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Lg-BIHARMONIC HYPERSURFACES IN SPACE FORMS
WITH THREE DISTINCT PRINCIPAL CURVATURES

MEHRAN AMINIAN

ABSTRACT. In this paper we consider Lg-conjecture introduced in [5, 6]
for hypersurface M™ in space form R"*1(c) with three principal curva-
tures. When ¢ = 0, —1, we show that every Lj-biharmonic hypersurface
with three principal curvatures and H;p is constant, has Ho = 0 and at
least one of the multiplicities of principal curvatures is one, where H; and
Ho> are first and second mean curvature of M and we show that there is not
Lo-biharmonic hypersurface with three disjoint principal curvatures and,
Hi and Hg is constant. For ¢ = 1, by considering having three principal
curvatures, we classify Lj-biharmonic hypersurfaces with multiplicities
greater than one, Hy is constant and Hz = 0, proper Li-biharmonic hy-
persurfaces which Hj is constant, and La-biharmonic hypersurfaces which
Hy and Hs is constant.

1. Introduction and statement of result

B. Y. Chen in [12] made the conjecture: Any biharmonic submanifold of
a Fuclidean space is minimal. Several authors have proved it under some
conditions, see for example, [1,14-17,20]. Also this conjecture has been gen-
eralized in [9]: Any biharmonic submanifold of a Riemannian manifold of non-
positive sectional curvature is minimal. This generalized conjecture has been
proved for constant sectional curvature ambient spaces in numerous cases as in
[2,7,9,19,24,25]. The Generalized Chen conjecture has been shown to be false
by constructing foliations of proper biharmonic hyperplanes in a 5-dimensional
conformally flat space of non-constant negative sectional curvature in [26]. In
case of positive sectional curvature ambient spaces, there are several families
of biharmonic submanifolds which are not minimal. For example in [8], the au-
thors classified proper biharmonic hypersurfaces in the unit Euclidean sphere
with at most two distinct principal curvatures.

Let ¢ : M™ — R™*! be an isometric immersion from a connected oriented
Riemannian manifold into the Euclidean space R*T! with N as the unit normal
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direction. We have, [3],

n
Lirp = (k+ 1)(k . 1)Hk+1N,

where k = 0,...,n — 1 and Hy; is (k + 1)-th mean curvature of M. When
k = 0, the above equation reduces to Ap = nH N = nH which is the Beltrami
equation. In [5], we proposed the Lg-conjecture: Every Euclidean hypersurface
o+ M™ — R™"! gatisfying the condition L2y = 0 for some k, 0 < k <n — 1,
has zero (k + 1)-th mean curvature, namely it is k-minimal. We have proved
that the Lg-conjecture is true for Euclidean hypersurfaces with at most two
principal curvatures, [5]. Hereafter in [6], we have generalized the notions of
tension and bitension fields to introduce Lg-harmonic and Lg-biharmonic maps.

Let M be a connected, oriented isometrically immersed Riemannian hyper-
surface in a simply connected space form R"*1(c),c = 0,41. Then M is called
an Lg-biharmonic hypersurface if the following equations are satisfied:
(1) <k Z 1) Hyy1VHp1 +2(S 0 Pp)(VHgi1) =0,

n

In addition M is called a proper Lg-biharmonic hypersurface if M is an Lj-bi-
harmonic hypersurface and Hy41 # 0.

)Hk—i-l (nHlHk_Hf(n — k- 1)Hk+2*6(k+1)Hk) =0.

Li-conjecture 1.1 ([6]). Let ¢ : M™ — R""1(c), ¢ = 0,%1, be a connected
oriented hypersurface immersed into a simply connected space form R™(c).
If M is an Lyi-biharmonic hypersurface, then Hyy1 is zero.

The Lg-conjecture has been proved in some cases. For ¢ = 0,—1, the L-
conjecture is proved as hypersurface M has two principal curvatures, or M is
weakly convex, or M is complete with some constraint on it and on Ly, and it
is shown that there is not any Lj-biharmonic hypersurface M™ in H*t! with
two principal curvatures of multiplicities greater than one, [6].

In this paper we consider Lg-conjecture for hypersurface M"™ in space form
R"™*1(c) with three principal curvatures. When ¢ = 0, —1, in Theorem 1.2, we
show that every Li-biharmonic hypersurface with three principal curvatures
and H; is constant, has H, = 0 and at least one of the multiplicities of principal
curvatures is one, and we show that there is not Ls-biharmonic hypersurface
with three disjoint principal curvatures and, H; and Hs is constant. Recently,
in [22] for the case ¢ = 0, the authors prove that the L;-conjecture is true
for Li-biharmonic hypersurfaces with three distinct principal curvatures and
constant mean curvature of a Euclidean space, meanwhile in our paper we give
more result in this case and also we consider Lo-conjecture and we give some
classification for cases ¢ = 0,1, —1 which are completely different.

For the case ¢ = 1, the Ly-conjecture is false by considering hypersurface
S”(@) in the n-dimensional unit Euclidean sphere S™, so S”(@) is a proper
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Lj-biharmonic hypersurface. This result has been extended to hypersurfaces
having two distinct principal curvatures and it’s shown that they are open
pieces of the standard products of spheres, [4].

For ¢ = 1, in Theorem 1.2, by considering hypersurfaces having three prin-
cipal curvatures in the unit Euclidean sphere, we classify Lj-biharmonic hy-
persurfaces with multiplicities greater than one, H; is constant and Hs = 0,
proper Lj-biharmonic hypersurfaces which H; is constant, and Ls-biharmonic
hypersurfaces which H; and Hs is constants.

Theorem 1.2. Let M™ be a connected, oriented isometrically immersed hy-
persurface in space form R""(c). Suppose that M has three distinct principal
curvatures and Hy, ..., Hy are constant. Let ¢ = 0,—1. If k =1 and M is
Ly-biharmonic, then Ho = 0 and at least one of the multiplicities of princi-
pal curvatures is one. If k = 2, then M is not Lo-biharmonic. Let ¢ = 1.
If Kk =1 and M is Ly-biharmonic, then Hy is constant, and if Hy, = 0 and
multiplicities of principal curvatures are greater than one, and or M is proper
L1-biharmonic, then M is an isoparametric hypersurface. If k = 2 and M is
Lo-biharmonic, then M is an isoparametric hypersurface.

Assume that k1 > ko > ks denote the principal curvatures of an isopara-
metric hypersurface in the unit Euclidean Sphere SPH1. Then multiplicities
of principal curvatures is equal, say m, m is either 1,2,4 or 8, and ko =

fi;g‘/]i,kg = 1’“_1*\‘[3& , and there is a homogeneous polynomial F of degree 3

over R"2 where for any a € (—1,1), f~(a) = F|S_"1+1(a) is an isoparametric
hypersurface (see Theorem 2.1).

