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LK-BIHARMONIC HYPERSURFACES IN SPACE FORMS

WITH THREE DISTINCT PRINCIPAL CURVATURES

Mehran Aminian

Abstract. In this paper we consider Lk-conjecture introduced in [5, 6]
for hypersurface Mn in space form Rn+1(c) with three principal curva-

tures. When c = 0,−1, we show that every L1-biharmonic hypersurface

with three principal curvatures and H1 is constant, has H2 = 0 and at
least one of the multiplicities of principal curvatures is one, where H1 and

H2 are first and second mean curvature of M and we show that there is not

L2-biharmonic hypersurface with three disjoint principal curvatures and,
H1 and H2 is constant. For c = 1, by considering having three principal

curvatures, we classify L1-biharmonic hypersurfaces with multiplicities

greater than one, H1 is constant and H2 = 0, proper L1-biharmonic hy-
persurfaces which H1 is constant, and L2-biharmonic hypersurfaces which

H1 and H2 is constant.

1. Introduction and statement of result

B. Y. Chen in [12] made the conjecture: Any biharmonic submanifold of
a Euclidean space is minimal. Several authors have proved it under some
conditions, see for example, [1, 14–17, 20]. Also this conjecture has been gen-
eralized in [9]: Any biharmonic submanifold of a Riemannian manifold of non-
positive sectional curvature is minimal. This generalized conjecture has been
proved for constant sectional curvature ambient spaces in numerous cases as in
[2,7,9,19,24,25]. The Generalized Chen conjecture has been shown to be false
by constructing foliations of proper biharmonic hyperplanes in a 5-dimensional
conformally flat space of non-constant negative sectional curvature in [26]. In
case of positive sectional curvature ambient spaces, there are several families
of biharmonic submanifolds which are not minimal. For example in [8], the au-
thors classified proper biharmonic hypersurfaces in the unit Euclidean sphere
with at most two distinct principal curvatures.

Let ϕ : Mn → Rn+1 be an isometric immersion from a connected oriented
Riemannian manifold into the Euclidean space Rn+1 with N as the unit normal
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direction. We have, [3],

Lkϕ = (k + 1)

(
n

k + 1

)
Hk+1N,

where k = 0, . . . , n − 1 and Hk+1 is (k + 1)-th mean curvature of M . When

k = 0, the above equation reduces to ∆ϕ = nH1N = n ~H which is the Beltrami
equation. In [5], we proposed the Lk-conjecture: Every Euclidean hypersurface
ϕ : Mn → Rn+1 satisfying the condition L2

kϕ = 0 for some k, 0 ≤ k ≤ n − 1,
has zero (k + 1)-th mean curvature, namely it is k-minimal. We have proved
that the Lk-conjecture is true for Euclidean hypersurfaces with at most two
principal curvatures, [5]. Hereafter in [6], we have generalized the notions of
tension and bitension fields to introduce Lk-harmonic and Lk-biharmonic maps.

Let M be a connected, oriented isometrically immersed Riemannian hyper-
surface in a simply connected space form Rn+1(c), c = 0,±1. Then M is called
an Lk-biharmonic hypersurface if the following equations are satisfied:(

n

k + 1

)
Hk+1∇Hk+1 + 2(S ◦ Pk)(∇Hk+1) = 0,(1)

LkHk+1−
(

n

k + 1

)
Hk+1 (nH1Hk+1−(n− k − 1)Hk+2−c(k+1)Hk) = 0.(2)

In addition M is called a proper Lk-biharmonic hypersurface if M is an Lk-bi-
harmonic hypersurface and Hk+1 6= 0.

Lk-conjecture 1.1 ([6]). Let ϕ : Mn → Rn+1(c), c = 0,±1, be a connected
oriented hypersurface immersed into a simply connected space form Rn+1(c).
If M is an Lk-biharmonic hypersurface, then Hk+1 is zero.

The Lk-conjecture has been proved in some cases. For c = 0,−1, the Lk-
conjecture is proved as hypersurface M has two principal curvatures, or M is
weakly convex, or M is complete with some constraint on it and on Lk, and it
is shown that there is not any Lk-biharmonic hypersurface Mn in Hn+1 with
two principal curvatures of multiplicities greater than one, [6].

In this paper we consider Lk-conjecture for hypersurface Mn in space form
Rn+1(c) with three principal curvatures. When c = 0,−1, in Theorem 1.2, we
show that every L1-biharmonic hypersurface with three principal curvatures
and H1 is constant, has H2 = 0 and at least one of the multiplicities of principal
curvatures is one, and we show that there is not L2-biharmonic hypersurface
with three disjoint principal curvatures and, H1 and H2 is constant. Recently,
in [22] for the case c = 0, the authors prove that the L1-conjecture is true
for L1-biharmonic hypersurfaces with three distinct principal curvatures and
constant mean curvature of a Euclidean space, meanwhile in our paper we give
more result in this case and also we consider L2-conjecture and we give some
classification for cases c = 0, 1,−1 which are completely different.

For the case c = 1, the Lk-conjecture is false by considering hypersurface

Sn(
√
2
2 ) in the n-dimensional unit Euclidean sphere Sn, so Sn(

√
2
2 ) is a proper
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Lk-biharmonic hypersurface. This result has been extended to hypersurfaces
having two distinct principal curvatures and it’s shown that they are open
pieces of the standard products of spheres, [4].

For c = 1, in Theorem 1.2, by considering hypersurfaces having three prin-
cipal curvatures in the unit Euclidean sphere, we classify L1-biharmonic hy-
persurfaces with multiplicities greater than one, H1 is constant and H2 = 0,
proper L1-biharmonic hypersurfaces which H1 is constant, and L2-biharmonic
hypersurfaces which H1 and H2 is constants.

Theorem 1.2. Let Mn be a connected, oriented isometrically immersed hy-
persurface in space form Rn+1(c). Suppose that M has three distinct principal
curvatures and H1, . . . ,Hk are constant. Let c = 0,−1. If k = 1 and M is
L1-biharmonic, then H2 = 0 and at least one of the multiplicities of princi-
pal curvatures is one. If k = 2, then M is not L2-biharmonic. Let c = 1.
If k = 1 and M is L1-biharmonic, then H2 is constant, and if H2 = 0 and
multiplicities of principal curvatures are greater than one, and or M is proper
L1-biharmonic, then M is an isoparametric hypersurface. If k = 2 and M is
L2-biharmonic, then M is an isoparametric hypersurface.

Assume that k1 > k2 > k3 denote the principal curvatures of an isopara-
metric hypersurface in the unit Euclidean Sphere Sn+1. Then multiplicities
of principal curvatures is equal, say m, m is either 1, 2, 4 or 8, and k2 =
k1−
√
3

1+
√
3k1

, k3 = k1+
√
3

1−
√
3k1

, and there is a homogeneous polynomial F of degree 3

over Rn+2 where for any a ∈ (−1, 1), f−1(a) = F |−1Sn+1(a) is an isoparametric
hypersurface (see Theorem 2.1).

(a) Let k = 1 and M be L1-biharmonic, H2 = 0 and the multiplicities of
principal curvatures be greater than one. Then we have the followings:
• If m = 2, then k1, k2, k3 approximately are k1 ≈ 3.286, k2 ≈

0.232, k3 ≈ −1.069 or k1 ≈ 1.069, k2 ≈ −0.232, k3 ≈ −3.286. So
M is congruent to an open part of f−1(a) and a tube of radius θ
around the standard embedding of a complex projective plane CP2

into S7 where a ≈ 0.632 and θ ≈ π/10.634.
• If m = 4, then k1, k2, k3 approximately are k1 ≈ 2.527, k2 ≈

0.147, k3 ≈ −1.261, or k1 ≈ 1.261, k2 ≈ −0.147, k3 ≈ −2.527.
So M is congruent to an open part of f−1(a) and a tube of ra-
dius θ around the standard embedding of a quaternionic projective
plane HP2 into S13 where a ≈ 0.426 and θ ≈ π/8.337.

