L_{K}-BIHARMONIC HYPERSURFACES IN SPACE FORMS WITH THREE DISTINCT PRINCIPAL CURVATURES

Mehran Aminian

Abstract

In this paper we consider L_{k}-conjecture introduced in [5, 6] for hypersurface M^{n} in space form $R^{n+1}(c)$ with three principal curvatures. When $c=0,-1$, we show that every L_{1}-biharmonic hypersurface with three principal curvatures and H_{1} is constant, has $H_{2}=0$ and at least one of the multiplicities of principal curvatures is one, where H_{1} and H_{2} are first and second mean curvature of M and we show that there is not L_{2}-biharmonic hypersurface with three disjoint principal curvatures and, H_{1} and H_{2} is constant. For $c=1$, by considering having three principal curvatures, we classify L_{1}-biharmonic hypersurfaces with multiplicities greater than one, H_{1} is constant and $H_{2}=0$, proper L_{1}-biharmonic hypersurfaces which H_{1} is constant, and L_{2}-biharmonic hypersurfaces which H_{1} and H_{2} is constant.

1. Introduction and statement of result

B. Y. Chen in [12] made the conjecture: Any biharmonic submanifold of a Euclidean space is minimal. Several authors have proved it under some conditions, see for example, $[1,14-17,20]$. Also this conjecture has been generalized in [9]: Any biharmonic submanifold of a Riemannian manifold of nonpositive sectional curvature is minimal. This generalized conjecture has been proved for constant sectional curvature ambient spaces in numerous cases as in [2, $7,9,19,24,25]$. The Generalized Chen conjecture has been shown to be false by constructing foliations of proper biharmonic hyperplanes in a 5 -dimensional conformally flat space of non-constant negative sectional curvature in [26]. In case of positive sectional curvature ambient spaces, there are several families of biharmonic submanifolds which are not minimal. For example in [8], the authors classified proper biharmonic hypersurfaces in the unit Euclidean sphere with at most two distinct principal curvatures.

Let $\varphi: M^{n} \rightarrow \mathbb{R}^{n+1}$ be an isometric immersion from a connected oriented Riemannian manifold into the Euclidean space \mathbb{R}^{n+1} with N as the unit normal

Received February 15, 2020; Accepted June 4, 2020.
2010 Mathematics Subject Classification. Primary 53C40, 53C42.
Key words and phrases. L_{k} operator, biharmonic hypersurfaces, L_{k}-conjecture.
direction. We have, [3],

$$
L_{k} \varphi=(k+1)\binom{n}{k+1} H_{k+1} N
$$

where $k=0, \ldots, n-1$ and H_{k+1} is $(k+1)$-th mean curvature of M. When $k=0$, the above equation reduces to $\Delta \varphi=n H_{1} N=n \vec{H}$ which is the Beltrami equation. In [5], we proposed the L_{k}-conjecture: Every Euclidean hypersurface $\varphi: M^{n} \rightarrow \mathbb{R}^{n+1}$ satisfying the condition $L_{k}^{2} \varphi=0$ for some $k, 0 \leq k \leq n-1$, has zero $(k+1)$-th mean curvature, namely it is k-minimal. We have proved that the L_{k}-conjecture is true for Euclidean hypersurfaces with at most two principal curvatures, [5]. Hereafter in [6], we have generalized the notions of tension and bitension fields to introduce L_{k}-harmonic and L_{k}-biharmonic maps.

Let M be a connected, oriented isometrically immersed Riemannian hypersurface in a simply connected space form $R^{n+1}(c), c=0, \pm 1$. Then M is called an L_{k}-biharmonic hypersurface if the following equations are satisfied:

$$
\begin{align*}
& \text { (1) }\binom{n}{k+1} H_{k+1} \nabla H_{k+1}+2\left(S \circ P_{k}\right)\left(\nabla H_{k+1}\right)=0, \tag{1}\\
& \text { (2) } L_{k} H_{k+1}-\binom{n}{k+1} H_{k+1}\left(n H_{1} H_{k+1}-(n-k-1) H_{k+2}-c(k+1) H_{k}\right)=0 .
\end{align*}
$$

In addition M is called a proper L_{k}-biharmonic hypersurface if M is an L_{k}-biharmonic hypersurface and $H_{k+1} \neq 0$.
$\boldsymbol{L}_{\boldsymbol{k}}$-conjecture $1.1([6])$. Let $\varphi: M^{n} \rightarrow R^{n+1}(c), c=0, \pm 1$, be a connected oriented hypersurface immersed into a simply connected space form $R^{n+1}(c)$. If M is an L_{k}-biharmonic hypersurface, then H_{k+1} is zero.

The L_{k}-conjecture has been proved in some cases. For $c=0,-1$, the L_{k} conjecture is proved as hypersurface M has two principal curvatures, or M is weakly convex, or M is complete with some constraint on it and on L_{k}, and it is shown that there is not any L_{k}-biharmonic hypersurface M^{n} in \mathbb{H}^{n+1} with two principal curvatures of multiplicities greater than one, [6].

In this paper we consider L_{k}-conjecture for hypersurface M^{n} in space form $R^{n+1}(c)$ with three principal curvatures. When $c=0,-1$, in Theorem 1.2, we show that every L_{1}-biharmonic hypersurface with three principal curvatures and H_{1} is constant, has $H_{2}=0$ and at least one of the multiplicities of principal curvatures is one, and we show that there is not L_{2}-biharmonic hypersurface with three disjoint principal curvatures and, H_{1} and H_{2} is constant. Recently, in [22] for the case $c=0$, the authors prove that the L_{1}-conjecture is true for L_{1}-biharmonic hypersurfaces with three distinct principal curvatures and constant mean curvature of a Euclidean space, meanwhile in our paper we give more result in this case and also we consider L_{2}-conjecture and we give some classification for cases $c=0,1,-1$ which are completely different.

For the case $c=1$, the L_{k}-conjecture is false by considering hypersurface $\mathbb{S}^{n}\left(\frac{\sqrt{2}}{2}\right)$ in the n-dimensional unit Euclidean sphere \mathbb{S}^{n}, so $\mathbb{S}^{n}\left(\frac{\sqrt{2}}{2}\right)$ is a proper
L_{k}-biharmonic hypersurface. This result has been extended to hypersurfaces having two distinct principal curvatures and it's shown that they are open pieces of the standard products of spheres, [4].

For $c=1$, in Theorem 1.2, by considering hypersurfaces having three principal curvatures in the unit Euclidean sphere, we classify L_{1}-biharmonic hypersurfaces with multiplicities greater than one, H_{1} is constant and $H_{2}=0$, proper L_{1}-biharmonic hypersurfaces which H_{1} is constant, and L_{2}-biharmonic hypersurfaces which H_{1} and H_{2} is constants.

Theorem 1.2. Let M^{n} be a connected, oriented isometrically immersed hypersurface in space form $R^{n+1}(c)$. Suppose that M has three distinct principal curvatures and H_{1}, \ldots, H_{k} are constant. Let $c=0,-1$. If $k=1$ and M is L_{1}-biharmonic, then $H_{2}=0$ and at least one of the multiplicities of principal curvatures is one. If $k=2$, then M is not L_{2}-biharmonic. Let $c=1$. If $k=1$ and M is L_{1}-biharmonic, then H_{2} is constant, and if $H_{2}=0$ and multiplicities of principal curvatures are greater than one, and or M is proper L_{1}-biharmonic, then M is an isoparametric hypersurface. If $k=2$ and M is L_{2}-biharmonic, then M is an isoparametric hypersurface.