(a) Let k =1 and M be Ly-biharmonic, Ho = 0 and the multiplicities of
principal curvatures be greater than one. Then we have the followings:
o If m = 2, then ki, ko, ks approzimately are ki =~ 3.286, ko =
0.232, k3 ~ —1.069 or k; ~ 1.069, ks ~ —0.232, k3 ~ —3.286. So
M is congruent to an open part of f~1(a) and a tube of radius 0
around the standard embedding of a complex projective plane CP?
into S where a ~ 0.632 and 6 ~ 7/10.634.
o If m = 4, then ki, ko, ks approzimately are kv ~ 2.527 ko =
0.147, ks ~ —1.261, or k1 =~ 1.261,ke =~ —0.147, ks ~ —2.527.
So M is congruent to an open part of f~1(a) and a tube of ra-
dius 0 around the standard embedding of a quaternionic projective
plane HP? into S'® where a ~ 0.426 and 6 ~ 7/8.337.
o If m = 8, then ki, ko, ks approzimately are k1 ~ 2.216,ko =
0.1,k3 =~ —1.39 or k1 ~ 1.39,ky; =~ —0.1,k3 ~ —2.216. So M
is congruent to an open part of f~'(a) and a tube of radius 0
around the standard embedding of a Cayley projective plane QP>
into S*5 where a ~ 0.294 and 0 ~ 7/7.411.
(b) Let k =1 and M be proper Ly-biharmonic. Then we have the follow-
ings:
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o Ifm=1, then kq, ko, k3 satisfy the following equation

3H Hy, — Hs —2H; =0,

so that ky = /3, ko = 0, ks = —/3. Therefore M is congruent
to an open part of f~1(0) and a tube of radius w/6 around the
standard embedding of a real projective plane RP? into S*. Also
M is a Cartan minimal hypersurface of dimension 3.
If m = 2, then kq, ko, k3 satisfy the following equation

6H,Hy — AH5 — 2H, = 0,

so that either ky = \/3,ky = 0,ks = —/3 or approzimately k,
1.369, ko =~ —0.107, ks ~ —2.261 or k; =~ 2.261, ks =~ 0.107, k3
—1.369. Ifky = \/3,ky = 0,ks = —\/3, then M is congruent to an
open part of f~1(0) and a tube of radius w/6 around the standard
embedding of a complex projective plane CP* into ST. Also M is a
Cartan minimal hypersurface of dimension 6. If k1 ~ 1.369, ko =
—0.107, k3 = —2.261 or k1 =~ 2.261, ky =~ 0.107, k3 =~ —1.369, then
M is congruent to an open part of f~1(a) and a tube of radius 0
around the standard embedding of a complex projective plane C P>
into ST where a ~ 0.316 and 0 ~ m/7.544.

If m =4, then ky, ks, ks satisfy the following equation

~
~
~
~

12HHy — 10H3 — 2H, =0,

so that ki = /3,ky = 0,ks = —/3. Therefore M is congruent
to an open part of f=1(0) and a tube of radius w/6 around the
standard embedding of a quaternionic projective plane HP? into
S13. Also M is a Cartan minimal hypersurface of dimension 12.
If m =8, then ki, ko, ks satisfy the following equation

24H, Hy — 22Hs — 2H, = 0,

so that ki = /3,ky = 0,ks = —/3. Therefore M is congruent
to an open part of f~1(0) and a tube of radius w/6 around the
standard embedding of a Cayley projective plane OP? into S2°.
Also M is a Cartan minimal hypersurface of dimension 24.

(¢) Let k = 2 and M be Lo-biharmonic and Hs = 0. Then we have the
followings:
o Ifm =1, then ki, ko, ks are ki = /3, ko =0, ks = —/3. So M

is congruent to an open part of f~1(0) and a tube of radius 7/6
around the standard embedding of a real projective plane RP? into
S*. Also M is a Cartan minimal hypersurface of dimension 3.

o Ifm =2, then ki, ko, ks are ki = V/3,ko = 0,ks = —v/3. So M

is congruent to an open part of f~1(0) and a tube of radius 7/6
around the standard embedding of a complex projective plane C P>
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into S7. Also M is a Cartan minimal hypersurface of dimension
6.

o If m = 4, then ki, ko ks are ki = /3,ky = 0,ks = —V/3 or
approximately k1 ~ 0.993,k; ~ —0.271, ks ~ —3.777 or k1 =~
3.777, ko =~ 0271, ks ~ —0.993. If ky = /3,ko = 0,ks = —/3,
then M is congruent to an open part of f~1(0) and a tube of radius
/6 around the standard embedding of a quaternionic projective
plane HP? into S'3. Also M is a Cartan minimal hypersurface
of dimension 12. If k1 ~ 0.993,ky ~ —0.271,k3 =~ —3.777 or
k1 ~ 3.777, ko = 0.271, k3 =~ —0.993, then M 1is congruent to an
open part of f~1(a) and a tube of radius 6 around the standard
embedding of a quaternionic projective plane HLP* into S'® where
a~0.713 and 0 ~ 7/12.138.

o If m = 8, then ki, ko ks are ki = V/3,ky = 0,k = —V/3 or
approrimately k1 ~ 1.189, ks ~ —0.177,ks ~ —2.757 or k1 =~
2.757, ko ~ 0177, ks ~ —1.189. If ky = \/3,ko = 0,ks = —/3,
then M is congruent to an open part of f~1(0) and a tube of
radius 7 /6 around the standard embedding of a Cayley projective
plane OP? into S*. Also M is a Cartan minimal hypersurface
of dimension 24. If k1 ~ 1.189,ky ~ —0.177,k3 ~ —2.757 or
k1 =~ 2.757,ky ~ 0.177, k3 =~ —1.189, then M is congruent to an
open part of f~1(a) and a tube of radius 6 around the standard
embedding of a Cayley projective plane OP? into S* where a ~
0.502 and 6 =~ 7/9.028.

(d) Let k =2 and M be proper Ly-biharmonic. Then we have the follow-
mgs:

o [fm =1, then k1, ko, ks satisfy the equation

H\H3 — Hy =0,
so that either kv = 1,ky = \/372,k3 = —V3-2o0rk =2+
V3,ky =2 —/3,ks = —1. Therefore M is congruent to an open
part of f_l(g) and a tube of radius w/12 around the standard
embedding of a real projective plane RP* into S*.
o If m =2, then ky, ko, k3 satisfy the following equation
2HH3 — Hy — Hy = 0,
so that there is mo real solution for all k1, ko, ks. Therefore there
is no proper Lo-biharmonic hypersurface in ST with three disjoint

principal curvatures, and Hy and Hs are constants.
o I[fm =4, then ky, ko, k3 satisfy the equation

AHHs — 3H, — Hy = 0,

so that approximately either k1 ~ 1.083, ky =~ —0.225, k3 ~ —3.213
or k1 ~ 3.213, ks = 0.225, k3 ~ —1.083. Then M 1is congruent to
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an open part of f~1(a) and a tube of radius 6 around the standard
embedding of a quaternionic projective plane HLP? into S'® where
a = 0.617 and 0 ~ 7/10.411.

o If m =238, then ky, ko, k3 satisfy the following equation

SH Hs — THy — Hy = 0,

so that there is mo real solution for all k1, ko, ks. Therefore there
is no proper Ly-biharmonic hypersurface in S*® with three disjoint
principal curvatures, and Hy and Hs are constants.