• If m = 8, then k1, k2, k3 approximately are k1 ≈ 2.216, k2 ≈
0.1, k3 ≈ −1.39 or k1 ≈ 1.39, k2 ≈ −0.1, k3 ≈ −2.216. So M
is congruent to an open part of f−1(a) and a tube of radius θ
around the standard embedding of a Cayley projective plane OP2

into S25 where a ≈ 0.294 and θ ≈ π/7.411.
(b) Let k = 1 and M be proper L1-biharmonic. Then we have the follow-

ings:
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• If m = 1, then k1, k2, k3 satisfy the following equation

3H1H2 −H3 − 2H1 = 0,

so that k1 =
√

3, k2 = 0, k3 = −
√

3. Therefore M is congruent
to an open part of f−1(0) and a tube of radius π/6 around the
standard embedding of a real projective plane RP2 into S4. Also
M is a Cartan minimal hypersurface of dimension 3.

• If m = 2, then k1, k2, k3 satisfy the following equation

6H1H2 − 4H3 − 2H1 = 0,

so that either k1 =
√

3, k2 = 0, k3 = −
√

3 or approximately k1 ≈
1.369, k2 ≈ −0.107, k3 ≈ −2.261 or k1 ≈ 2.261, k2 ≈ 0.107, k3 ≈
−1.369. If k1 =

√
3, k2 = 0, k3 = −

√
3, then M is congruent to an

open part of f−1(0) and a tube of radius π/6 around the standard
embedding of a complex projective plane CP2 into S7. Also M is a
Cartan minimal hypersurface of dimension 6. If k1 ≈ 1.369, k2 ≈
−0.107, k3 ≈ −2.261 or k1 ≈ 2.261, k2 ≈ 0.107, k3 ≈ −1.369, then
M is congruent to an open part of f−1(a) and a tube of radius θ
around the standard embedding of a complex projective plane CP2

into S7 where a ≈ 0.316 and θ ≈ π/7.544.
• If m = 4, then k1, k2, k3 satisfy the following equation

12H1H2 − 10H3 − 2H1 = 0,

so that k1 =
√

3, k2 = 0, k3 = −
√

3. Therefore M is congruent
to an open part of f−1(0) and a tube of radius π/6 around the
standard embedding of a quaternionic projective plane HP2 into
S13. Also M is a Cartan minimal hypersurface of dimension 12.

• If m = 8, then k1, k2, k3 satisfy the following equation

24H1H2 − 22H3 − 2H1 = 0,

so that k1 =
√

3, k2 = 0, k3 = −
√

3. Therefore M is congruent
to an open part of f−1(0) and a tube of radius π/6 around the
standard embedding of a Cayley projective plane OP2 into S25.
Also M is a Cartan minimal hypersurface of dimension 24.

(c) Let k = 2 and M be L2-biharmonic and H3 = 0. Then we have the
followings:
• If m = 1, then k1, k2, k3 are k1 =

√
3, k2 = 0, k3 = −

√
3. So M

is congruent to an open part of f−1(0) and a tube of radius π/6
around the standard embedding of a real projective plane RP2 into
S4. Also M is a Cartan minimal hypersurface of dimension 3.
• If m = 2, then k1, k2, k3 are k1 =

√
3, k2 = 0, k3 = −

√
3. So M

is congruent to an open part of f−1(0) and a tube of radius π/6
around the standard embedding of a complex projective plane CP2
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into S7. Also M is a Cartan minimal hypersurface of dimension
6.
• If m = 4, then k1, k2, k3 are k1 =

√
3, k2 = 0, k3 = −

√
3 or

approximately k1 ≈ 0.993, k2 ≈ −0.271, k3 ≈ −3.777 or k1 ≈
3.777, k2 ≈ 0.271, k3 ≈ −0.993. If k1 =

√
3, k2 = 0, k3 = −

√
3,

thenM is congruent to an open part of f−1(0) and a tube of radius
π/6 around the standard embedding of a quaternionic projective
plane HP2 into S13. Also M is a Cartan minimal hypersurface
of dimension 12. If k1 ≈ 0.993, k2 ≈ −0.271, k3 ≈ −3.777 or
k1 ≈ 3.777, k2 ≈ 0.271, k3 ≈ −0.993, then M is congruent to an
open part of f−1(a) and a tube of radius θ around the standard
embedding of a quaternionic projective plane HP2 into S13 where
a ≈ 0.713 and θ ≈ π/12.138.

• If m = 8, then k1, k2, k3 are k1 =
√

3, k2 = 0, k3 = −
√

3 or
approximately k1 ≈ 1.189, k2 ≈ −0.177, k3 ≈ −2.757 or k1 ≈
2.757, k2 ≈ 0.177, k3 ≈ −1.189. If k1 =

√
3, k2 = 0, k3 = −

√
3,

then M is congruent to an open part of f−1(0) and a tube of
radius π/6 around the standard embedding of a Cayley projective
plane OP2 into S25. Also M is a Cartan minimal hypersurface
of dimension 24. If k1 ≈ 1.189, k2 ≈ −0.177, k3 ≈ −2.757 or
k1 ≈ 2.757, k2 ≈ 0.177, k3 ≈ −1.189, then M is congruent to an
open part of f−1(a) and a tube of radius θ around the standard
embedding of a Cayley projective plane OP2 into S25 where a ≈
0.502 and θ ≈ π/9.028.

(d) Let k = 2 and M be proper L2-biharmonic. Then we have the follow-
ings:
• If m = 1, then k1, k2, k3 satisfy the equation

H1H3 −H2 = 0,

so that either k1 = 1, k2 =
√

3 − 2, k3 = −
√

3 − 2 or k1 = 2 +√
3, k2 = 2 −

√
3, k3 = −1. Therefore M is congruent to an open

part of f−1(
√
2
2 ) and a tube of radius π/12 around the standard

embedding of a real projective plane RP2 into S4.
• If m = 2, then k1, k2, k3 satisfy the following equation

2H1H3 −H4 −H2 = 0,

so that there is no real solution for all k1, k2, k3. Therefore there
is no proper L2-biharmonic hypersurface in S7 with three disjoint
principal curvatures, and H1 and H2 are constants.

• If m = 4, then k1, k2, k3 satisfy the equation

4H1H3 − 3H4 −H2 = 0,

so that approximately either k1 ≈ 1.083, k2 ≈ −0.225, k3 ≈ −3.213
or k1 ≈ 3.213, k2 ≈ 0.225, k3 ≈ −1.083. Then M is congruent to
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an open part of f−1(a) and a tube of radius θ around the standard
embedding of a quaternionic projective plane HP2 into S13 where
a ≈ 0.617 and θ ≈ π/10.411.
• If m = 8, then k1, k2, k3 satisfy the following equation

8H1H3 − 7H4 −H2 = 0,

so that there is no real solution for all k1, k2, k3. Therefore there
is no proper L2-biharmonic hypersurface in S25 with three disjoint
principal curvatures, and H1 and H2 are constants.

An immediate result of Theorem 1.2, we get the following classification of
proper L2-biharmonic hypersurfaces in space form R4(c) with three distinct
principal curvatures and H2 is constant.

Theorem 1.3. Let M3 be a connected, oriented isometrically immersed hy-
persurface in space form R4(c) with three distinct principal curvatures. If M
is proper L2-biharmonic and H2 is constant, then c = 1 and M is congruent

to an open part of f−1(
√
2
2 ) and a tube of radius π/12 around the standard

embedding of a real projective plane RP2 into S4 and principal curvatures of
M are 2 +

√
3, 2−

√
3,−1.