Assume that $k_{1}>k_{2}>k_{3}$ denote the principal curvatures of an isoparametric hypersurface in the unit Euclidean Sphere \mathbb{S}^{n+1}. Then multiplicities of principal curvatures is equal, say m, m is either $1,2,4$ or 8 , and $k_{2}=$ $\frac{k_{1}-\sqrt{3}}{1+\sqrt{3} k_{1}}, k_{3}=\frac{k_{1}+\sqrt{3}}{1-\sqrt{3} k_{1}}$, and there is a homogeneous polynomial F of degree 3 over \mathbb{R}^{n+2} where for any $a \in(-1,1), f^{-1}(a)=\left.F\right|_{\mathbb{S}^{n+1}} ^{-1}(a)$ is an isoparametric hypersurface (see Theorem 2.1).
(a) Let $k=1$ and M be L_{1}-biharmonic, $H_{2}=0$ and the multiplicities of principal curvatures be greater than one. Then we have the followings:

- If $m=2$, then k_{1}, k_{2}, k_{3} approximately are $k_{1} \approx 3.286, k_{2} \approx$ $0.232, k_{3} \approx-1.069$ or $k_{1} \approx 1.069, k_{2} \approx-0.232, k_{3} \approx-3.286$. So M is congruent to an open part of $f^{-1}(a)$ and a tube of radius θ around the standard embedding of a complex projective plane $\mathbb{C} \boldsymbol{P}^{2}$ into \mathbb{S}^{7} where $a \approx 0.632$ and $\theta \approx \pi / 10.634$.
- If $m=4$, then k_{1}, k_{2}, k_{3} approximately are $k_{1} \approx 2.527, k_{2} \approx$ $0.147, k_{3} \approx-1.261$, or $k_{1} \approx 1.261, k_{2} \approx-0.147, k_{3} \approx-2.527$. So M is congruent to an open part of $f^{-1}(a)$ and a tube of radius θ around the standard embedding of a quaternionic projective plane $\mathbb{H} \boldsymbol{P}^{2}$ into \mathbb{S}^{13} where $a \approx 0.426$ and $\theta \approx \pi / 8.337$.
- If $m=8$, then k_{1}, k_{2}, k_{3} approximately are $k_{1} \approx 2.216, k_{2} \approx$ $0.1, k_{3} \approx-1.39$ or $k_{1} \approx 1.39, k_{2} \approx-0.1, k_{3} \approx-2.216$. So M is congruent to an open part of $f^{-1}(a)$ and a tube of radius θ around the standard embedding of a Cayley projective plane $\mathbb{O} \boldsymbol{P}^{2}$ into \mathbb{S}^{25} where $a \approx 0.294$ and $\theta \approx \pi / 7.411$.
(b) Let $k=1$ and M be proper L_{1}-biharmonic. Then we have the followings:
- If $m=1$, then k_{1}, k_{2}, k_{3} satisfy the following equation

$$
3 H_{1} H_{2}-H_{3}-2 H_{1}=0,
$$

so that $k_{1}=\sqrt{3}, k_{2}=0, k_{3}=-\sqrt{3}$. Therefore M is congruent to an open part of $f^{-1}(0)$ and a tube of radius $\pi / 6$ around the standard embedding of a real projective plane $\mathbb{R} \boldsymbol{P}^{2}$ into \mathbb{S}^{4}. Also M is a Cartan minimal hypersurface of dimension 3 .

- If $m=2$, then k_{1}, k_{2}, k_{3} satisfy the following equation

$$
6 H_{1} H_{2}-4 H_{3}-2 H_{1}=0
$$

so that either $k_{1}=\sqrt{3}, k_{2}=0, k_{3}=-\sqrt{3}$ or approximately $k_{1} \approx$ $1.369, k_{2} \approx-0.107, k_{3} \approx-2.261$ or $k_{1} \approx 2.261, k_{2} \approx 0.107, k_{3} \approx$ -1.369. If $k_{1}=\sqrt{3}, k_{2}=0, k_{3}=-\sqrt{3}$, then M is congruent to an open part of $f^{-1}(0)$ and a tube of radius $\pi / 6$ around the standard embedding of a complex projective plane $\mathbb{C} \boldsymbol{P}^{2}$ into \mathbb{S}^{7}. Also M is a Cartan minimal hypersurface of dimension 6 . If $k_{1} \approx 1.369, k_{2} \approx$ $-0.107, k_{3} \approx-2.261$ or $k_{1} \approx 2.261, k_{2} \approx 0.107, k_{3} \approx-1.369$, then M is congruent to an open part of $f^{-1}(a)$ and a tube of radius θ around the standard embedding of a complex projective plane $\mathbb{C} \boldsymbol{P}^{2}$ into \mathbb{S}^{7} where $a \approx 0.316$ and $\theta \approx \pi / 7.544$.

- If $m=4$, then k_{1}, k_{2}, k_{3} satisfy the following equation

$$
12 H_{1} H_{2}-10 H_{3}-2 H_{1}=0
$$

so that $k_{1}=\sqrt{3}, k_{2}=0, k_{3}=-\sqrt{3}$. Therefore M is congruent to an open part of $f^{-1}(0)$ and a tube of radius $\pi / 6$ around the standard embedding of a quaternionic projective plane $\mathbb{H} \boldsymbol{P}^{2}$ into \mathbb{S}^{13}. Also M is a Cartan minimal hypersurface of dimension 12.

- If $m=8$, then k_{1}, k_{2}, k_{3} satisfy the following equation

$$
24 H_{1} H_{2}-22 H_{3}-2 H_{1}=0
$$

so that $k_{1}=\sqrt{3}, k_{2}=0, k_{3}=-\sqrt{3}$. Therefore M is congruent to an open part of $f^{-1}(0)$ and a tube of radius $\pi / 6$ around the standard embedding of a Cayley projective plane $\mathbb{O} \boldsymbol{P}^{2}$ into \mathbb{S}^{25}. Also M is a Cartan minimal hypersurface of dimension 24.
(c) Let $k=2$ and M be L_{2}-biharmonic and $H_{3}=0$. Then we have the followings:

- If $m=1$, then k_{1}, k_{2}, k_{3} are $k_{1}=\sqrt{3}, k_{2}=0, k_{3}=-\sqrt{3}$. So M is congruent to an open part of $f^{-1}(0)$ and a tube of radius $\pi / 6$ around the standard embedding of a real projective plane $\mathbb{R} \boldsymbol{P}^{2}$ into \mathbb{S}^{4}. Also M is a Cartan minimal hypersurface of dimension 3 .
- If $m=2$, then k_{1}, k_{2}, k_{3} are $k_{1}=\sqrt{3}, k_{2}=0, k_{3}=-\sqrt{3}$. So M is congruent to an open part of $f^{-1}(0)$ and a tube of radius $\pi / 6$ around the standard embedding of a complex projective plane $\mathbb{C} \boldsymbol{P}^{2}$
into \mathbb{S}^{7}. Also M is a Cartan minimal hypersurface of dimension 6.
- If $m=4$, then k_{1}, k_{2}, k_{3} are $k_{1}=\sqrt{3}, k_{2}=0, k_{3}=-\sqrt{3}$ or approximately $k_{1} \approx 0.993, k_{2} \approx-0.271, k_{3} \approx-3.777$ or $k_{1} \approx$ $3.777, k_{2} \approx 0.271, k_{3} \approx-0.993$. If $k_{1}=\sqrt{3}, k_{2}=0, k_{3}=-\sqrt{3}$, then M is congruent to an open part of $f^{-1}(0)$ and a tube of radius $\pi / 6$ around the standard embedding of a quaternionic projective plane $\mathbb{H} \boldsymbol{P}^{2}$ into \mathbb{S}^{13}. Also M is a Cartan minimal hypersurface of dimension 12. If $k_{1} \approx 0.993, k_{2} \approx-0.271, k_{3} \approx-3.777$ or $k_{1} \approx 3.777, k_{2} \approx 0.271, k_{3} \approx-0.993$, then M is congruent to an open part of $f^{-1}(a)$ and a tube of radius θ around the standard embedding of a quaternionic projective plane $\mathbb{H} \boldsymbol{P}^{2}$ into \mathbb{S}^{13} where $a \approx 0.713$ and $\theta \approx \pi / 12.138$.
- If $m=8$, then k_{1}, k_{2}, k_{3} are $k_{1}=\sqrt{3}, k_{2}=0, k_{3}=-\sqrt{3}$ or approximately $k_{1} \approx 1.189, k_{2} \approx-0.177, k_{3} \approx-2.757$ or $k_{1} \approx$ 2.757, $k_{2} \approx 0.177, k_{3} \approx-1.189$. If $k_{1}=\sqrt{3}, k_{2}=0, k_{3}=-\sqrt{3}$, then M is congruent to an open part of $f^{-1}(0)$ and a tube of radius $\pi / 6$ around the standard embedding of a Cayley projective plane $\mathbb{O} \boldsymbol{P}^{2}$ into \mathbb{S}^{25}. Also M is a Cartan minimal hypersurface of dimension 24. If $k_{1} \approx 1.189, k_{2} \approx-0.177, k_{3} \approx-2.757$ or $k_{1} \approx 2.757, k_{2} \approx 0.177, k_{3} \approx-1.189$, then M is congruent to an open part of $f^{-1}(a)$ and a tube of radius θ around the standard embedding of a Cayley projective plane $\mathbb{O} \boldsymbol{P}^{2}$ into \mathbb{S}^{25} where $a \approx$ 0.502 and $\theta \approx \pi / 9.028$.
(d) Let $k=2$ and M be proper L_{2}-biharmonic. Then we have the followings:
- If $m=1$, then k_{1}, k_{2}, k_{3} satisfy the equation

$$
H_{1} H_{3}-H_{2}=0,
$$

so that either $k_{1}=1, k_{2}=\sqrt{3}-2, k_{3}=-\sqrt{3}-2$ or $k_{1}=2+$ $\sqrt{3}, k_{2}=2-\sqrt{3}, k_{3}=-1$. Therefore M is congruent to an open part of $f^{-1}\left(\frac{\sqrt{2}}{2}\right)$ and a tube of radius $\pi / 12$ around the standard embedding of a real projective plane $\mathbb{R} \boldsymbol{P}^{2}$ into \mathbb{S}^{4}.

- If $m=2$, then k_{1}, k_{2}, k_{3} satisfy the following equation

$$
2 H_{1} H_{3}-H_{4}-H_{2}=0
$$

so that there is no real solution for all k_{1}, k_{2}, k_{3}. Therefore there is no proper L_{2}-biharmonic hypersurface in \mathbb{S}^{7} with three disjoint principal curvatures, and H_{1} and H_{2} are constants.

- If $m=4$, then k_{1}, k_{2}, k_{3} satisfy the equation

$$
4 H_{1} H_{3}-3 H_{4}-H_{2}=0
$$

so that approximately either $k_{1} \approx 1.083, k_{2} \approx-0.225, k_{3} \approx-3.213$ or $k_{1} \approx 3.213, k_{2} \approx 0.225, k_{3} \approx-1.083$. Then M is congruent to
an open part of $f^{-1}(a)$ and a tube of radius θ around the standard embedding of a quaternionic projective plane $\mathbb{H} \boldsymbol{P}^{2}$ into \mathbb{S}^{13} where $a \approx 0.617$ and $\theta \approx \pi / 10.411$.

- If $m=8$, then k_{1}, k_{2}, k_{3} satisfy the following equation

$$
8 H_{1} H_{3}-7 H_{4}-H_{2}=0,
$$

so that there is no real solution for all k_{1}, k_{2}, k_{3}. Therefore there is no proper L_{2}-biharmonic hypersurface in \mathbb{S}^{25} with three disjoint principal curvatures, and H_{1} and H_{2} are constants.

An immediate result of Theorem 1.2, we get the following classification of proper L_{2}-biharmonic hypersurfaces in space form $R^{4}(c)$ with three distinct principal curvatures and H_{2} is constant.

Theorem 1.3. Let M^{3} be a connected, oriented isometrically immersed hypersurface in space form $R^{4}(c)$ with three distinct principal curvatures. If M is proper L_{2}-biharmonic and H_{2} is constant, then $c=1$ and M is congruent to an open part of $f^{-1}\left(\frac{\sqrt{2}}{2}\right)$ and a tube of radius $\pi / 12$ around the standard embedding of a real projective plane $\mathbb{R} \boldsymbol{P}^{2}$ into \mathbb{S}^{4} and principal curvatures of M are $2+\sqrt{3}, 2-\sqrt{3},-1$.

2. Preliminaries

We recall the prerequisites from $[3,10,11,13,23,27]$. Let $R^{n+1}(c)$ be the simply connected Riemannian space form of constant sectional curvature c which is the Euclidean space \mathbb{R}^{n+1} for $c=0$, and the Hyperbolic space \mathbb{H}^{n+1}, for $c=-1$, and the Euclidean sphere \mathbb{S}^{n+1} for $c=+1$. Let $\varphi: M^{n} \rightarrow R^{n+1}(c)$ be a connected oriented hypersurface isometrically immersed into $R^{n+1}(c)$ with N as a unit normal vector field, ∇ and $\bar{\nabla}$ the Levi-Civita connections on M and $R^{n+1}(c)$, respectively. For simplicity we also denote the induced connection on the pullback bundle $\varphi^{*} T R^{n+1}(c)$ by $\bar{\nabla}$. Let X, Y be vector fields on M. We have the following formula for the shape operator of M,

$$
\begin{aligned}
\bar{\nabla}_{X} d \varphi(Y) & =d \varphi\left(\nabla_{X} Y\right)+\langle S X, Y\rangle N \\
d \varphi(S X) & =-\bar{\nabla}_{X} N
\end{aligned}
$$

As it is known, the shape operator is a self-adjoint linear operator. Let k_{1}, \ldots, k_{n} be its eigenvalues which are called principal curvatures of M. Define $s_{0}=1$ and

$$
\begin{equation*}
s_{k}=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} k_{i_{1}} \cdots k_{i_{k}} . \tag{3}
\end{equation*}
$$

The k-th mean curvature of M is defined by

$$
\binom{n}{k} H_{k}=s_{k}
$$

For $k=1, H_{1}=\frac{1}{n} \operatorname{tr}(S)=H$ is the mean curvature of M. For $k=2$, the scalar curvature of M is $s=n(n-1) H_{2}$. In general, when k is odd, the sign of H_{k} depends on the chosen orientation and when k is even, H_{k} is an intrinsic geometric quantity.