An immediate result of Theorem 1.2, we get the following classification of
proper Ly-biharmonic hypersurfaces in space form R*(c) with three distinct
principal curvatures and Hs is constant.

Theorem 1.3. Let M3 be a connected, oriented isometrically immersed hy-
persurface in space form R*(c) with three distinct principal curvatures. If M
is proper Lo-biharmonic and Hy is constant, then ¢ = 1 and M is congruent
to an open part of f_l(g) and a tube of radius w/12 around the standard
embedding of a real projective plane RP? into S* and principal curvatures of

M ar62+\/§,27\/§,71.

2. Preliminaries

We recall the prerequisites from [3,10,11,13,23,27]. Let R"*1(c) be the
simply connected Riemannian space form of constant sectional curvature c
which is the Euclidean space R™*! for ¢ = 0, and the Hyperbolic space H"t!,
for ¢ = —1, and the Euclidean sphere S"*! for ¢ = +1. Let ¢ : M™ — R"*1(c)
be a connected oriented hypersurface isometrically immersed into R"*(c) with
N as a unit normal vector field, V and V the Levi-Civita connections on M and
R"™*1(c), respectively. For simplicity we also denote the induced connection on
the pullback bundle @*TR"*!(c) by V. Let X,Y be vector fields on M. We
have the following formula for the shape operator of M,

Vxdo(Y) =dp(VxY)+ (SX,Y) N,
dp(SX) = —VxN.

As it is known, the shape operator is a self-adjoint linear operator. Let
ki,...,k, be its eigenvalues which are called principal curvatures of M. Define
so =1 and

(3) Sk = Z ]{/‘il kzk
1<ip < <ip<n

The k-th mean curvature of M is defined by

(Z)Hk = Sk.
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For k = 1, H; = 2tr(S) = H is the mean curvature of M. For k = 2, the
scalar curvature of M is s = n(n — 1)Hs. In general, when k is odd, the sign
of Hj, depends on the chosen orientation and when k is even, Hy is an intrinsic
geometric quantity.

Let M™ have three principal curvatures, k1, ko, ks with respective multiplic-
ities mq, ma, m3, n = my + mg + m3. Therefore we get by Equation (3),

- m1 m2 m3 i1.97.k—i—j
(4) Sk_;(i)(j)(k—i—j)klekS .
The Newton transformations Py : X(M) — X(M) are defined inductively
by Py =1 and
Pk:SkI—SOPk_l, 1§k§’n
Therefore
k
(5) Pk = Z(—l)lsk,lSl.
1=0
From the Cayley-Hamilton theorem, one gets that P, = 0. Each Py is a self
adjoint linear operator which commutes with S and the eigenvalues of P are
given by

(6) P R e

1<ip < <ip<n, i;#i

For 0 < k < n — 1, the second order linear differential operator Lj :
C>®(M) — C°°(M) as the natural generalization of the Laplace operator for
Euclidean hypersurfaces M, is defined by

(7) Lif =tr(Py, o V?f),
where V2f is metrically equivalent to the Hessian of f and is defined by
((V2f)X,Y) = (Vx(V[),Y) for all vector fields X,Y on M, and Vf is the
gradient vector field of f. When k =0, Ly = A.

We have the following properties of shape operator, curvature tensor and

Newton transformation which they are used to prove other results of the paper.
If X,Y, Z are tangent vector fields on M, then we have

R(X,Y)Z = VxVyZ —VyVxZ - VixyZ

(8) =c({(Z,YYX - {(Z,X)Y)+(SY,Z)SX — (SX,Z) SY,
(Vx9)Y = (VyS)X, (Codazzi equation)
(9) tr(Py) = (n—k)sg.
We recall that a hypersurface M™ in R"1(c) is said to be isoparametric if it
has constant principal curvatures k; > ko > --- > k; with respective constant
multiplicities m1, ms, ..., m;, n = my+mo+---+my. It is known for ¢ = 0, —1,

isoparametric hypersurfaces has at most two principal curvatures. For | = 3
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we have the following classification of isoparametric hypersurfaces in Euclidean
sphere.

Theorem 2.1 (cf. [10,11,23]). Let M™ be an isoparametric hypersurface in
St with three constant principal curvatures ki > ko > ks and respective
multiplicities m1, mo, m3. Then we have the followings:

ILm=my=mog=mg =29 n=3-29 q=0,1,2,3, and there exists an
angle 8, 0 < 0 < 7/3 such that

s k’l—\/g 2T ]{)1—1-\/3
10) ky =coth, kg =cot(f+ =) = ————, k3 =cot(0+—) = ———.
(10) ks 2 ( 3) VT ( 3) —

II. In the ambient Euclidean space R"t2 > S"+1, there is a homogeneous
polynomial F of degree 3 over R""2 whose the range of f = Flgnt1 is [—1,1],
the only critical values of f are £1 and for any a € (—1,1), f~(a) is an
isoparametric hypersurface and is a tube around the two focal submanifolds
F71(1) and f~1(=1). For a = cos(36), M is up to congruency an open part of
f~1(a) and a tube of radius 0 around the two focal submanifolds.

III. The two focal submanifolds are standard embedding of a projective plane
FP? into S*t! where F is the division algebra R, C, H (quaternions), O (Cayley
numbers) corresponding to the principal multiplicity m = 1,2, 4, or 8.

IV. Let F be one of the division algebras R, C, H and Q. Let X,Y,Z € F
and a,b € R. Then

F =a®—3ab® + ?’2—&()(?+ YY —-227)

+ ST\/“%(XYf YY)+ 3T\/g(XYZ+XYZ).

Isoparametric hypersurfaces with three distinct principal curvatures are usu-
ally called Cartan hypersurfaces. When a Cartan hypersurface in S**! is min-
imal, it is congruent to one of the following hypersurfaces:

M3 = SO(3)/(Zo + Zy) — S*

MS = SU(3)/T? - S7

M** = Sp(3)/(Sp(1) x Sp(1) x Sp(1)) — S
M?* = Fy/Spin(8) — S*

Principal curvatures of a Cartan minimal hypersurface are v/3,0, —v/3.