2. Preliminaries

We recall the prerequisites from [3, 10, 11, 13, 23, 27]. Let Rn+1(c) be the
simply connected Riemannian space form of constant sectional curvature c
which is the Euclidean space Rn+1 for c = 0, and the Hyperbolic space Hn+1,
for c = −1, and the Euclidean sphere Sn+1 for c = +1. Let ϕ : Mn → Rn+1(c)
be a connected oriented hypersurface isometrically immersed into Rn+1(c) with
N as a unit normal vector field, ∇ and ∇ the Levi-Civita connections on M and
Rn+1(c), respectively. For simplicity we also denote the induced connection on
the pullback bundle ϕ∗TRn+1(c) by ∇. Let X,Y be vector fields on M . We
have the following formula for the shape operator of M ,

∇Xdϕ(Y ) = dϕ(∇XY ) + 〈SX, Y 〉N,
dϕ(SX) = −∇XN.

As it is known, the shape operator is a self-adjoint linear operator. Let
k1, . . . , kn be its eigenvalues which are called principal curvatures of M . Define
s0 = 1 and

(3) sk =
∑

1≤i1<···<ik≤n

ki1 · · · kik .

The k-th mean curvature of M is defined by(
n

k

)
Hk = sk.
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For k = 1, H1 = 1
n tr(S) = H is the mean curvature of M . For k = 2, the

scalar curvature of M is s = n(n − 1)H2. In general, when k is odd, the sign
of Hk depends on the chosen orientation and when k is even, Hk is an intrinsic
geometric quantity.

Let Mn have three principal curvatures, k1, k2, k3 with respective multiplic-
ities m1,m2,m3, n = m1 +m2 +m3. Therefore we get by Equation (3),

(4) sk =
∑
i,j

(
m1

i

)(
m2

j

)(
m3

k − i− j

)
ki1k

j
2k
k−i−j
3 .

The Newton transformations Pk : X (M) → X (M) are defined inductively
by P0 = I and

Pk = skI − S ◦ Pk−1, 1 ≤ k ≤ n.
Therefore

(5) Pk =

k∑
l=0

(−1)lsk−lS
l.

From the Cayley-Hamilton theorem, one gets that Pn = 0. Each Pk is a self
adjoint linear operator which commutes with S and the eigenvalues of Pk are
given by

(6) µk,i =
∑

1≤i1<···<ik≤n, ij 6=i

ki1 · · · kik .

For 0 ≤ k ≤ n − 1, the second order linear differential operator Lk :
C∞(M) → C∞(M) as the natural generalization of the Laplace operator for
Euclidean hypersurfaces M , is defined by

(7) Lkf = tr(Pk ◦ ∇2f),

where ∇2f is metrically equivalent to the Hessian of f and is defined by〈
(∇2f)X, Y

〉
= 〈∇X(∇f), Y 〉 for all vector fields X,Y on M , and ∇f is the

gradient vector field of f . When k = 0, L0 = ∆.
We have the following properties of shape operator, curvature tensor and

Newton transformation which they are used to prove other results of the paper.
If X,Y, Z are tangent vector fields on M , then we have

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

= c (〈Z, Y 〉X − 〈Z,X〉Y ) + 〈SY,Z〉SX − 〈SX,Z〉SY,(8)

(∇XS)Y = (∇Y S)X, (Codazzi equation)

tr(Pk) = (n− k)sk.(9)

We recall that a hypersurface Mn in Rn+1(c) is said to be isoparametric if it
has constant principal curvatures k1 > k2 > · · · > kl with respective constant
multiplicities m1,m2, . . . ,ml, n = m1+m2+· · ·+ml. It is known for c = 0,−1,
isoparametric hypersurfaces has at most two principal curvatures. For l = 3
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we have the following classification of isoparametric hypersurfaces in Euclidean
sphere.

Theorem 2.1 (cf. [10, 11, 23]). Let Mn be an isoparametric hypersurface in
Sn+1 with three constant principal curvatures k1 > k2 > k3 and respective
multiplicities m1,m2,m3. Then we have the followings:

I. m = m1 = m2 = m3 = 2q, n = 3 · 2q, q = 0, 1, 2, 3, and there exists an
angle θ, 0 < θ < π/3 such that

(10) k1 = cot θ, k2 = cot(θ+
π

3
) =

k1 −
√

3

1 +
√

3k1
, k3 = cot(θ+

2π

3
) =

k1 +
√

3

1−
√

3k1
.

II. In the ambient Euclidean space Rn+2 ⊃ Sn+1, there is a homogeneous
polynomial F of degree 3 over Rn+2 whose the range of f = F |Sn+1 is [−1, 1],
the only critical values of f are ±1 and for any a ∈ (−1, 1), f−1(a) is an
isoparametric hypersurface and is a tube around the two focal submanifolds
f−1(1) and f−1(−1). For a = cos(3θ), M is up to congruency an open part of
f−1(a) and a tube of radius θ around the two focal submanifolds.

III. The two focal submanifolds are standard embedding of a projective plane
FP2 into Sn+1 where F is the division algebra R, C, H (quaternions), O (Cayley
numbers) corresponding to the principal multiplicity m = 1, 2, 4, or 8.

IV. Let F be one of the division algebras R, C, H and O. Let X,Y, Z ∈ F
and a, b ∈ R. Then

F = a3 − 3ab2 +
3a

2
(XX + Y Y − 2ZZ)

+
3
√

3b

2
(XX − Y Y ) +

3
√

3

2
(XY Z +XY Z).

Isoparametric hypersurfaces with three distinct principal curvatures are usu-
ally called Cartan hypersurfaces. When a Cartan hypersurface in Sn+1 is min-
imal, it is congruent to one of the following hypersurfaces:

M3 = SO(3)/(Z2 + Z2)→ S4

M6 = SU(3)/T 2 → S7

M12 = Sp(3)/(Sp(1)× Sp(1)× Sp(1))→ S13

M24 = F4/Spin(8)→ S25

Principal curvatures of a Cartan minimal hypersurface are
√

3, 0,−
√

3.

3. Proof of main result

Before proving Theorem 1.2, we give an auxiliary Lemma for Lk-biharmonic
hypersurface M in space form Rn+1(c) which has three distinct principal cur-
vatures and we show Hk+1 is constant when k = 1 or 2 and H1, . . . ,Hk are
constant. In its proof, we benefit from the techniques of [17–19, 21] but adapt
them to our context. So our proof is much involved and quite different.
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Lemma 3.1. Let Mn be a connected, oriented isometrically immersed Lk-
biharmonic hypersurface in space form Rn+1(c). Suppose that M has three
distinct principal curvatures and k = 1 or 2. If H1, . . . ,Hk are constant, then
Hk+1 is constant.

Proof. We have Pk+1 = sk+1I − S ◦ Pk. So by Equation (1) we get

(11) Pk+1∇sk+1 =
3

2
sk+1∇sk+1.

Let sk+1 be non constant. We consider {ei}ni=1 is a local orthonormal frame

field on M which diagonalize S and Pk+1 simultaneously and e1 = ∇sk+1

|∇sk+1| . We
put

(12) Sei = λiei and Pk+1ei = µk+1,iei, i = 1, . . . , n.

Then we have by Equations (11) and (12),

(13) µk+1,1 =
3

2
sk+1.

So we get by Equations (5) and (13),

3

2
sk+1 =

k+1∑
l=0

(−1)lsk+1−lλ1
l = sk+1 +

k+1∑
l=1

(−1)lsk+1−lλ1
l.

Therefore

(14) sk+1 = 2

k+1∑
l=1

(−1)lsk+1−lλ1
l.

We have ∇sk+1 =
∑n
i=1 ei(sk+1)ei = |∇sk+1|e1. Thus

(15) e1(sk+1) 6= 0 and ∀i 6= 1 ei(sk+1) = 0.