Let M^{n} have three principal curvatures, k_{1}, k_{2}, k_{3} with respective multiplicities $m_{1}, m_{2}, m_{3}, n=m_{1}+m_{2}+m_{3}$. Therefore we get by Equation (3),

$$
\begin{equation*}
s_{k}=\sum_{i, j}\binom{m_{1}}{i}\binom{m_{2}}{j}\binom{m_{3}}{k-i-j} k_{1}^{i} k_{2}^{j} k_{3}^{k-i-j} . \tag{4}
\end{equation*}
$$

The Newton transformations $P_{k}: \mathcal{X}(M) \rightarrow \mathcal{X}(M)$ are defined inductively by $P_{0}=I$ and

$$
P_{k}=s_{k} I-S \circ P_{k-1}, 1 \leq k \leq n .
$$

Therefore

$$
\begin{equation*}
P_{k}=\sum_{l=0}^{k}(-1)^{l} s_{k-l} S^{l} \tag{5}
\end{equation*}
$$

From the Cayley-Hamilton theorem, one gets that $P_{n}=0$. Each P_{k} is a self adjoint linear operator which commutes with S and the eigenvalues of P_{k} are given by

$$
\begin{equation*}
\mu_{k, i}=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n, i_{j} \neq i} k_{i_{1}} \cdots k_{i_{k}} . \tag{6}
\end{equation*}
$$

For $0 \leq k \leq n-1$, the second order linear differential operator L_{k} : $C^{\infty}(M) \rightarrow C^{\infty}(M)$ as the natural generalization of the Laplace operator for Euclidean hypersurfaces M, is defined by

$$
\begin{equation*}
L_{k} f=\operatorname{tr}\left(P_{k} \circ \nabla^{2} f\right), \tag{7}
\end{equation*}
$$

where $\nabla^{2} f$ is metrically equivalent to the Hessian of f and is defined by $\left\langle\left(\nabla^{2} f\right) X, Y\right\rangle=\left\langle\nabla_{X}(\nabla f), Y\right\rangle$ for all vector fields X, Y on M, and ∇f is the gradient vector field of f. When $k=0, L_{0}=\Delta$.

We have the following properties of shape operator, curvature tensor and Newton transformation which they are used to prove other results of the paper. If X, Y, Z are tangent vector fields on M, then we have

$$
\begin{align*}
R(X, Y) Z & =\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \\
& =c(\langle Z, Y\rangle X-\langle Z, X\rangle Y)+\langle S Y, Z\rangle S X-\langle S X, Z\rangle S Y, \tag{8}\\
\left(\nabla_{X} S\right) Y & =\left(\nabla_{Y} S\right) X, \quad \text { (Codazzi equation) } \\
\operatorname{tr}\left(P_{k}\right) & =(n-k) s_{k} . \tag{9}
\end{align*}
$$

We recall that a hypersurface M^{n} in $R^{n+1}(c)$ is said to be isoparametric if it has constant principal curvatures $k_{1}>k_{2}>\cdots>k_{l}$ with respective constant multiplicities $m_{1}, m_{2}, \ldots, m_{l}, n=m_{1}+m_{2}+\cdots+m_{l}$. It is known for $c=0,-1$, isoparametric hypersurfaces has at most two principal curvatures. For $l=3$
we have the following classification of isoparametric hypersurfaces in Euclidean sphere.

Theorem 2.1 (cf. [10,11, 23]). Let M^{n} be an isoparametric hypersurface in \mathbb{S}^{n+1} with three constant principal curvatures $k_{1}>k_{2}>k_{3}$ and respective multiplicities m_{1}, m_{2}, m_{3}. Then we have the followings:
I. $m=m_{1}=m_{2}=m_{3}=2^{q}, n=3 \cdot 2^{q}, q=0,1,2,3$, and there exists an angle $\theta, 0<\theta<\pi / 3$ such that
(10) $k_{1}=\cot \theta, k_{2}=\cot \left(\theta+\frac{\pi}{3}\right)=\frac{k_{1}-\sqrt{3}}{1+\sqrt{3} k_{1}}, k_{3}=\cot \left(\theta+\frac{2 \pi}{3}\right)=\frac{k_{1}+\sqrt{3}}{1-\sqrt{3} k_{1}}$.
II. In the ambient Euclidean space $\mathbb{R}^{n+2} \supset \mathbb{S}^{n+1}$, there is a homogeneous polynomial F of degree 3 over \mathbb{R}^{n+2} whose the range of $f=\left.F\right|_{\mathbb{S}^{n+1}}$ is $[-1,1]$, the only critical values of f are ± 1 and for any $a \in(-1,1), f^{-1}(a)$ is an isoparametric hypersurface and is a tube around the two focal submanifolds $f^{-1}(1)$ and $f^{-1}(-1)$. For $a=\cos (3 \theta), M$ is up to congruency an open part of $f^{-1}(a)$ and a tube of radius θ around the two focal submanifolds.
III. The two focal submanifolds are standard embedding of a projective plane $\mathbb{F} \boldsymbol{P}^{2}$ into \mathbb{S}^{n+1} where \mathbb{F} is the division algebra $\mathbb{R}, \mathbb{C}, \mathbb{H}$ (quaternions), $\mathbb{O}($ Cayley numbers) corresponding to the principal multiplicity $m=1,2,4$, or 8 .
IV. Let \mathbb{F} be one of the division algebras $\mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O}. Let $X, Y, Z \in \mathbb{F}$ and $a, b \in \mathbb{R}$. Then

$$
\begin{aligned}
F= & a^{3}-3 a b^{2}+\frac{3 a}{2}(X \bar{X}+Y \bar{Y}-2 Z \bar{Z}) \\
& +\frac{3 \sqrt{3} b}{2}(X \bar{X}-Y \bar{Y})+\frac{3 \sqrt{3}}{2}(X Y Z+\overline{X Y Z}) .
\end{aligned}
$$

Isoparametric hypersurfaces with three distinct principal curvatures are usually called Cartan hypersurfaces. When a Cartan hypersurface in \mathbb{S}^{n+1} is minimal, it is congruent to one of the following hypersurfaces:

$$
\begin{aligned}
& M^{3}=S O(3) /\left(\mathbb{Z}_{2}+\mathbb{Z}_{2}\right) \rightarrow \mathbb{S}^{4} \\
& M^{6}=S U(3) / T^{2} \rightarrow \mathbb{S}^{7} \\
& M^{12}=S p(3) /(S p(1) \times S p(1) \times S p(1)) \rightarrow \mathbb{S}^{13} \\
& M^{24}=F_{4} / S p i n(8) \rightarrow \mathbb{S}^{25}
\end{aligned}
$$

Principal curvatures of a Cartan minimal hypersurface are $\sqrt{3}, 0,-\sqrt{3}$.

3. Proof of main result

Before proving Theorem 1.2, we give an auxiliary Lemma for L_{k}-biharmonic hypersurface M in space form $R^{n+1}(c)$ which has three distinct principal curvatures and we show H_{k+1} is constant when $k=1$ or 2 and H_{1}, \ldots, H_{k} are constant. In its proof, we benefit from the techniques of [17-19, 21] but adapt them to our context. So our proof is much involved and quite different.

Lemma 3.1. Let M^{n} be a connected, oriented isometrically immersed L_{k} biharmonic hypersurface in space form $R^{n+1}(c)$. Suppose that M has three distinct principal curvatures and $k=1$ or 2 . If H_{1}, \ldots, H_{k} are constant, then H_{k+1} is constant.