3. Proof of main result

Before proving Theorem 1.2, we give an auxiliary Lemma for Lj-biharmonic
hypersurface M in space form R"*!(c) which has three distinct principal cur-
vatures and we show Hy; is constant when £k = 1 or 2 and Hy, ..., Hy are
constant. In its proof, we benefit from the techniques of [17-19,21] but adapt
them to our context. So our proof is much involved and quite different.
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Lemma 3.1. Let M™ be a connected, oriented isometrically immersed Ly-
biharmonic hypersurface in space form R"T1(c). Suppose that M has three
distinct principal curvatures and k =1 or 2. If Hy, ..., Hy, are constant, then
Hy 1 is constant.

Proof. We have Pyy1 = sp41I — S o Pi. So by Equation (1) we get

3
(11) Py 1Vsgy = §Sk+1VSk+1.
Let sk4+1 be non constant. We consider {e;}™ ; is a local orthonormal frame

field on M which diagonalize S and Py, simultaneously and e; = Voktl  VWe

[Vskt1]*
put
(12) Se; = M\je; and Pri1e; = ptrq1,4€i, t=1,...,n.
Then we have by Equations (11) and (12),
3
(13) Pk41,1 = 5 5k+1-
So we get by Equations (5) and (13),
3 k+1 k+1
55kt = lz_;(—l)lskﬂ,l)\ll = Sp41+ ;(_1)l3k+1—z>\1l~
Therefore
k+1
(14) Sk+1 = 2 Z(—l)l8k+1_1)\1l.
1=1
We have Vg1 = Y i €i(Skt1)e; = |Vsgyiler. Thus
(15) e1(sk+1) #0 and Vi #1e;(sps1) = 0.
By assumption s1, ..., s, are constant, so by Equation (14) we get for every i,
k+1
(16) ei(sk1) = 2ei(M) D (= 1) sppa—alh

1=1
Since e1(sg4+1) # 0, by Equation (16) we have ey (A1) # 0. If e;(A\1) # 0 for some
i # 1, then e;(sx+1) = 0 and Equation (16) imply that Zf;l(—l)lskﬂ_ll)\ll_l
= 0. So this polynomial shows that A; is constant which is a contradiction with
e1(A1) # 0. Thus \; is non constant,
(17) e1(A1) #0 and Vi#1e;(A)=0.

Now we show that multiplicity of A; is one. Let’s V., e; = leéjel. Then
Ve, (ei,e;) = 0 and the Codazzi equation (V,,S)e; = (V,S)e; give that

Jo_ i
18) Wy = TWijs

(
(19) ei(A\j) = (N = Njw, 1 # ],
(20) Mo =Xty = =Ml £ G#L
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If Ay = Aj for some j # 1, then by Equation (19) we get ei;(\1) = e1(\;) =
(M —)\j)wgl = 0 which is a contradiction with Equation (17). By assumption M
has three distinct principal curvatures. Without loss of generality, We denote
them by

@ STV S W

Let’sn >4 and p=n—1 (for n = 3 or p < n — 2, the proof is in similar way).
By Equations (19) and (21) we have

(22) 62(0(2) == en,l(ag) =0.

In the following we show that e, (a2) = 0. We have by Equation (19), for i # 1,
ei()\l) = ()\1 - )\1)0.}%1- =0. So

(23) w; =0, i=1,...,n.
We know by Equation (21),
(24) Bn = S1 — )\1 — (n — 2)042.

Thus by Equations (17), (22) and (24) for i = 2,...,n — 1, €;(8,) = 0, and by
Equations (19) and (21), €;(8,) = €;(An) = (A — Ap)w;, = 0. So

(25) wr=0, i=2...,n.
By Equations (19) and (21), w?, = f\ll(fk/’\”: = %’ and so by Equation (24)
A -2
(26) w:LLl _ 61( 1+ (n )042) )
2A1 + (71 — 2)0[2 — 81
By Equation (19), for j = 2,...,n— 1, we have wjl = f\ll(f’\j\j and wgn = f\’;(j‘/(j

So by Equation (21) we get

j e1(
(27) wgl:)\lfﬁl, .7:27 ,’I’L-l,
(28) wl = en(02) j=2,....n—1

Jn 81—)\1—(’rl—2)0427

For j # 1 and 4,1 = 2,...,n — 1, we have by Equation (20), (A\; — /\j)wljl =

(A — Aj)w!; =0 and (A, — A\j)wi, = (N — \j)w?, = 0. Thus
(29) wh=wl =0, j#land j,l=2,...,n—1.

For i,j =2,...,n, by Equation (17) we get, [e;, e;](A1) = eiej(A1) —ejei(A) =
0 and so [e, e5](A1) = X2, (wh; —why)er(M1) = (wi; —wj;)e1 (A1) = 0. Therefore
(30) wh=wh, 4,5=2,...,n.

For | = 2,...,n — 1, by Equation (20), (A, — M)w},, = (A& — A\1)w}, and
(M = A)wly = (A — A\p)wyy. Therefore by Equations (18) and (30) we get

(31) Wi

n

_ .1 _  n _ —
—wnl—wll—o, 1—2,...,7171.
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By Equations (18), (23) and (31) we get
(32) Ve,e1 =V, e, =0.

We have V¢, e1 = >, whe; = — >, whey, so Equations (26), (27), (29) and (31)
imply that

61(C¥2) .
33 e =— X2 oo a1,
(33) Ve, e1 )\1_%6 i n
(34) Voo =— At 0= Paz)

2N+ (n—2)as — 51
and we get by Equations (25) and (26),

e1 (A1 + (n—2)as) o
201 + (n—2)ag — 51
By Equations (28), (29) and (31), we get

en(as)

(35) Ve, n =

36 Ve, en = i 1=2,...,mn— 1.
( ) i 81—)\1—(n—2)a26 ! "
Let’s put
e1(a2) e1 (A1 + (n—2)as) en(as)

37 =— , B=— , Y= .
( ) @ A — Qi B 2/\1+(n—2)a2—81 v 31—)\1—(77,—2)042
Now by Equations (27), (28) and (37),

(38) Ve,ei = aey + Z whier — vey.

1=2,....n—1
1#i

Then by Equations (8), (12), (21), (23), (25), (31), (32), (33), (34), (35), (36)
and (37) we get that

R(ey,e2)e; = (—el(a) + a2) es = —(c+ Aaz)es.