By assumption s1, . . . , sk are constant, so by Equation (14) we get for every i,

(16) ei(sk+1) = 2ei(λ1)

k+1∑
l=1

(−1)lsk+1−llλ1
l−1.

Since e1(sk+1) 6= 0, by Equation (16) we have e1(λ1) 6= 0. If ei(λ1) 6= 0 for some

i 6= 1, then ei(sk+1) = 0 and Equation (16) imply that
∑k+1
l=1 (−1)lsk+1−llλ1

l−1

= 0. So this polynomial shows that λ1 is constant which is a contradiction with
e1(λ1) 6= 0. Thus λ1 is non constant,

(17) e1(λ1) 6= 0 and ∀i 6= 1 ei(λ1) = 0.

Now we show that multiplicity of λ1 is one. Let’s ∇eiej =
∑
l ω

l
ijel. Then

∇el 〈ei, ej〉 = 0 and the Codazzi equation (∇eiS)ej = (∇ejS)ei give that

ωjli = −ωilj ,(18)

ei(λj) = (λi − λj)ωjji i 6= j,(19)

(λi − λj)ωjli = (λl − λj)ωjil i 6= j 6= l.(20)
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If λ1 = λj for some j 6= 1, then by Equation (19) we get e1(λ1) = e1(λj) =

(λ1−λj)ωjj1 = 0 which is a contradiction with Equation (17). By assumption M
has three distinct principal curvatures. Without loss of generality, We denote
them by

(21) λ1, λ2 = · · · = λp = α2, λp+1 = · · · = λn = βn.

Let’s n ≥ 4 and p = n− 1 (for n = 3 or p ≤ n− 2, the proof is in similar way).
By Equations (19) and (21) we have

(22) e2(α2) = · · · = en−1(α2) = 0.

In the following we show that en(α2) = 0. We have by Equation (19), for i 6= 1,
ei(λ1) = (λi − λ1)ω1

1i = 0. So

(23) ω1
1i = 0, i = 1, . . . , n.

We know by Equation (21),

(24) βn = s1 − λ1 − (n− 2)α2.

Thus by Equations (17), (22) and (24) for i = 2, . . . , n− 1, ei(βn) = 0, and by
Equations (19) and (21), ei(βn) = ei(λn) = (λi − λn)ωnni = 0. So

(25) ωnni = 0, i = 2, . . . , n.

By Equations (19) and (21), ωnn1 = e1(λn)
λ1−λn

= e1(βn)
λ1−βn

, and so by Equation (24)

(26) ωnn1 = − e1 (λ1 + (n− 2)α2)

2λ1 + (n− 2)α2 − s1
.

By Equation (19), for j = 2, . . . , n− 1, we have ωjj1 =
e1(λj)
λ1−λj

and ωjjn =
en(λj)
λn−λj

.

So by Equation (21) we get

ωjj1 =
e1(α2)

λ1 − α2
, j = 2, . . . , n− 1,(27)

ωjjn =
en(α2)

s1 − λ1 − (n− 2)α2
, j = 2, . . . , n− 1.(28)

For j 6= l and j, l = 2, . . . , n − 1, we have by Equation (20), (λ1 − λj)ωjl1 =

(λl − λj)ωj1l = 0 and (λn − λj)ωjln = (λl − λj)ωjnl = 0. Thus

(29) ωjl1 = ωjln = 0, j 6= l and j, l = 2, . . . , n− 1.

For i, j = 2, . . . , n, by Equation (17) we get, [ei, ej ](λ1) = eiej(λ1)−ejei(λ1) =
0 and so [ei, ej ](λ1) =

∑
l(ω

l
ij − ωlji)el(λ1) = (ω1

ij − ω1
ji)e1(λ1) = 0. Therefore

(30) ω1
ij = ω1

ji, i, j = 2, . . . , n.

For l = 2, . . . , n − 1, by Equation (20), (λn − λ1)ω1
ln = (λl − λ1)ω1

nl and
(λ1 − λn)ωnl1 = (λl − λn)ωn1l. Therefore by Equations (18) and (30) we get

(31) ω1
ln = ω1

nl = ωn1l = 0, l = 2, . . . , n− 1.
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By Equations (18), (23) and (31) we get

(32) ∇e1e1 = ∇e1en = 0.

We have ∇eie1 =
∑
l ω

l
i1el = −

∑
l ω

1
ilel, so Equations (26), (27), (29) and (31)

imply that

∇eie1 =− e1(α2)

λ1 − α2
ei, i = 2, . . . , n− 1,(33)

∇ene1 =− e1 (λ1 + (n− 2)α2)

2λ1 + (n− 2)α2 − s1
en,(34)

and we get by Equations (25) and (26),

(35) ∇enen =
e1 (λ1 + (n− 2)α2)

2λ1 + (n− 2)α2 − s1
e1.

By Equations (28), (29) and (31), we get

(36) ∇eien =
en(α2)

s1 − λ1 − (n− 2)α2
ei, i = 2, . . . , n− 1.

Let’s put

(37) α = − e1(α2)

λ1 − α2
, β = − e1 (λ1 + (n− 2)α2)

2λ1 + (n− 2)α2 − s1
, γ =

en(α2)

s1 − λ1 − (n− 2)α2
.

Now by Equations (27), (28) and (37),

(38) ∇eiei = αe1 +
∑

l=2,...,n−1
l 6=i

ωliiel − γen.

Then by Equations (8), (12), (21), (23), (25), (31), (32), (33), (34), (35), (36)
and (37) we get that

R(e1, e2)e1 =
(
−e1(α) + α2

)
e2 = −(c+ λ1α2)e2.

Therefore

(39) e1(α) = c+ λ1α2 + α2.

We have

(40) R(e1, en)e1 =
(
e1(β) + β2

)
en = −(c+ λ1βn)en.

Therefore by Equations (24) and (40),

(41) e1(β) = −(c+ λ1βn + β2) = −(c+ λ1(s1 − λ1 − (n− 2)α2) + β2).

We have

R(e3, en)e1 =

(
en(α) +

(α+ β)en(α2)

s1 − λ1 − (n− 2)α2

)
e3 + e3(β)en = 0.

So

(42) en(α) = − (α+ β)en(α2)

s1 − λ1 − (n− 2)α2
.
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We have

(43) R(en, e2)en =
(
en(γ)− αβ + γ2

)
e2 = −(c+ βnα2)e2.

Therefore by Equations (24) and (43),

(44) en(γ)− αβ + γ2 = −(c+ (s1 − λ1 − (n− 2)α2)α2).

We have by Equations (6) and (5) we have

µk,1 =

(
n− 2

k

)
αk2 +

(
n− 2

k − 1

)
βnα

k−1
2 ,(45)

µk,1 =

k∑
l=0

(−1)lsk−lλ
l
1,(46)

µk,n =

(
n− 2

k

)
αk2 +

(
n− 2

k − 1

)
λ1α

k−1
2 ,(47)

µk,n =

k∑
l=0

(−1)lsk−lβ
l
n =

k∑
l=0

(−1)lsk−l(s1 − λ1 − (n− 2)α2)l.(48)

Also by Equation (4), we have

(49) sr =

(
n− 2

r − 1

)
λ1α

r−1
2 +

(
n− 2

r

)
αr2+

(
n− 2

r − 1

)
αr−12 βn+

(
n− 2

r − 2

)
λ1α

r−2
2 βn.

We have by Equation (7),

(50) Lksk+1 =

n∑
i=0

µk,i (eiei(sk+1)− (∇eiei)(sk+1)) .

Thus we get by Equations (15), (32), (35), (38) and (50),

Lksk+1 = µk,1e1e1(sk+1)−
( n−1∑
i=2

µk,i(αe1+
∑

l=2,...,n−1
l 6=i

ωliiel−γen)(sk+1)
)

(51)

+ βµk,ne1(sk+1).

