishikawa, Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces, Kyushu J. Math., 52(1998), 1-18. https://doi.org/10.2206/kyushujm.52.1
- B. Y. Chen, M. I. Munteanu, Biharmonic ideal hypersurfaces in Euclidean spaces, Differ. Geom. Appl., 31(2013), 1-16. https://doi.org/10.1016/j.difgeo.2012.10.008
-
Deepika, Ram Shankar Gupta, Biharmonic hypersurfaces in
$E^5$ with zero scalar curvature, Afr. Diaspora J. Math., 18(1)(2015), 12-26. -
F. Defever, G. Kaimakamis, V. Papantoniou, Biharmonic hypersurfaces of the 4-dimensional semi-Euclidean space
$E^4_s$ , J. Math. Anal. Appl., 315(2006), 276-286. https://doi.org/10.1016/j.jmaa.2005.05.049 - I. Dimitric, Quadric representation and submanifolds of finite type, Doctoral thesis, Michigan State University, (1989).
-
I. Dimitric, Submanifolds of
$E^n$ with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sin, 20(1992), 53-65. - J. Eells, J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86(1964), 109-160. https://doi.org/10.2307/2373037
- K. Akutagawa, S. Maeta, Biharmonic properly immersed submanifolds in Euclidean spaces, Geom. Dedicate, 164(2013), 351-355. https://doi.org/10.1007/s10711-012-9778-1
-
R. Caddeo, S. Montaldo, C. Oniciuc, Biharmonic submanifolds of
$S^3$ , Int. J. Math., 12(8)(2001), 867-876. https://doi.org/10.1142/S0129167X01001027 - R. Caddeo, S. Montaldo, C. Oniciuc, Biharmonic submanifolds in spheres, Israel J. Math., 130(2002), 109-123. https://doi.org/10.1007/BF02764073
- Ram Shankar Gupta, On biharmonic hypersurfaces in Euclidean space of arbitrary dimension, Glasgow Math. J., 57 (2015), 633-642. https://doi.org/10.1017/S0017089514000524
-
Ram Shankar Gupta, Biharmonic hypersurfaces in
$E^5_s$ , An. St. Univ. Al. I. Cuza, (accepted). -
T. Hasanis, T. Vlachos, Hypersurfaces in
$E^4$ with harmonic mean curvature vector field, Math. Nachr., 172(1995), 145-169. https://doi.org/10.1002/mana.19951720112 - Yu Fu, Biharmonic hypersurfaces with three distinct principal curvatures in the Euclidean 5-space, Journal of Geometry and Physics, 75(2014), 113-119. https://doi.org/10.1016/j.geomphys.2013.09.004