Therefore

(39) e1(a) = c+ \ay + o

We have

(40) Rler, en)er = (e1(8) + B2) en = —(c + Aafu)en:

Therefore by Equations (24) and (40),
(41)  er(B) = —(c+ b+ 6%) = —(c+ Mils1 — A1 — (n = 2)az) + 7).
We have

files en)er = <6n(a) * 51 (_a/\—’l— é)FTT;(_OQQ))OQ) es + e3(B)en = 0.
So
(42) en() = — (a+ B)en(as)

51—)\1—(n—2)a2'
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We have

(43) R(en,e2)en = (en(’Y) —af+ ’72) ez = —(c+ Braz)es.
Therefore by Equations (24) and (43),

(44) en(7) —aB+797 = —(c+ (51— A1 — (n— 2)az) ).

We have by Equations (6) and (5) we have

n—2 n—2 _
R P I T g L o

k
(46)  pra =Y _(=1)'sp_i)l,
=0
n—2 n—2 _
= (" et (12 hal
k k
(48) gk =Y _(=1)'spoiBh =D (=1 spoi(s1 — A — (n — 2)an).
=0 1=0

Also by Equation (4), we have
n—2 —_ n—2\ , (n—2\ ,_ n-—2 _
(19) sr = (r - 1>A1a2 1+< r >a2+<r - 1)042 lﬂﬁ(r - 2>A1a2 P
We have by Equation (7),
(50) Liseir = Y pni (€iei(si1) = (Veses) (sk11))
i=0

Thus we get by Equations (15), (32), (35), (38) and (50),

n—1
(51) Liskir = praerer(sin) — (Y priloer+ D> wher—yen)(ski1))
i=2 !

:2,4..,71—1
+ Bk ne1(Sk+1)-
Then Equations (15) and (51) imply that
n—1
(52) LySpt1 = pi1e1e1(Spt1) — O‘(Z pki€1(Sk+1)) + Bk ner (Spt1)-
i=2

We know Z;—Z; pii = tr(Px) — k1 — pik,n and by Equation (9), Z?:_Zl Wi =
(n—k)sg — ftk,1 — Mk,n- S0 by Equations (2) and (52) we get that
(53)  pe (ere1(sp+1) + aer(spt1)) + (0 + B)pk,n — (n — k)si) e1(Sp41)
= Sk11 (1841 — (B +2)Sp42 — c(n — k)sg) .
Now we show that e;ej(sg+1) = 0 and e;e; (A1) = 0 for every i = 2,...,n.

We know by Equation (15) for every i = 2,...,n, [e;, e1](Sg+1) = €i€1(Sk4+1) —
e1€;(sk+1) = eie1(sk+1). On the other hand by Equations (15), (23) and (29),
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[ei,e1](sk11) = (Ve,e1 — Ve, ei)(sr41) = 2o (why — why)er(spq1) = 0. There-
fore we get

(54) eiel(sk-‘rl) = Oa i = 27 sy 1y
and in the similar way
(55) eie1(A) =0, i=2,...,n.

By Equation (37), we have (A —as)a = —ej (a2) and (2\1 + (n—2)as —s51)8 =
—e1 (A1 + (n — 2)a). Differentiating these equations in direction of e,, and by
Equations (17) and (55), and constancy of s; we get

(56)  —en(a2)a+ (M —az)en(a) = —eper(az),
(57)  B(n—2)en(az) + (2A1 + (n — 2)as — s1)en(B) = —(n — 2)ener(2).
So by eliminating ene;(az2) from Equations (56) and (57) we get
(58) (n—2)(—en(az)a+ (A — az)en(a))

= (n—2)Ben(a2) + (2A1 + (n — 2)az — s1)en(B).
By substituting e, (a) of Equation (42) in Equation (58) we get
(n—2)(a+ B)(nag — s1)ep(a2)

(59) e’ﬂ(/B) = (2A1 + (n _ 2)@2 . 51)(51 7 )\1 o (n — 1)&2) .
By Equation (24),
(60) en(Bn) = —(n — 2)en(az).

Thus by Equations (45) and (60), we have

61)  en(urs) = (k—1)(s1 — A1 — (n — D)as) (Z B f) ok %e, (an).

Differentiating of Equation (53) in direction of e,, and use of Equation (54) we
get

(62) en(ir1) (e1e1(sk+1) + aer(spt1)) + pk1en(a)er(skr1)
+e1(sk+1) (en(ﬂk,n)(a +B) + pen(en(B) + e"(a)))
= — (k+2)spr1en(skr2)-

Differentiating of Equation (47) in direction of e,, we get

(63)  ealinn) = ((n—k— Das + (k= ) (Z_f)a’;—zem»

By Equations (17) and (46) we get
(64) ei(ukJ) = 0, 1= 2,...,77,.

Now for showing that e, (as) = 0 we consider two cases:
Case 1: If k = 1, then by Equations (62) and (64) we have

(65) e1(s2)(en(i1.0)(B+0) +p1n(en(B) +en(a)) +pu1en(a)) = —3szen(ss)-
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By Equation (63) we have

(66) en(,ul,n) = (n - 2)en(a2).
By Equation (6) we have

(67) P11 = 51— A1,

(68) pan =M+ (n = 2)as.

Now by Equations (42), (59), (65), (66), (67) and (68) we get

(69)  er(s2)en(a) | (B+a) [(n*Q)Jr(AlJr(n*?)Oéz)

(n—2)(naz—s1) 1
. [(2)\1+(n—2)a2—31)(51—Al—(n—l)ag)_51—/\1—(n—1)a2”

] = —3s9€,(83).

n S1—A1

81—/\1—(71—1)(12

We have by Equation (49),

n—2 n—2\ . n—2
(70) 83< 9 >)\1a§+< 3 )a‘ng( 5 >a§6n+(n2))\1agﬁn.

Differentiating of Equation (70) in direction of e,, and using Equation (60) we
get

(71)  enlss) = ealan)[2 (" N 2) Aas + 3(" N 2) 02
+2<”;2>(51 “ A= (n— 2as)as — (n—2)<ng2>a§

4 (n—2)(s1 — M — (n— 2)as)A\ — (n— 2)2A1a2} .