Then Equations (15) and (51) imply that

(52) Lksk+1 = µk,1e1e1(sk+1)− α(

n−1∑
i=2

µk,ie1(sk+1)) + βµk,ne1(sk+1).

We know
∑n−1
i=2 µk,i = tr(Pk)− µk,1 − µk,n and by Equation (9),

∑n−1
i=2 µk,i =

(n− k)sk − µk,1 − µk,n. So by Equations (2) and (52) we get that

µk,1 (e1e1(sk+1) + αe1(sk+1)) + ((α+ β)µk,n − α(n− k)sk) e1(sk+1)(53)

= sk+1 (s1sk+1 − (k + 2)sk+2 − c(n− k)sk) .

Now we show that eie1(sk+1) = 0 and eie1(λ1) = 0 for every i = 2, . . . , n.
We know by Equation (15) for every i = 2, . . . , n, [ei, e1](sk+1) = eie1(sk+1)−
e1ei(sk+1) = eie1(sk+1). On the other hand by Equations (15), (23) and (29),
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[ei, e1](sk+1) = (∇eie1 −∇e1ei)(sk+1) =
∑n
l=1(ωli1 − ωl1i)el(sk+1) = 0. There-

fore we get

(54) eie1(sk+1) = 0, i = 2, . . . , n,

and in the similar way

(55) eie1(λ1) = 0, i = 2, . . . , n.

By Equation (37), we have (λ1−α2)α = −e1(α2) and (2λ1+(n−2)α2−s1)β =
−e1 (λ1 + (n− 2)α2). Differentiating these equations in direction of en and by
Equations (17) and (55), and constancy of s1 we get

− en(α2)α+ (λ1 − α2)en(α) = −ene1(α2),(56)

β(n− 2)en(α2) + (2λ1 + (n− 2)α2 − s1)en(β) = −(n− 2)ene1(α2).(57)

So by eliminating ene1(α2) from Equations (56) and (57) we get

(n− 2)
(
− en(α2)α+ (λ1 − α2)en(α)

)
(58)

= (n− 2)βen(α2) + (2λ1 + (n− 2)α2 − s1)en(β).

By substituting en(α) of Equation (42) in Equation (58) we get

(59) en(β) =
(n− 2)(α+ β)(nα2 − s1)en(α2)

(2λ1 + (n− 2)α2 − s1)(s1 − λ1 − (n− 1)α2)
.

By Equation (24),

(60) en(βn) = −(n− 2)en(α2).

Thus by Equations (45) and (60), we have

(61) en(µk,1) = (k − 1)(s1 − λ1 − (n− 1)α2)

(
n− 2

k − 1

)
αk−22 en(α2).

Differentiating of Equation (53) in direction of en and use of Equation (54) we
get

en(µk,1) (e1e1(sk+1) + αe1(sk+1)) + µk,1en(α)e1(sk+1)(62)

+ e1(sk+1)
(
en(µk,n)(α+ β) + µk,n(en(β) + en(α))

)
= − (k + 2)sk+1en(sk+2).

Differentiating of Equation (47) in direction of en we get

(63) en(µk,n) = ((n− k − 1)α2 + (k − 1)λ1)

(
n− 2

k − 1

)
αk−22 en(α2).

By Equations (17) and (46) we get

(64) ei(µk,1) = 0, i = 2, . . . , n.

Now for showing that en(α2) = 0 we consider two cases:

Case 1: If k = 1, then by Equations (62) and (64) we have

(65) e1(s2)
(
en(µ1,n)(β+α)+µ1,n(en(β)+en(α))+µ1,1en(α)

)
= −3s2en(s3).
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By Equation (63) we have

(66) en(µ1,n) = (n− 2)en(α2).

By Equation (6) we have

µ1,1 = s1 − λ1,(67)

µ1,n = λ1 + (n− 2)α2.(68)

Now by Equations (42), (59), (65), (66), (67) and (68) we get

e1(s2)en(α2)

[
(β+α)

[
(n−2)+(λ1+(n−2)α2)(69)

×
[ (n−2)(nα2−s1)

(2λ1+(n−2)α2−s1)(s1−λ1−(n−1)α2)
− 1

s1−λ1−(n−1)α2

]]
+

s1−λ1
s1−λ1−(n−1)α2

]
= −3s2en(s3).

We have by Equation (49),

(70) s3 =

(
n− 2

2

)
λ1α

2
2 +

(
n− 2

3

)
α3
2 +

(
n− 2

2

)
α2
2βn + (n− 2)λ1α2βn.

Differentiating of Equation (70) in direction of en and using Equation (60) we
get

en(s3) = en(α2)
[
2

(
n− 2

2

)
λ1α2 + 3

(
n− 2

3

)
α2
2(71)

+ 2

(
n− 2

2

)
(s1 − λ1 − (n− 2)α2)α2 − (n− 2)

(
n− 2

2

)
α2
2

+ (n− 2)(s1 − λ1 − (n− 2)α2)λ1 − (n− 2)2λ1α2

]
.

Let en(α2) 6= 0. So using Equation (71) and dividing Equation (69) by en(α2),
we have

e1(s2)(β+α)
[
(n−2) + (λ1+(n−2)α2)

[
(n−2)(nα2−s1)

(2λ1+(n−2)α2−s1)(s1−λ1−(n−1)α2)

(72)

− 1
s1−λ1−(n−1)α2

]
+ s1−λ1

s1−λ1−(n−1)α2

]
= − 3s2

[
2

(
n− 2

2

)
λ1α2+3

(
n− 2

3

)
α2
2+2

(
n− 2

2

)
(s1−λ1−(n−2)α2)α2

−(n−2)

(
n−2

2

)
α2
2+(n−2)(s1−λ1−(n−2)α2)λ1−(n−2)2λ1α2

]
.
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Then differentiating of Equation (72) in direction of en and using Equations
(42) and (59) we get

e1(s2)
[

(β+α)en(α2)
s1−λ1−(n−1)α2

(−1 + (n−2)(nα2−s1)
2λ1+(n−2)α2−s1 ) [n− 2 + (λ1 + (n− 2)α2)

(73)

×
[

(n−2)(nα2−s1)
(2λ1+(n−2)α2−s1)(s1−λ1−(n−1)α2)

− 1
s1−λ1−(n−1)α2

]
+ s1−λ1

s1−λ1−(n−1)α2

]
+ (β+α)

[
(n−2)en(α2)

[
(n−2)(nα2−s1)

(2λ1+(n−2)α2−s1)(s1−λ1−(n−1)α2)
− 1

s1−λ1−(n−1)α2

]
+ (λ1+(n−2)α2) [[n(n−2)en(α2)(2λ1+(n−2)α2−s1)(s1−λ1−(n−1)α2)

− (n− 2)(nα2 − s1) [(n− 2)en(α2)(s1 − λ1 − (n− 1)α2)

−(n− 1)(2λ1 + (n− 2)α2 − s1)en(α2)]]

× 1
(2λ1+(n−2)α2−s1)2(s1−λ1−(n−1)α2)2

− (n−1)en(α2)
(s1−λ1−(n−1)α2)2

]
+ (n−1)(s1−λ1)en(α2)

(s1−λ1−(n−1)α2)2

]]
= − 3s2en(α2)

[
2

(
n−2

2

)
s1−2(n−2)2λ1+α2

[
6

(
n−2

3

)
−6(n−2)

(
n−2

2

)]]
.

Let’s divide Equation (73) by en(α2) and then substitute e1(s2) of Equation
(72). So coefficients β + α and s2 are eliminated. Thus we get that α2 should
satisfy of a polynomial of degree 7 which its coefficients of functions of λ1. So
α2 is a function of λ1. Then by Equation (17), we get en(α2) = 0 which is
contradiction.

Case 2: If k = 2, then by Equations (61), (64) and βn−α2 = s1−λ1−(n−1)α2 6=
0 we have en(α2) = 0.