Proof. We have $P_{k+1}=s_{k+1} I-S \circ P_{k}$. So by Equation (1) we get

$$
\begin{equation*}
P_{k+1} \nabla s_{k+1}=\frac{3}{2} s_{k+1} \nabla s_{k+1} . \tag{11}
\end{equation*}
$$

Let s_{k+1} be non constant. We consider $\left\{e_{i}\right\}_{i=1}^{n}$ is a local orthonormal frame field on M which diagonalize S and P_{k+1} simultaneously and $e_{1}=\frac{\nabla s_{k+1}}{\left|\nabla s_{k+1}\right|}$. We put

$$
\begin{equation*}
S e_{i}=\lambda_{i} e_{i} \text { and } P_{k+1} e_{i}=\mu_{k+1, i} e_{i}, \quad i=1, \ldots, n \tag{12}
\end{equation*}
$$

Then we have by Equations (11) and (12),

$$
\begin{equation*}
\mu_{k+1,1}=\frac{3}{2} s_{k+1} . \tag{13}
\end{equation*}
$$

So we get by Equations (5) and (13),

$$
\frac{3}{2} s_{k+1}=\sum_{l=0}^{k+1}(-1)^{l} s_{k+1-l} \lambda_{1}{ }^{l}=s_{k+1}+\sum_{l=1}^{k+1}(-1)^{l} s_{k+1-l} \lambda_{1}{ }^{l} .
$$

Therefore

$$
\begin{equation*}
s_{k+1}=2 \sum_{l=1}^{k+1}(-1)^{l} s_{k+1-l} \lambda_{1}^{l} . \tag{14}
\end{equation*}
$$

We have $\nabla s_{k+1}=\sum_{i=1}^{n} e_{i}\left(s_{k+1}\right) e_{i}=\left|\nabla s_{k+1}\right| e_{1}$. Thus

$$
\begin{equation*}
e_{1}\left(s_{k+1}\right) \neq 0 \quad \text { and } \quad \forall i \neq 1 e_{i}\left(s_{k+1}\right)=0 \tag{15}
\end{equation*}
$$

By assumption s_{1}, \ldots, s_{k} are constant, so by Equation (14) we get for every i,

$$
\begin{equation*}
e_{i}\left(s_{k+1}\right)=2 e_{i}\left(\lambda_{1}\right) \sum_{l=1}^{k+1}(-1)^{l} s_{k+1-l} l \lambda_{1}^{l-1} . \tag{16}
\end{equation*}
$$

Since $e_{1}\left(s_{k+1}\right) \neq 0$, by Equation (16) we have $e_{1}\left(\lambda_{1}\right) \neq 0$. If $e_{i}\left(\lambda_{1}\right) \neq 0$ for some $i \neq 1$, then $e_{i}\left(s_{k+1}\right)=0$ and Equation (16) imply that $\sum_{l=1}^{k+1}(-1)^{l} s_{k+1-l} l \lambda_{1}{ }^{l-1}$ $=0$. So this polynomial shows that λ_{1} is constant which is a contradiction with $e_{1}\left(\lambda_{1}\right) \neq 0$. Thus λ_{1} is non constant,

$$
\begin{equation*}
e_{1}\left(\lambda_{1}\right) \neq 0 \quad \text { and } \quad \forall i \neq 1 \quad e_{i}\left(\lambda_{1}\right)=0 \tag{17}
\end{equation*}
$$

Now we show that multiplicity of λ_{1} is one. Let's $\nabla_{e_{i}} e_{j}=\sum_{l} \omega_{i j}^{l} e_{l}$. Then $\nabla_{e_{l}}\left\langle e_{i}, e_{j}\right\rangle=0$ and the Codazzi equation $\left(\nabla_{e_{i}} S\right) e_{j}=\left(\nabla_{e_{j}} S\right) e_{i}$ give that

$$
\begin{align*}
& \omega_{l i}^{j}=-\omega_{l j}^{i} \tag{18}\\
& e_{i}\left(\lambda_{j}\right)=\left(\lambda_{i}-\lambda_{j}\right) \omega_{j i}^{j} \quad i \neq j, \tag{19}\\
& \left(\lambda_{i}-\lambda_{j}\right) \omega_{l i}^{j}=\left(\lambda_{l}-\lambda_{j}\right) \omega_{i l}^{j} \quad i \neq j \neq l \tag{20}
\end{align*}
$$

If $\lambda_{1}=\lambda_{j}$ for some $j \neq 1$, then by Equation (19) we get $e_{1}\left(\lambda_{1}\right)=e_{1}\left(\lambda_{j}\right)=$ $\left(\lambda_{1}-\lambda_{j}\right) \omega_{j 1}^{j}=0$ which is a contradiction with Equation (17). By assumption M has three distinct principal curvatures. Without loss of generality, We denote them by

$$
\begin{equation*}
\lambda_{1}, \lambda_{2}=\cdots=\lambda_{p}=\alpha_{2}, \lambda_{p+1}=\cdots=\lambda_{n}=\beta_{n} \tag{21}
\end{equation*}
$$

Let's $n \geq 4$ and $p=n-1$ (for $n=3$ or $p \leq n-2$, the proof is in similar way). By Equations (19) and (21) we have

$$
\begin{equation*}
e_{2}\left(\alpha_{2}\right)=\cdots=e_{n-1}\left(\alpha_{2}\right)=0 \tag{22}
\end{equation*}
$$

In the following we show that $e_{n}\left(\alpha_{2}\right)=0$. We have by Equation (19), for $i \neq 1$, $e_{i}\left(\lambda_{1}\right)=\left(\lambda_{i}-\lambda_{1}\right) \omega_{1 i}^{1}=0$. So

$$
\begin{equation*}
\omega_{1 i}^{1}=0, \quad i=1, \ldots, n \tag{23}
\end{equation*}
$$

We know by Equation (21),

$$
\begin{equation*}
\beta_{n}=s_{1}-\lambda_{1}-(n-2) \alpha_{2} \tag{24}
\end{equation*}
$$

Thus by Equations (17), (22) and (24) for $i=2, \ldots, n-1, e_{i}\left(\beta_{n}\right)=0$, and by Equations (19) and (21), $e_{i}\left(\beta_{n}\right)=e_{i}\left(\lambda_{n}\right)=\left(\lambda_{i}-\lambda_{n}\right) \omega_{n i}^{n}=0$. So

$$
\begin{equation*}
\omega_{n i}^{n}=0, \quad i=2, \ldots, n \tag{25}
\end{equation*}
$$

By Equations (19) and (21), $\omega_{n 1}^{n}=\frac{e_{1}\left(\lambda_{n}\right)}{\lambda_{1}-\lambda_{n}}=\frac{e_{1}\left(\beta_{n}\right)}{\lambda_{1}-\beta_{n}}$, and so by Equation (24)

$$
\begin{equation*}
\omega_{n 1}^{n}=-\frac{e_{1}\left(\lambda_{1}+(n-2) \alpha_{2}\right)}{2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}} \tag{26}
\end{equation*}
$$