Let e, (a2) # 0. So using Equation (71) and dividing Equation (69) by e, (a2),
we have

(72)

1(52)(B+0) [(n=2) + i+ (0=2)0) | rrafar st 4T

_ 1 + 81—)\1
817)\17(77,71)&2 817)\17(7’7,71)012

-2 -2 -2
= — 359 |:2<n2 >/\1a2—|—3<n3 )Oé§+2(n2 )(81—/\1—(n—2)0z2)a2

—(n—2) (n;Q) a§+(n—2)(51—)\1—(n—2)a2))\1—(n—2)2)\1a2] .
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Then differentiating of Equation (72) in direction of e, and using Equations
(42) and (59) we get

(73)

e1(52) | 2t (<1 + SR [ — 2+ (A + (0 — 2)as)

(n—2)(naz—s1) _ 1 + S1—M1
2)\1+n 2)0&2 81)(51 A1 — (77,71)0(2) 517/\17(7171)042 817)\17(7171)0(2

+ (B+a) [(” 2)en(0r2) [(2)\1+(n72§223)3(17;((152178/\11)7(n71)o¢2) - 517)\171(7171)042}
+ (AM+(n—2)az2) [[n(n—2)e, () (2A\1+(n—2)as—s1)(s1 = A1 — (n—1)a2)

= (n=2)(naz — s1) [(n — 2)en(a2)(s1 — Ay — (n — 1)az)
—(n=1)2A1 + (n = 2)az — s1)en(a2)]]

% 1 _ (n—1)e, (a2)
(2)\1+(n—2)a2—51)2(81 —)\1—(71—1)012)2 (sl—kl—(n—l)ag)Q

(n—1)(s1—=A1)en(a2)
T oA (n-Dan)? H

= ~ssentaa) [2("; )1 -2n-2nra 0" %) o2 ("7 ||

Let’s divide Equation (73) by e,(a2) and then substitute e;(s2) of Equation
(72). So coefficients § 4 « and s, are eliminated. Thus we get that ay should
satisfy of a polynomial of degree 7 which its coefficients of functions of A\;. So
ag is a function of A;. Then by Equation (17), we get e,(a2) = 0 which is
contradiction.

Case 2: If k = 2, then by Equations (61), (64) and 8, —as = s1—A1—(n—1)ag #
0 we have e, (az2) = 0.

Therefore by Case 1 and Case 2, we have

(74) ea(ag) =+ =ep(az) =0.
Now by Equations (37) and (44),
(75) af=c+(s1 — A — (n—2)az)as.

By Equation (37) we have
(76) e1(A1) = =B2A1 + (n = 2)az — s1) — (n — 2)a(az — A1).
Differentiating Equation (76) in direction e; and by use of Equations (16), (37),
(39), (41) and (75) we get
(77) 8161(/\1) = (C + )\1(51 — A1 — (Tl — 2)@2))(2)\1 + (n — 2)0&2 - 81)
-2
+ (—54— (n )Oz> k+1 o) -1
2 oy (1) el
—(n—=2)(c+ (s1 = A1 — (n — 2)a2)2) (2 — A1)
— (n — 2)(6 + )\1062)(042 — )\1)




1236 M. AMINIAN

+ 82201 + (n — 2)ag — 51) — 2(n — 2)a?(ag — Ay).

We rewrite the last term of Equation (77). We have by Equations (16), (37),
(75) and (76),

(78) B22M + (n— 2)ag — 51) — 2(n — 2)a?(az — A1)
= —pBler(M) + (n—2)er(ag) — 2(n — 2)aer (ag)
~ 20— p) e1(skt1)

23 (<) skl
- (n—2)(c+ag(sl A1 — (n—2)ag))(az — A1)
+2(c+as(s1 — A — (n—2)a2))(2A1 + (n — 2)as — s1).

So substituting Equation (78) in equation (77), we get

e1(Sk+1)
23 (1) sl
+ (C —+ )\1(51 Al (77, — 2)&2))(77)\1 — 81)
— (n — 2)(0 + )\1@2)(042 — )\1)

(79) erer(A1) = (na —36)

Differentiating of Equation (16) in direction e; and use of Equations (76) and
(79) we obtain

k+1
(80) 6161(Sk+1) = 26161()\1) Z(—l)lskle,ll)\ll_l
=1
k+1
+2(e1 (A1) Y (=1 el = 1A'
=2
k+1
= 26161()\1) Z(—l)l8k+1,ll>\1l71
=1
+(=B2M + (n—2)az — s51) — (n — 2)a(as — A1)
k+1

e1(sk+1) ! -2
X ( — ) (—1) S}H_l_ll(l - 1))\1
Ef(—l)lskﬂle)ql ! lz:;

k+1

= k+1 c1(se 1) 171(( 35)2( 1) spp1- ¥t

=1 (= D)lsgp1alh =1
+(=B2M + (n—2)ag — s1) — (n — 2)a(as — A\1))
kt1

XZ Vospargl(I — DA

+ 2((c +A1(s1 = A — (n—2)az))(nAy — s1)
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k+1
— (TL — 2)(6 + )\10&2)(0&2 — )\1)) Z(—l)l8k+1_ll/\11_l

=1

Let F; = Fy(AP@x1gfpinz \im o022 )06 1o polynomials in term of A; and ag of
degree max; + miny = min; + max, where max; and min; show the maximum
and minimum power of its base. So by use of this notation and by Equation
(80) we get

(81) 6161(Sk+1)

o e1(Sk+1)
= T;’f) [(na = 38) Fy (AT)

+(=BFy(M, a2) — (n — 2)aFs(A1, a2)) Fa(Af )]
+ [2F5()\?, )\%QQ) — 2(71 — 2)F6()\%052, )\10[%)}

o e1(Sk+1)
R

Now by Equations (46), (48), (49), (53) and (81) we have

[P (AF, N an) + BEs(AF, M an)] + Fo (A3, Mad).

61(5k+1)
Fi(A})

+Fy(A}, Mo3) + aeq (sp+1)]
+er(sipn) [Fin(Af, a5) (e + B) — a(n — k)sg]
= Fia(\os ™!, o5 [Fis(Mas ™", a5t + Fu(Afah, a5 72)] .

Therefore

Fio(A) [aFr(NF, N an) + BEs (MY, Aftas)]

(82) 61($k+1) [OtFls()\%k, )\10[2) + ﬂFlG(/\%k, )\ )]
_ F17(Ak+4062k 17 )\llcagkt+3) + F]S()\%kJrg, )\?k‘FIO[%)

Differentiating of Equation (82) in direction eq,

(83) 6161(8k+1) [aF15 + ﬂFlﬁ]
0F15
o\

0F15
(’)ag

+ e1(Sk+1) {61(04)1?15 +e1(B)Fie + a [61()\1)

#8 a0 G +a e G|

+ e1(az)

8)\ 8&2

_ 8F17 8F17 oF 18 aF’18
= M) Ger 20y T MR dag |

and by use of Equations (37), (39), (41), (75), (76) and (83) we get
(84) 6161(Sk+1) [aF15()\ )\1a2) + BFIG()\ )\If()éé:)]
+e1(sks) [P Frg(AF, M ag ™) + B2 R (ATE, AT et
P (242, 30t

+ei(a +e1(a2)
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= a[Fan(A\TFPad" 2 A7 gt ) + Fs (A2, 01 ad)]
+ B [Fa (A" L AT g ) + s (AR, 0 ad)]
By substituting Equation (81) in Equation (84) and multiplying in F;(\}) we
1
get
(85)  erlsir) [® Fos AT, AT ag ™) + B2 (AR, AT ag )
+F28(/\1;,k+27 )\%kflal26+3)]
= o [Fao(AP503 2, A1) 4 P (A N 0]
48 [Fn (031 XE1a20H) 4 By (442, )31k 42)].
Now we compute two terms
e1(sk41)a? Fag(ATF, AT ag ™) and eq(sy41) 82 Far AT, AT ag ™)
of Equation (85). By Equation (82) we get
(86) e1(sur1)a®Fag( A", AP* tasth)