Therefore by Case 1 and Case 2, we have

(74) e2(α2) = · · · = en(α2) = 0.

Now by Equations (37) and (44),

(75) αβ = c+ (s1 − λ1 − (n− 2)α2)α2.

By Equation (37) we have

(76) e1(λ1) = −β(2λ1 + (n− 2)α2 − s1)− (n− 2)α(α2 − λ1).

Differentiating Equation (76) in direction e1 and by use of Equations (16), (37),
(39), (41) and (75) we get

e1e1(λ1) = (c+ λ1(s1 − λ1 − (n− 2)α2))(2λ1 + (n− 2)α2 − s1)(77)

+

(
−β +

(n− 2)α

2

)
e1(sk+1)∑k+1

l=1 (−1)lsk+1−llλ1
l−1

− (n− 2)(c+ (s1 − λ1 − (n− 2)α2)α2)(α2 − λ1)

− (n− 2)(c+ λ1α2)(α2 − λ1)
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+ β2(2λ1 + (n− 2)α2 − s1)− 2(n− 2)α2(α2 − λ1).

We rewrite the last term of Equation (77). We have by Equations (16), (37),
(75) and (76),

β2(2λ1 + (n− 2)α2 − s1)− 2(n− 2)α2(α2 − λ1)(78)

= − β(e1(λ1) + (n− 2)e1(α2)− 2(n− 2)αe1(α2)

= (2α− β)
e1(sk+1)

2
∑k+1
l=1 (−1)lsk+1−llλ1

l−1

− (n− 2)(c+ α2(s1 − λ1 − (n− 2)α2))(α2 − λ1)

+ 2(c+ α2(s1 − λ1 − (n− 2)α2))(2λ1 + (n− 2)α2 − s1).

So substituting Equation (78) in equation (77), we get

e1e1(λ1) = (nα− 3β)
e1(sk+1)

2
∑k+1
l=1 (−1)lsk+1−llλ1

l−1(79)

+ (c+ λ1(s1 − λ1 − (n− 2)α2))(nλ1 − s1)

− (n− 2)(c+ λ1α2)(α2 − λ1).

Differentiating of Equation (16) in direction e1 and use of Equations (76) and
(79) we obtain

e1e1(sk+1) = 2e1e1(λ1)

k+1∑
l=1

(−1)lsk+1−llλ1
l−1(80)

+ 2(e1(λ1))2
k+1∑
l=2

(−1)lsk+1−ll(l − 1)λ1
l−2

= 2e1e1(λ1)

k+1∑
l=1

(−1)lsk+1−llλ1
l−1

+ (−β(2λ1 + (n− 2)α2 − s1)− (n− 2)α(α2 − λ1))

× (
e1(sk+1)∑k+1

l=1 (−1)lsk+1−llλ1
l−1 )

k+1∑
l=2

(−1)lsk+1−ll(l − 1)λ1
l−2

=
e1(sk+1)∑k+1

l=1 (−1)lsk+1−llλ1
l−1 ((nα− 3β)

k+1∑
l=1

(−1)lsk+1−llλ1
l−1

+ (−β(2λ1 + (n− 2)α2 − s1)− (n− 2)α(α2 − λ1))

×
k+1∑
l=2

(−1)lsk+1−ll(l − 1)λ1
l−2)

+ 2((c+ λ1(s1 − λ1 − (n− 2)α2))(nλ1 − s1)
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− (n− 2)(c+ λ1α2)(α2 − λ1))

k+1∑
l=1

(−1)lsk+1−llλ1
l−1.

Let Fi = Fi(λ
max1
1 αmin2

2 , λmin1
1 αmax2

2 )’s be polynomials in term of λ1 and α2 of
degree max1 + min2 = min1 + max2 where maxj and minj show the maximum
and minimum power of its base. So by use of this notation and by Equation
(80) we get

e1e1(sk+1)(81)

=
e1(sk+1)

F1(λk1)

[
(nα− 3β)F1(λk1)

+(−βF2(λ1, α2)− (n− 2)αF3(λ1, α2))F4(λk−11 )
]

+
[
2F5(λ31, λ

2
1α2)− 2(n− 2)F6(λ21α2, λ1α

2
2)
]

=
e1(sk+1)

F1(λk1)

[
αF7(λk1 , λ

k−1
1 α2) + βF8(λk1 , λ

k−1
1 α2)

]
+ F9(λ31, λ1α

2
2).

Now by Equations (46), (48), (49), (53) and (81) we have

F10(λk1)

[
e1(sk+1)

F1(λk1)

[
αF7(λk1 , λ

k−1
1 α2) + βF8(λk1 , λ

k−1
1 α2)

]
+F9(λ31, λ1α

2
2) + αe1(sk+1)

]
+ e1(sk+1)

[
F11(λk1 , α

k
2)(α+ β)− α(n− k)sk

]
= F12(λ21α

k−1
2 , αk+1

2 )
[
F13(λ21α

k−1
2 , αk+1

2 ) + F14(λ21α
k
2 , α

k+2
2 )

]
.

Therefore

(82)
e1(sk+1)

[
αF15(λ2k1 , λ

k
1α

k
2) + βF16(λ2k1 , λ

k
1α

k
2)
]

= F17(λk+4
1 α2k−1

2 , λk1α
2k+3
2 ) + F18(λ2k+3

1 , λ2k+1
1 α2

2).

Differentiating of Equation (82) in direction e1,

e1e1(sk+1) [αF15 + βF16](83)

+ e1(sk+1)

[
e1(α)F15 + e1(β)F16 + α

[
e1(λ1)

∂F15

∂λ1
+ e1(α2)

∂F15

∂α2

]
+β

[
e1(λ1)

∂F16

∂λ1
+ e1(α2)

∂F16

∂α2

]]
= e1(λ1)

∂F17

∂λ1
+ e1(α2)

∂F17

∂α2
+ e1(λ1)

∂F18

∂λ1
+ e1(α2)

∂F18

∂α2
,

and by use of Equations (37), (39), (41), (75), (76) and (83) we get

e1e1(sk+1)
[
αF15(λ2k1 , λ

k
1α

k
2) + βF16(λ2k1 , λ

k
1α

k
2)
]

(84)

+ e1(sk+1)
[
α2F19(λ2k1 , λ

k−1
1 αk+1

2 ) + β2F20(λ2k1 , λ
k−1
1 αk+1

2 )

+F21(λ2k+2
1 , λk−11 αk+3

2 )
]



1238 M. AMINIAN

= α
[
F22(λk+5

1 α2k−2
2 , λk−11 α2k+4

2 ) + F23(λ2k+3
1 , λ2k1 α

3
2)
]

+ β
[
F24(λk+4

1 α2k−1
2 , λk−11 α2k+4

2 ) + F25(λ2k+3
1 , λ2k1 α

3
2)
]
.

By substituting Equation (81) in Equation (84) and multiplying in F1(λk1) we
get

e1(sk+1)
[
α2F26(λ3k1 , λ

2k−1
1 αk+1

2 ) + β2F27(λ3k1 , λ
2k−1
1 αk+1

2 )(85)

+F28(λ3k+2
1 , λ2k−11 αk+3

2 )
]

= α
[
F29(λ2k+5

1 α2k−2
2 , λ2k−11 α2k+4

2 ) + F30(λ3k+3
1 , λ2k+1

1 αk+2
2 )

]
+ β

[
F31(λ2k+4

1 α2k−1
2 , λ2k−11 α2k+4

2 ) + F32(λ3k+3
1 , λ2k+1

1 αk+2
2 )

]
.