By Equation (19), for $j=2, \ldots, n-1$, we have $\omega_{j 1}^{j}=\frac{e_{1}\left(\lambda_{j}\right)}{\lambda_{1}-\lambda_{j}}$ and $\omega_{j n}^{j}=\frac{e_{n}\left(\lambda_{j}\right)}{\lambda_{n}-\lambda_{j}}$. So by Equation (21) we get

$$
\begin{array}{ll}
\omega_{j 1}^{j}=\frac{e_{1}\left(\alpha_{2}\right)}{\lambda_{1}-\alpha_{2}}, & j=2, \ldots, n-1 \\
\omega_{j n}^{j}=\frac{e_{n}\left(\alpha_{2}\right)}{s_{1}-\lambda_{1}-(n-2) \alpha_{2}}, & j=2, \ldots, n-1 \tag{28}
\end{array}
$$

For $j \neq l$ and $j, l=2, \ldots, n-1$, we have by Equation $(20),\left(\lambda_{1}-\lambda_{j}\right) \omega_{l 1}^{j}=$ $\left(\lambda_{l}-\lambda_{j}\right) \omega_{1 l}^{j}=0$ and $\left(\lambda_{n}-\lambda_{j}\right) \omega_{l n}^{j}=\left(\lambda_{l}-\lambda_{j}\right) \omega_{n l}^{j}=0$. Thus

$$
\begin{equation*}
\omega_{l 1}^{j}=\omega_{l n}^{j}=0, \quad j \neq l \text { and } j, l=2, \ldots, n-1 . \tag{29}
\end{equation*}
$$

For $i, j=2, \ldots, n$, by Equation (17) we get, $\left[e_{i}, e_{j}\right]\left(\lambda_{1}\right)=e_{i} e_{j}\left(\lambda_{1}\right)-e_{j} e_{i}\left(\lambda_{1}\right)=$ 0 and so $\left[e_{i}, e_{j}\right]\left(\lambda_{1}\right)=\sum_{l}\left(\omega_{i j}^{l}-\omega_{j i}^{l}\right) e_{l}\left(\lambda_{1}\right)=\left(\omega_{i j}^{1}-\omega_{j i}^{1}\right) e_{1}\left(\lambda_{1}\right)=0$. Therefore

$$
\begin{equation*}
\omega_{i j}^{1}=\omega_{j i}^{1}, \quad i, j=2, \ldots, n \tag{30}
\end{equation*}
$$

For $l=2, \ldots, n-1$, by Equation (20), $\left(\lambda_{n}-\lambda_{1}\right) \omega_{l n}^{1}=\left(\lambda_{l}-\lambda_{1}\right) \omega_{n l}^{1}$ and $\left(\lambda_{1}-\lambda_{n}\right) \omega_{l 1}^{n}=\left(\lambda_{l}-\lambda_{n}\right) \omega_{1 l}^{n}$. Therefore by Equations (18) and (30) we get

$$
\begin{equation*}
\omega_{l n}^{1}=\omega_{n l}^{1}=\omega_{1 l}^{n}=0, \quad l=2, \ldots, n-1 . \tag{31}
\end{equation*}
$$

By Equations (18), (23) and (31) we get

$$
\begin{equation*}
\nabla_{e_{1}} e_{1}=\nabla_{e_{1}} e_{n}=0 \tag{32}
\end{equation*}
$$

We have $\nabla_{e_{i}} e_{1}=\sum_{l} \omega_{i 1}^{l} e_{l}=-\sum_{l} \omega_{i l}^{1} e_{l}$, so Equations (26), (27), (29) and (31) imply that

$$
\begin{align*}
& \nabla_{e_{i}} e_{1}=-\frac{e_{1}\left(\alpha_{2}\right)}{\lambda_{1}-\alpha_{2}} e_{i}, \quad i=2, \ldots, n-1, \tag{33}\\
& \nabla_{e_{n}} e_{1}=-\frac{e_{1}\left(\lambda_{1}+(n-2) \alpha_{2}\right)}{2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}} e_{n}, \tag{34}
\end{align*}
$$

and we get by Equations (25) and (26),

$$
\begin{equation*}
\nabla_{e_{n}} e_{n}=\frac{e_{1}\left(\lambda_{1}+(n-2) \alpha_{2}\right)}{2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}} e_{1} . \tag{35}
\end{equation*}
$$

By Equations (28), (29) and (31), we get

$$
\begin{equation*}
\nabla_{e_{i}} e_{n}=\frac{e_{n}\left(\alpha_{2}\right)}{s_{1}-\lambda_{1}-(n-2) \alpha_{2}} e_{i}, \quad i=2, \ldots, n-1 \tag{36}
\end{equation*}
$$

Let's put
(37) $\alpha=-\frac{e_{1}\left(\alpha_{2}\right)}{\lambda_{1}-\alpha_{2}}, \beta=-\frac{e_{1}\left(\lambda_{1}+(n-2) \alpha_{2}\right)}{2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}}, \gamma=\frac{e_{n}\left(\alpha_{2}\right)}{s_{1}-\lambda_{1}-(n-2) \alpha_{2}}$.

Now by Equations (27), (28) and (37),

$$
\begin{equation*}
\nabla_{e_{i}} e_{i}=\alpha e_{1}+\sum_{\substack{l=2, \ldots, n-1 \\ l \neq i}} \omega_{i i}^{l} e_{l}-\gamma e_{n} \tag{38}
\end{equation*}
$$

Then by Equations (8), (12), (21), (23), (25), (31), (32), (33), (34), (35), (36) and (37) we get that

$$
R\left(e_{1}, e_{2}\right) e_{1}=\left(-e_{1}(\alpha)+\alpha^{2}\right) e_{2}=-\left(c+\lambda_{1} \alpha_{2}\right) e_{2}
$$

Therefore

$$
\begin{equation*}
e_{1}(\alpha)=c+\lambda_{1} \alpha_{2}+\alpha^{2} . \tag{39}
\end{equation*}
$$

We have
(40)

$$
R\left(e_{1}, e_{n}\right) e_{1}=\left(e_{1}(\beta)+\beta^{2}\right) e_{n}=-\left(c+\lambda_{1} \beta_{n}\right) e_{n}
$$

Therefore by Equations (24) and (40),
(41) $\quad e_{1}(\beta)=-\left(c+\lambda_{1} \beta_{n}+\beta^{2}\right)=-\left(c+\lambda_{1}\left(s_{1}-\lambda_{1}-(n-2) \alpha_{2}\right)+\beta^{2}\right)$.

We have

$$
R\left(e_{3}, e_{n}\right) e_{1}=\left(e_{n}(\alpha)+\frac{(\alpha+\beta) e_{n}\left(\alpha_{2}\right)}{s_{1}-\lambda_{1}-(n-2) \alpha_{2}}\right) e_{3}+e_{3}(\beta) e_{n}=0
$$

So

$$
\begin{equation*}
e_{n}(\alpha)=-\frac{(\alpha+\beta) e_{n}\left(\alpha_{2}\right)}{s_{1}-\lambda_{1}-(n-2) \alpha_{2}} \tag{42}
\end{equation*}
$$

We have

$$
\begin{equation*}
R\left(e_{n}, e_{2}\right) e_{n}=\left(e_{n}(\gamma)-\alpha \beta+\gamma^{2}\right) e_{2}=-\left(c+\beta_{n} \alpha_{2}\right) e_{2} \tag{43}
\end{equation*}
$$

Therefore by Equations (24) and (43),

$$
\begin{equation*}
e_{n}(\gamma)-\alpha \beta+\gamma^{2}=-\left(c+\left(s_{1}-\lambda_{1}-(n-2) \alpha_{2}\right) \alpha_{2}\right) \tag{44}
\end{equation*}
$$