1

= oty [ (B O g AP ) ¢ F O )
1 272

+e1(spr1) Fas (A ag, AP 1adk )]

(87) er(su+1)B2Far (AT, AT g ™)
1
= F16 ()\Qk )\kOék) [ﬁ [F36(>‘lek+4oék_l7 A?k_la;k—‘ﬂl) + F37<)‘l1i)k+37 A‘llko/g"r?’)]
1,710
+€1(Sk+1)F38()\?k+10[2, A§k71a§k+3)] .
Substituting Equations (86) and (87) in Equation (85) we get
(88) e1(se1) Fro (A2, A1 13t ?)
=« I:F4O(>\f13k:+5a§k‘72, )\lekfla;lk:+4) + F41()\Ik+37 )\lek+1a§k+2):|
+ B [Fra(ASFT1a2b—L \Ih=1bbd) | gy (\ThE3 NIkt 8642)]
By Equations (16) and (76) we have
(89) e1(skt1) = aFu (A7 Mag) + BFis (AT, Aaz).
So by Equations (88) and (89) we have
(90) QFye(AS+3 A=l dhtdy | g (\8b+3 \dk—1,dk+d) _

Now by Equations (75), (82) and (89),
(91)
0 Fys A, A2k 1) 42 Fig A1 A28 1) = Fog W8+ AbZHH9),
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By multiplying Equation (90) in « and § and by use of Equation (75) we get
- Fyy (A, A= 14 4k+0)
Fag(\SFT3 ZTh=T 1k
Fra Oz Aot )

Fayp(NSFF3 Z\Th=Tdktdy
Now by substituting Equations (92) and (93) in Equation (91) we get
(94) Fyg(A B0, A 20”41 = 0.
In the following we show that ej(as) # 0. Let e1(ag) = 0 then by Equation
(74), ag is constant and by Equation (37), a = 0. Therefore by Equation (39),
¢+ Magz = 0 and by differentiating we get e1(A1)as = 0 and so by Equation
(17), ag = 0. If k = 2, then by hypothesis s; and s, is constant. Since ay = 0,
by Equations (4) and (21), s1 = A1 + Bn, $2 = A18,. Then differentiating in
direction of e; we get e1(A1) + e1(Bn) = 0 and e1(A1)Bn + Are1(Bn) = 0, so
e1(A1)(Bn — A1) = 0. Therefore 3, = A\; which is a contradiction. If k = 1, we
have s; is constant. Since o = ay = 0, by Equation (90), BFy7(A\!) = 0. If
B # 0, then Fy7(A!) =0, so A; is constant which contradicts Equation (17).
Thus § = 0 and by Equation (76), e1(A\1) = 0 which contradicts Equation (17).
Finally by Equation (74) we have

(95) e1(ag) #0 and eg(ag) =+ =ey(az) =0.

Now assume that ~(¢) be integral curve of e; that v(tg) = p which p € M
and tg € I. By Equations (17) and (95), we have in some neighborhood of ¢,
A1 = A1(t) and ag = as(t), and so t = t(as) and A\ = Aj(as). Therefore by
Equations (37), (76) and (90) we have

% B %i B 61()\1) B F54()\§k+47>\411k‘71a421k+5)

dap  dt das  er(az)  Fs(APFH AP ag s

Now differentiating of Equation (94) relative to a2 and using Equation (96) we
get

(97) Fag(A2ThH12 \13k—1, 14k +16) _

Now rewriting polynomials (94) and (97) in term of ay we get

(92)

)

(93) B2 =

(96)

10k+411

(98) > fi)ah =0,
=0

14k+16
(99) > giM)ag =0,
i=0
where f;(A1) and g;(A1) are polynomials in term of A;. By multiplying equation
(98) in gl4k+16()\1)a3k+5 and Equation (99) in figr+11(A1) and subtracting
them we get a polynomial in term of ay of degree 14k + 15. Then by this new
polynomial and Equation (98), similarly we get a polynomial of degree 14k+14.
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By continuing this method, finally we omit as and we earn a polynomial in
term of \; with constant coefficients. So A; should be constant which is a
contradiction. Therefore sy is constant. ]

Proof of Theorem 1.2. Let kq, ko, k3 be principal curvatures of M, respectively
with multiplicities mq, ma, msz, n = my + ma + ms. Suppose that {e;}?; is
a local orthonormal frame field on M which are the eigenvectors of the shape
operator S of M with respect to the globally chosen unit normal vector field NV
and Se; = kie; i < mq, Se; = koe; my <1 < mq + mo, Se; = kze; mq +mo <
1 < n.

Case 1. Let £ = 1. By hypothesis s; is constant and by Lemma 3.1, sg
is constant. Let so = 0. If multiplicities of principal curvatures are greater
than one, equations Se; = kie; i < my, Se; = koe; my < i < mq + mg and
Se; = kse; m1 + me < i < n together with the Codazzi equation, (V,,S)e; =
(Ve;S)es, imply that

(100) Veikl = 0, 7 S mq,
(101) veikg = O, my < ) S mi + ma,
(102) Ve ks =0, mi+mo < i <n.

Since s; is constant and sy = 0, by Equation (4) we get that ko = g1(k1) and
ks = ga(k1) where ¢g; and go are some smooth functions. So for every i we have

(103) Veka = g1 (k1) Ve, ki

We have

(104) 51 = mik1 + moka + msks.

Thus we have by Equations (102) and (103),

(105) (m1 +magy(k1))Ve, k1 =0 my+me <i<n.

If for some i, my + ma < i < n, Ve, k1 # 0, then by Equation (105), g1 (k1) =
—%. So ko = g1(k1) = —%kzl + C where C is a constant. Therefore by

Equation (104), k3 is constant. Now by equation sy = 0, we get that k; should
satisfy a polynomial. Therefore k; is constant which is a contradiction. Thus
for every i, m; +mo < i < n, V. ki =0, and together with Equations (100),
(101) and (103), we get ko is constant. In a similar way we get k3 and so
k1 is constant. Therefore M is an isoparametric hypersurface. If sy # 0, By
Equation (2), we have

(106) s152 —3s3 —c(n —1)s; = 0.

Since s1 and s are constant, Equation (106) implies that s is constant. Be-
cause M has three principal curvatures, we get that all principal curvatures are
constant. So M is an isoparametric hypersurface.