Now we compute two terms

e1(sk+1)α2F26(λ3k1 , λ
2k−1
1 αk+1

2 ) and e1(sk+1)β2F27(λ3k1 , λ
2k−1
1 αk+1

2 )

of Equation (85). By Equation (82) we get

(86) e1(sk+1)α2F26(λ3k1 , λ
2k−1
1 αk+1

2 )

=
1

F15(λ2k1 , λ
k
1α

k
2)

[
α
[
F33(λ4k+4

1 α2k−1
2 , λ3k−11 α3k+4

2 ) + F34(λ5k+3
1 , λ4k1 α

k+3
2 )

]
+e1(sk+1)F35(λ5k+1

1 α2, λ
3k−1
1 α2k+3

2 )
]
,

(87) e1(sk+1)β2F27(λ3k1 , λ
2k−1
1 αk+1

2 )

=
1

F16(λ2k1 , λ
k
1α

k
2)

[
β
[
F36(λ4k+4

1 α2k−1
2 , λ3k−11 α3k+4

2 ) + F37(λ5k+3
1 , λ4k1 α

k+3
2 )

]
+e1(sk+1)F38(λ5k+1

1 α2, λ
3k−1
1 α2k+3

2 )
]
.

Substituting Equations (86) and (87) in Equation (85) we get

e1(sk+1)F39(λ7k+2
1 , λ4k−11 α3k+3

2 )(88)

= α
[
F40(λ6k+5

1 α2k−2
2 , λ4k−11 α4k+4

2 ) + F41(λ7k+3
1 , λ4k+1

1 α3k+2
2 )

]
+ β

[
F42(λ6k+4

1 α2k−1
2 , λ4k−11 α4k+4

2 ) + F43(λ7k+3
1 , λ4k+1

1 α3k+2
2 )

]
.

By Equations (16) and (76) we have

(89) e1(sk+1) = αF44(λk+1
1 , λk1α2) + βF45(λk+1

1 , λk1α2).

So by Equations (88) and (89) we have

(90) αF46(λ8k+3
1 , λ4k−11 α4k+4

2 ) + βF47(λ8k+3
1 , λ4k−11 α4k+4

2 ) = 0.

Now by Equations (75), (82) and (89),
(91)

α2F48(λ3k+1
1 , λ2k1 α

k+1
2 )+β2F49(λ3k+1

1 , λ2k1 α
k+1
2 )=F50(λ3k+2

1 α2, λ
k
1α

2k+3
2 ).
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By multiplying Equation (90) in α and β and by use of Equation (75) we get

α2 =
F51(λ8k+4

1 α2, λ
4k−1
1 α4k+6

2 )

F46(λ8k+3
1 , λ4k−11 α4k+4

2 )
,(92)

β2 =
F52(λ8k+4

1 α2, λ
4k−1
1 α4k+6

2 )

F47(λ8k+3
1 , λ4k−11 α4k+4

2 )
.(93)

Now by substituting Equations (92) and (93) in Equation (91) we get

(94) F53(λ19k+8
1 α2, λ

9k−2
1 α10k+11

2 ) = 0.

In the following we show that e1(α2) 6= 0. Let e1(α2) = 0 then by Equation
(74), α2 is constant and by Equation (37), α = 0. Therefore by Equation (39),
c + λ1α2 = 0 and by differentiating we get e1(λ1)α2 = 0 and so by Equation
(17), α2 = 0. If k = 2, then by hypothesis s1 and s2 is constant. Since α2 = 0,
by Equations (4) and (21), s1 = λ1 + βn, s2 = λ1βn. Then differentiating in
direction of e1 we get e1(λ1) + e1(βn) = 0 and e1(λ1)βn + λ1e1(βn) = 0, so
e1(λ1)(βn − λ1) = 0. Therefore βn = λ1 which is a contradiction. If k = 1, we
have s1 is constant. Since α = α2 = 0, by Equation (90), βF47(λ111 ) = 0. If
β 6= 0, then F47(λ111 ) = 0, so λ1 is constant which contradicts Equation (17).
Thus β = 0 and by Equation (76), e1(λ1) = 0 which contradicts Equation (17).
Finally by Equation (74) we have

(95) e1(α2) 6= 0 and e2(α2) = · · · = en(α2) = 0.

Now assume that γ(t) be integral curve of e1 that γ(t0) = p which p ∈ M
and t0 ∈ I. By Equations (17) and (95), we have in some neighborhood of t0,
λ1 = λ1(t) and α2 = α2(t), and so t = t(α2) and λ1 = λ1(α2). Therefore by
Equations (37), (76) and (90) we have

(96)
dλ1
dα2

=
dλ1
dt

dt

dα2
=
e1(λ1)

e1(α2)
=
F54(λ8k+4

1 , λ4k−11 α4k+5
2 )

F55(λ8k+4
1 , λ4k−11 α4k+5

2 )
.

Now differentiating of Equation (94) relative to α2 and using Equation (96) we
get

(97) F56(λ27k+12
1 , λ13k−41 α14k+16

2 ) = 0.

Now rewriting polynomials (94) and (97) in term of α2 we get

10k+11∑
i=0

fi(λ1)αi2 = 0,(98)

14k+16∑
i=0

gi(λ1)αi2 = 0,(99)

where fi(λ1) and gi(λ1) are polynomials in term of λ1. By multiplying equation

(98) in g14k+16(λ1)α4k+5
2 and Equation (99) in f10k+11(λ1) and subtracting

them we get a polynomial in term of α2 of degree 14k + 15. Then by this new
polynomial and Equation (98), similarly we get a polynomial of degree 14k+14.
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By continuing this method, finally we omit α2 and we earn a polynomial in
term of λ1 with constant coefficients. So λ1 should be constant which is a
contradiction. Therefore sk+1 is constant. �

Proof of Theorem 1.2. Let k1, k2, k3 be principal curvatures of M , respectively
with multiplicities m1, m2, m3, n = m1 + m2 + m3. Suppose that {ei}ni=1 is
a local orthonormal frame field on M which are the eigenvectors of the shape
operator S of M with respect to the globally chosen unit normal vector field N
and Sei = k1ei i ≤ m1, Sei = k2ei m1 < i ≤ m1 +m2, Sei = k3ei m1 +m2 <
i ≤ n.

Case 1. Let k = 1. By hypothesis s1 is constant and by Lemma 3.1, s2
is constant. Let s2 = 0. If multiplicities of principal curvatures are greater
than one, equations Sei = k1ei i ≤ m1, Sei = k2ei m1 < i ≤ m1 + m2 and
Sei = k3ei m1 + m2 < i ≤ n together with the Codazzi equation, (∇eiS)ej =
(∇ejS)ei, imply that

∇eik1 = 0, i ≤ m1,(100)

∇eik2 = 0, m1 < i ≤ m1 +m2,(101)

∇eik3 = 0, m1 +m2 < i ≤ n.(102)

Since s1 is constant and s2 = 0, by Equation (4) we get that k2 = g1(k1) and
k3 = g2(k1) where g1 and g2 are some smooth functions. So for every i we have

(103) ∇eik2 = g′1(k1)∇eik1.

We have

(104) s1 = m1k1 +m2k2 +m3k3.

Thus we have by Equations (102) and (103),

(105) (m1 +m2g
′
1(k1))∇eik1 = 0 m1 +m2 < i ≤ n.

If for some i, m1 + m2 < i ≤ n, ∇eik1 6= 0, then by Equation (105), g′1(k1) =
−m1

m2
. So k2 = g1(k1) = −m1

m2
k1 + C where C is a constant. Therefore by

Equation (104), k3 is constant. Now by equation s2 = 0, we get that k1 should
satisfy a polynomial. Therefore k1 is constant which is a contradiction. Thus
for every i, m1 + m2 < i ≤ n, ∇eik1 = 0, and together with Equations (100),
(101) and (103), we get k2 is constant. In a similar way we get k3 and so
k1 is constant. Therefore M is an isoparametric hypersurface. If s2 6= 0, By
Equation (2), we have

(106) s1s2 − 3s3 − c(n− 1)s1 = 0.