We have by Equations (6) and (5) we have

$$
\begin{align*}
& \mu_{k, 1}=\binom{n-2}{k} \alpha_{2}^{k}+\binom{n-2}{k-1} \beta_{n} \alpha_{2}^{k-1}, \tag{45}\\
& \mu_{k, 1}=\sum_{l=0}^{k}(-1)^{l} s_{k-l} \lambda_{1}^{l}, \\
& \mu_{k, n}=\binom{n-2}{k} \alpha_{2}^{k}+\binom{n-2}{k-1} \lambda_{1} \alpha_{2}^{k-1}, \\
& \mu_{k, n}=\sum_{l=0}^{k}(-1)^{l} s_{k-l} \beta_{n}^{l}=\sum_{l=0}^{k}(-1)^{l} s_{k-l}\left(s_{1}-\lambda_{1}-(n-2) \alpha_{2}\right)^{l} .
\end{align*}
$$

Also by Equation (4), we have
(49) $s_{r}=\binom{n-2}{r-1} \lambda_{1} \alpha_{2}^{r-1}+\binom{n-2}{r} \alpha_{2}^{r}+\binom{n-2}{r-1} \alpha_{2}^{r-1} \beta_{n}+\binom{n-2}{r-2} \lambda_{1} \alpha_{2}^{r-2} \beta_{n}$.

We have by Equation (7),

$$
\begin{equation*}
L_{k} s_{k+1}=\sum_{i=0}^{n} \mu_{k, i}\left(e_{i} e_{i}\left(s_{k+1}\right)-\left(\nabla_{e_{i}} e_{i}\right)\left(s_{k+1}\right)\right) . \tag{50}
\end{equation*}
$$

Thus we get by Equations (15), (32), (35), (38) and (50),
(51) $L_{k} s_{k+1}=\mu_{k, 1} e_{1} e_{1}\left(s_{k+1}\right)-\left(\sum_{i=2}^{n-1} \mu_{k, i}\left(\alpha e_{1}+\sum_{\substack{l=2, \ldots, n-1 \\ l \neq i}} \omega_{i i}^{l} e_{l}-\gamma e_{n}\right)\left(s_{k+1}\right)\right)$

$$
+\beta \mu_{k, n} e_{1}\left(s_{k+1}\right)
$$

Then Equations (15) and (51) imply that

$$
\begin{equation*}
L_{k} s_{k+1}=\mu_{k, 1} e_{1} e_{1}\left(s_{k+1}\right)-\alpha\left(\sum_{i=2}^{n-1} \mu_{k, i} e_{1}\left(s_{k+1}\right)\right)+\beta \mu_{k, n} e_{1}\left(s_{k+1}\right) \tag{52}
\end{equation*}
$$

We know $\sum_{i=2}^{n-1} \mu_{k, i}=\operatorname{tr}\left(P_{k}\right)-\mu_{k, 1}-\mu_{k, n}$ and by Equation (9), $\sum_{i=2}^{n-1} \mu_{k, i}=$ $(n-k) s_{k}-\mu_{k, 1}-\mu_{k, n}$. So by Equations (2) and (52) we get that
(53) $\quad \mu_{k, 1}\left(e_{1} e_{1}\left(s_{k+1}\right)+\alpha e_{1}\left(s_{k+1}\right)\right)+\left((\alpha+\beta) \mu_{k, n}-\alpha(n-k) s_{k}\right) e_{1}\left(s_{k+1}\right)$

$$
=s_{k+1}\left(s_{1} s_{k+1}-(k+2) s_{k+2}-c(n-k) s_{k}\right) .
$$

Now we show that $e_{i} e_{1}\left(s_{k+1}\right)=0$ and $e_{i} e_{1}\left(\lambda_{1}\right)=0$ for every $i=2, \ldots, n$. We know by Equation (15) for every $i=2, \ldots, n,\left[e_{i}, e_{1}\right]\left(s_{k+1}\right)=e_{i} e_{1}\left(s_{k+1}\right)-$ $e_{1} e_{i}\left(s_{k+1}\right)=e_{i} e_{1}\left(s_{k+1}\right)$. On the other hand by Equations (15), (23) and (29),
$\left[e_{i}, e_{1}\right]\left(s_{k+1}\right)=\left(\nabla_{e_{i}} e_{1}-\nabla_{e_{1}} e_{i}\right)\left(s_{k+1}\right)=\sum_{l=1}^{n}\left(\omega_{i 1}^{l}-\omega_{1 i}^{l}\right) e_{l}\left(s_{k+1}\right)=0$. Therefore we get

$$
\begin{equation*}
e_{i} e_{1}\left(s_{k+1}\right)=0, \quad i=2, \ldots, n, \tag{54}
\end{equation*}
$$

and in the similar way

$$
\begin{equation*}
e_{i} e_{1}\left(\lambda_{1}\right)=0, \quad i=2, \ldots, n \tag{55}
\end{equation*}
$$

By Equation (37), we have $\left(\lambda_{1}-\alpha_{2}\right) \alpha=-e_{1}\left(\alpha_{2}\right)$ and $\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right) \beta=$ $-e_{1}\left(\lambda_{1}+(n-2) \alpha_{2}\right)$. Differentiating these equations in direction of e_{n} and by Equations (17) and (55), and constancy of s_{1} we get
(56) $\quad-e_{n}\left(\alpha_{2}\right) \alpha+\left(\lambda_{1}-\alpha_{2}\right) e_{n}(\alpha)=-e_{n} e_{1}\left(\alpha_{2}\right)$,
(57) $\quad \beta(n-2) e_{n}\left(\alpha_{2}\right)+\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right) e_{n}(\beta)=-(n-2) e_{n} e_{1}\left(\alpha_{2}\right)$.

So by eliminating $e_{n} e_{1}\left(\alpha_{2}\right)$ from Equations (56) and (57) we get

$$
\begin{align*}
& (n-2)\left(-e_{n}\left(\alpha_{2}\right) \alpha+\left(\lambda_{1}-\alpha_{2}\right) e_{n}(\alpha)\right) \tag{58}\\
= & (n-2) \beta e_{n}\left(\alpha_{2}\right)+\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right) e_{n}(\beta) .
\end{align*}
$$

By substituting $e_{n}(\alpha)$ of Equation (42) in Equation (58) we get

$$
\begin{equation*}
e_{n}(\beta)=\frac{(n-2)(\alpha+\beta)\left(n \alpha_{2}-s_{1}\right) e_{n}\left(\alpha_{2}\right)}{\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right)\left(s_{1}-\lambda_{1}-(n-1) \alpha_{2}\right)} . \tag{59}
\end{equation*}
$$

By Equation (24),

$$
\begin{equation*}
e_{n}\left(\beta_{n}\right)=-(n-2) e_{n}\left(\alpha_{2}\right) . \tag{60}
\end{equation*}
$$

Thus by Equations (45) and (60), we have

$$
\begin{equation*}
e_{n}\left(\mu_{k, 1}\right)=(k-1)\left(s_{1}-\lambda_{1}-(n-1) \alpha_{2}\right)\binom{n-2}{k-1} \alpha_{2}^{k-2} e_{n}\left(\alpha_{2}\right) . \tag{61}
\end{equation*}
$$