Case 2. Let k = 2. By hypothesis s; and s5 is constant and by Lemma 3.1, s3
is constant. Because M has three principal curvatures, we get that all principal
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curvatures are constant. So M is an isoparametric hypersurface. We know for
¢ = 0,—1, isoparametric hypersurfaces has at most two principal curvatures,
So by Case 1, we get s3 = 0 and at least one of the multiplicities of principal
curvatures is one, and by Case 2, there is not Ls-biharmonic hypersurface with
three disjoint principal curvatures, and s; and ss is constant. In the rest, we
assume that ¢ = 1. By Theorem 2.1, an isoparametric hypersurface with three
constant principal curvature k; > ko > ks in S”*! have the multiplicities:
m =1,2,4 and 8. Therefore we have the following equations:
If m = 1, then by Equation (4), we have

(107) S1 = ]ﬁ + ]CQ + k3, S9 = kle + k1k3 + k2k3, S3 = k1k2k3.
If m = 2, then by Equation (4), we have
(108) 51 =2(k1 + k2 + k3),

(109)  so = dkyko + dk1ks + k2 + k2 + dkoks + k2,
(110)  s3 = 8kykoks + 2kiky + 2k1k3 + 2kTks + 2koks + 2k5ks + 2k k3,
(111) 84 = k3k3 + dk1kok3 + 4k k3ks + kK3 + 4kTkoks + kik3.
If m = 4, then by Equation (4), we have
(112) s1 = 4(k1 + ko + ks),
(113) g = 6k3 + 16koks + 6k + 16k1ks + 16k1 ko + 6k7,
(114) s3 = 4k + 24kok3 + 24k3ks + 4k + 24k1 k3 + 64k koks
+ 24k k2 + 24K ks + 24k3ko + 4K3,
(115) 54 = k3 + 16koks + 36k3k3 + 16ksks + ky + 16k k3

+ 96k kok3 + 96k, k2ks + 16k, k3 + 36k k3
+ 96kTkoks + 36kiks + 16kiks + 16k3 ko + kT
If m = 8, then by Equation (4), we have
(116) 51 = 8(k1 + ko + k3),
(117) 89 = 28k2 + 64koks + 28k3 + 64k, ks + 64k, ko + 28k7,
(118)  s3 = 56k3 + 224kok2 + 224k2ks + 56k + 224k k2 4 512k, koks
+ 224k k3 + 56k% + 224kTks + 224kTko,
(119)  s4 = 170k} + 448k3 kg + 448k ks + T84K2K2 4+ 1792k koks
+ T84k3 k3 + 1792k k3 ks + 448k k3 + 1792k, kok3 + 448k, k3
+ 170k3 + 448k ks + 784k3k2 + 448kok2 + 170k3.

Let k = 1. If s, = 0 and multiplicities of principal curvatures are greater than
one, and or so # 0, by Casel, M is an isoparametric hypersurface with three
constant principal curvature ky > ko > ks.
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If s, = 0 and multiplicities of principal curvatures are greater than one, we
have the following:

If m = 2, by Equations (10) and (109), we get k1 ~ 3.286, ko =~ 0.232, k3 ~
—1.069 or ki ~ 1.069, ky ~ —0.232, k3 ~ —3.286.

If m = 4, by Equations (10) and (113), we get k1 &~ 2.527, ko ~ 0.147, k3 =
—1.261, or ky ~ 1.261, ko ~ —0.147, kz ~ —2.527.

If m = 8, by Equations (10) and (117), we get k; ~ 2.216,ky ~ 0.1,k =~
—1.39 or ki ~ 1.39, ko ~ —0.1, ky ~ —2.216.

If s5 # 0, by Casel, M is an isoparametric hypersurface with three constant
principal curvature ki > ko > ks and so the multiplicities: m = 1,2,4 and 8.
So we have the following:

If m = 1 by Equations (10), (106) and (107), we get k1 = v/3, ks = 0 and
ks = —/3.

If m = 2 by Equations (10), (106), (108), (109) and (110), we get either
ki = 3,ks = 0,ks = —/3 or ki ~ 1.369,ky ~ —0.107, k3 ~ —2.261 or
ky = 2.261, ko =~ 0.107, ks ~ —1.369.

If m = 4 by Equations (10), (106), (112), (113) and (114), we get k; =
V3,ky =0,ks = —/3.

If m = 8 by Equations (10), (106), (116),(117) and(118), we get k3 =
V3,ks =0,ks = —/3.

Let £ = 2. By Case 2, M is an isoparametric hypersurface. So the mul-
tiplicities of constant principal curvatures ky > ko > k3 is m = 1,2,4 and
8.

If s3 = 0, then we have the following:

If m = 1, by Equations (10) and (107), we get k1 = /3, k» = 0 and
ks = —/3.

If m = 2 by Equations (10) and (110), we get k; = v/3,ky = 0, k3 = —/3.

If m = 4 by Equations (10) and (114), we get k1 = v/3,ky = 0, k3 = —/3 or
k1 ~ 0.993, ko =~ —0.271, k3 ~ —3.777 or k1 ~ 3.777, kg ~ 0.271, k3 ~ —0.993.

If m = 8 by Equations (10) and (118), we get ky = /3, ky = 0, k3 = —/3 or
k‘l ~ 1189,k2 ~ —0177, kg ~ —2.757 or kl ~ 2757, kg ~ 0177, k‘3 ~ —1.189.

If s3 # 0, then by Equation (2), we have

(120) s183 —4sq4 — (n—2)s9 = 0.

If m = 1, by Equations (10), (107) and (120), we get either ky = 1,ky =
V3—=2ks=—V3—2o0rk; =2+V3, ko =2—+3,ks =—1.

If m = 2, by Equations (10), (108), (109), (110), (111) and (120), we get that
there is not real solution for all k1, k2, k3. So there is not proper Lo-biharmonic
hypersurface in S7 with three disjoint principal curvatures, and s; and so is
constant.

If m = 4, by Equations (10), (112), (113), (114), (115) and (120), we get
either ]{,’1 ~ 1083,]€2 ~ —0225, kg ~ —3.213 or kl ~ 3213,]€2 ~ 0225,k3 ~
—1.083.
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If m = 8, by Equations (10), (116), (117), (118), (119) and (120), we get that
there is not real solution for all kq, ko, k3. So there is not proper Lo-biharmonic
hypersurface in S?® with three disjoint principal curvatures, and s; and sy is
constant. Summarizing all of above and Theorem 2.1, we get the result. O

Proof of Theorem 1.3. We have P3 = s3] — S o P5. Since P; = 0, Equation (1)
implies that 3s3Vs3 = 0. Thus Vs3 = 0, and so s3 is constant. By assumption
s9 is constant and s3 # 0, and so by Equation (2), s; is constant. Now by
Theorem 1.2, we get the result. O
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