Since s1 and s2 are constant, Equation (106) implies that s3 is constant. Be-
cause M has three principal curvatures, we get that all principal curvatures are
constant. So M is an isoparametric hypersurface.

Case 2. Let k = 2. By hypothesis s1 and s2 is constant and by Lemma 3.1, s3
is constant. Because M has three principal curvatures, we get that all principal
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curvatures are constant. So M is an isoparametric hypersurface. We know for
c = 0,−1, isoparametric hypersurfaces has at most two principal curvatures,
So by Case 1, we get s2 = 0 and at least one of the multiplicities of principal
curvatures is one, and by Case 2, there is not L2-biharmonic hypersurface with
three disjoint principal curvatures, and s1 and s2 is constant. In the rest, we
assume that c = 1. By Theorem 2.1, an isoparametric hypersurface with three
constant principal curvature k1 > k2 > k3 in Sn+1 have the multiplicities:
m = 1, 2, 4 and 8. Therefore we have the following equations:

If m = 1, then by Equation (4), we have

(107) s1 = k1 + k2 + k3, s2 = k1k2 + k1k3 + k2k3, s3 = k1k2k3.

If m = 2, then by Equation (4), we have

s1 = 2(k1 + k2 + k3),(108)

s2 = 4k1k2 + 4k1k3 + k21 + k22 + 4k2k3 + k23,(109)

s3 = 8k1k2k3 + 2k21k2 + 2k1k
2
3 + 2k21k3 + 2k2k

2
3 + 2k22k3 + 2k1k

2
2,(110)

s4 = k22k
2
3 + 4k1k2k

2
3 + 4k1k

2
2k3 + k21k

2
3 + 4k21k2k3 + k21k

2
2.(111)

If m = 4, then by Equation (4), we have

s1 = 4(k1 + k2 + k3),(112)

s2 = 6k23 + 16k2k3 + 6k22 + 16k1k3 + 16k1k2 + 6k21,(113)

s3 = 4k33 + 24k2k
2
3 + 24k22k3 + 4k32 + 24k1k

2
3 + 64k1k2k3(114)

+ 24k1k
2
2 + 24k21k3 + 24k21k2 + 4k31,

s4 = k43 + 16k2k
3
3 + 36k22k

2
3 + 16k32k3 + k42 + 16k1k

3
3(115)

+ 96k1k2k
2
3 + 96k1k

2
2k3 + 16k1k

3
2 + 36k21k

2
3

+ 96k21k2k3 + 36k21k
2
2 + 16k31k3 + 16k31k2 + k41.

If m = 8, then by Equation (4), we have

s1 = 8(k1 + k2 + k3),(116)

s2 = 28k23 + 64k2k3 + 28k22 + 64k1k3 + 64k1k2 + 28k21,(117)

s3 = 56k33 + 224k2k
2
3 + 224k22k3 + 56k32 + 224k1k

2
3 + 512k1k2k3(118)

+ 224k1k
2
2 + 56k31 + 224k21k3 + 224k21k2,

s4 = 170k41 + 448k31k2 + 448k31k3 + 784k21k
2
2 + 1792k21k2k3(119)

+ 784k21k
2
3 + 1792k1k

2
2k3 + 448k1k

3
2 + 1792k1k2k

2
3 + 448k1k

3
3

+ 170k42 + 448k32k3 + 784k22k
2
3 + 448k2k

2
3 + 170k43.

Let k = 1. If s2 = 0 and multiplicities of principal curvatures are greater than
one, and or s2 6= 0, by Case1, M is an isoparametric hypersurface with three
constant principal curvature k1 > k2 > k3.



1242 M. AMINIAN

If s2 = 0 and multiplicities of principal curvatures are greater than one, we
have the following:

If m = 2, by Equations (10) and (109), we get k1 ≈ 3.286, k2 ≈ 0.232, k3 ≈
−1.069 or k1 ≈ 1.069, k2 ≈ −0.232, k3 ≈ −3.286.

If m = 4, by Equations (10) and (113), we get k1 ≈ 2.527, k2 ≈ 0.147, k3 ≈
−1.261, or k1 ≈ 1.261, k2 ≈ −0.147, k3 ≈ −2.527.

If m = 8, by Equations (10) and (117), we get k1 ≈ 2.216, k2 ≈ 0.1, k3 ≈
−1.39 or k1 ≈ 1.39, k2 ≈ −0.1, k3 ≈ −2.216.

If s2 6= 0, by Case1, M is an isoparametric hypersurface with three constant
principal curvature k1 > k2 > k3 and so the multiplicities: m = 1, 2, 4 and 8.
So we have the following:

If m = 1 by Equations (10), (106) and (107), we get k1 =
√

3, k2 = 0 and

k3 = −
√

3.
If m = 2 by Equations (10), (106), (108), (109) and (110), we get either

k1 =
√

3, k2 = 0, k3 = −
√

3 or k1 ≈ 1.369, k2 ≈ −0.107, k3 ≈ −2.261 or
k1 ≈ 2.261, k2 ≈ 0.107, k3 ≈ −1.369.

If m = 4 by Equations (10), (106), (112), (113) and (114), we get k1 =√
3, k2 = 0, k3 = −

√
3.

If m = 8 by Equations (10), (106), (116),(117) and(118), we get k1 =√
3, k2 = 0, k3 = −

√
3.

Let k = 2. By Case 2, M is an isoparametric hypersurface. So the mul-
tiplicities of constant principal curvatures k1 > k2 > k3 is m = 1, 2, 4 and
8.

If s3 = 0, then we have the following:
If m = 1, by Equations (10) and (107), we get k1 =

√
3, k2 = 0 and

k3 = −
√

3.
If m = 2 by Equations (10) and (110), we get k1 =

√
3, k2 = 0, k3 = −

√
3.

If m = 4 by Equations (10) and (114), we get k1 =
√

3, k2 = 0, k3 = −
√

3 or
k1 ≈ 0.993, k2 ≈ −0.271, k3 ≈ −3.777 or k1 ≈ 3.777, k2 ≈ 0.271, k3 ≈ −0.993.

If m = 8 by Equations (10) and (118), we get k1 =
√

3, k2 = 0, k3 = −
√

3 or
k1 ≈ 1.189, k2 ≈ −0.177, k3 ≈ −2.757 or k1 ≈ 2.757, k2 ≈ 0.177, k3 ≈ −1.189.

If s3 6= 0, then by Equation (2), we have

(120) s1s3 − 4s4 − (n− 2)s2 = 0.

If m = 1, by Equations (10), (107) and (120), we get either k1 = 1, k2 =√
3− 2, k3 = −

√
3− 2 or k1 = 2 +

√
3, k2 = 2−

√
3, k3 = −1.

If m = 2, by Equations (10), (108), (109), (110), (111) and (120), we get that
there is not real solution for all k1, k2, k3. So there is not proper L2-biharmonic
hypersurface in S7 with three disjoint principal curvatures, and s1 and s2 is
constant.

If m = 4, by Equations (10), (112), (113), (114), (115) and (120), we get
either k1 ≈ 1.083, k2 ≈ −0.225, k3 ≈ −3.213 or k1 ≈ 3.213, k2 ≈ 0.225, k3 ≈
−1.083.
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If m = 8, by Equations (10), (116), (117), (118), (119) and (120), we get that
there is not real solution for all k1, k2, k3. So there is not proper L2-biharmonic
hypersurface in S25 with three disjoint principal curvatures, and s1 and s2 is
constant. Summarizing all of above and Theorem 2.1, we get the result. �

Proof of Theorem 1.3. We have P3 = s3I −S ◦P2. Since P3 = 0, Equation (1)
implies that 3s3∇s3 = 0. Thus ∇s23 = 0, and so s3 is constant. By assumption
s2 is constant and s3 6= 0, and so by Equation (2), s1 is constant. Now by
Theorem 1.2, we get the result. �
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