Differentiating of Equation (53) in direction of e_{n} and use of Equation (54) we get

$$
\begin{align*}
& e_{n}\left(\mu_{k, 1}\right)\left(e_{1} e_{1}\left(s_{k+1}\right)+\alpha e_{1}\left(s_{k+1}\right)\right)+\mu_{k, 1} e_{n}(\alpha) e_{1}\left(s_{k+1}\right) \tag{62}\\
& +e_{1}\left(s_{k+1}\right)\left(e_{n}\left(\mu_{k, n}\right)(\alpha+\beta)+\mu_{k, n}\left(e_{n}(\beta)+e_{n}(\alpha)\right)\right) \\
= & -(k+2) s_{k+1} e_{n}\left(s_{k+2}\right) .
\end{align*}
$$

Differentiating of Equation (47) in direction of e_{n} we get

$$
\begin{equation*}
e_{n}\left(\mu_{k, n}\right)=\left((n-k-1) \alpha_{2}+(k-1) \lambda_{1}\right)\binom{n-2}{k-1} \alpha_{2}^{k-2} e_{n}\left(\alpha_{2}\right) . \tag{63}
\end{equation*}
$$

By Equations (17) and (46) we get

$$
\begin{equation*}
e_{i}\left(\mu_{k, 1}\right)=0, \quad i=2, \ldots, n . \tag{64}
\end{equation*}
$$

Now for showing that $e_{n}\left(\alpha_{2}\right)=0$ we consider two cases:
Case 1: If $k=1$, then by Equations (62) and (64) we have
(65) $e_{1}\left(s_{2}\right)\left(e_{n}\left(\mu_{1, n}\right)(\beta+\alpha)+\mu_{1, n}\left(e_{n}(\beta)+e_{n}(\alpha)\right)+\mu_{1,1} e_{n}(\alpha)\right)=-3 s_{2} e_{n}\left(s_{3}\right)$.

By Equation (63) we have

$$
\begin{equation*}
e_{n}\left(\mu_{1, n}\right)=(n-2) e_{n}\left(\alpha_{2}\right) \tag{66}
\end{equation*}
$$

By Equation (6) we have

$$
\begin{align*}
& \mu_{1,1}=s_{1}-\lambda_{1} \tag{67}\\
& \mu_{1, n}=\lambda_{1}+(n-2) \alpha_{2} \tag{68}
\end{align*}
$$

Now by Equations (42), (59), (65), (66), (67) and (68) we get

$$
\begin{align*}
& e_{1}\left(s_{2}\right) e_{n}\left(\alpha_{2}\right)\left[(\beta + \alpha) \left[(n-2)+\left(\lambda_{1}+(n-2) \alpha_{2}\right)\right.\right. \tag{69}\\
& \left.\times\left[\frac{(n-2)\left(n \alpha_{2}-s_{1}\right)}{\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right)\left(s_{1}-\lambda_{1}-(n-1) \alpha_{2}\right)}-\frac{1}{s_{1}-\lambda_{1}-(n-1) \alpha_{2}}\right]\right] \\
& \left.+\frac{s_{1}-\lambda_{1}}{s_{1}-\lambda_{1}-(n-1) \alpha_{2}}\right]=-3 s_{2} e_{n}\left(s_{3}\right)
\end{align*}
$$

We have by Equation (49),

$$
\begin{equation*}
s_{3}=\binom{n-2}{2} \lambda_{1} \alpha_{2}^{2}+\binom{n-2}{3} \alpha_{2}^{3}+\binom{n-2}{2} \alpha_{2}^{2} \beta_{n}+(n-2) \lambda_{1} \alpha_{2} \beta_{n} \tag{70}
\end{equation*}
$$

Differentiating of Equation (70) in direction of e_{n} and using Equation (60) we get

$$
\begin{align*}
e_{n}\left(s_{3}\right)= & e_{n}\left(\alpha_{2}\right)\left[\begin{array}{c}
n-2 \\
2
\end{array}\right) \lambda_{1} \alpha_{2}+3\binom{n-2}{3} \alpha_{2}^{2} \tag{71}\\
& +2\binom{n-2}{2}\left(s_{1}-\lambda_{1}-(n-2) \alpha_{2}\right) \alpha_{2}-(n-2)\binom{n-2}{2} \alpha_{2}^{2} \\
& \left.+(n-2)\left(s_{1}-\lambda_{1}-(n-2) \alpha_{2}\right) \lambda_{1}-(n-2)^{2} \lambda_{1} \alpha_{2}\right]
\end{align*}
$$

Let $e_{n}\left(\alpha_{2}\right) \neq 0$. So using Equation (71) and dividing Equation (69) by $e_{n}\left(\alpha_{2}\right)$, we have

$$
\begin{align*}
& e_{1}\left(s_{2}\right)(\beta+\alpha)\left[(n-2)+\left(\lambda_{1}+(n-2) \alpha_{2}\right)\left[\frac{(n-2)\left(n \alpha_{2}-s_{1}\right)}{\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right)\left(s_{1}-\lambda_{1}-(n-1) \alpha_{2}\right)}\right.\right. \tag{72}\\
& \left.\left.-\frac{1}{s_{1}-\lambda_{1}-(n-1) \alpha_{2}}\right]+\frac{s_{1}-\lambda_{1}}{s_{1}-\lambda_{1}-(n-1) \alpha_{2}}\right] \\
= & -3 s_{2}\left[2\binom{n-2}{2} \lambda_{1} \alpha_{2}+3\binom{n-2}{3} \alpha_{2}^{2}+2\binom{n-2}{2}\left(s_{1}-\lambda_{1}-(n-2) \alpha_{2}\right) \alpha_{2}\right. \\
& \left.-(n-2)\binom{n-2}{2} \alpha_{2}^{2}+(n-2)\left(s_{1}-\lambda_{1}-(n-2) \alpha_{2}\right) \lambda_{1}-(n-2)^{2} \lambda_{1} \alpha_{2}\right] .
\end{align*}
$$

Then differentiating of Equation (72) in direction of e_{n} and using Equations (42) and (59) we get
(73)

$$
\begin{aligned}
& e_{1}\left(s_{2}\right)\left[\frac { (\beta + \alpha) e _ { n } (\alpha _ { 2 }) } { s _ { 1 } - \lambda _ { 1 } - (n - 1) \alpha _ { 2 } } (- 1 + \frac { (n - 2) (n \alpha _ { 2 } - s _ { 1 }) } { 2 \lambda _ { 1 } + (n - 2) \alpha _ { 2 } - s _ { 1 } }) \left[n-2+\left(\lambda_{1}+(n-2) \alpha_{2}\right)\right.\right. \\
& \left.\quad \times\left[\frac{1}{\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right)\left(s_{1}-\lambda_{1}-(n-1) \alpha_{2}\right)}-\frac{(n-2)\left(n \alpha_{2}-s_{1}-\lambda_{1}-(n-1) \alpha_{2}\right.}{s_{1}}\right]+\frac{s_{1}-\lambda_{1}}{s_{1}-\lambda_{1}-(n-1) \alpha_{2}}\right] \\
& \quad+(\beta+\alpha)\left[(n-2) e_{n}\left(\alpha_{2}\right)\left[\frac{(n-2)\left(n \alpha_{2}-s_{1}\right)}{\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right)\left(s_{1}-\lambda_{1}-(n-1) \alpha_{2}\right)}-\frac{1}{s_{1}-\lambda_{1}-(n-1) \alpha_{2}}\right]\right. \\
& \quad+\left(\lambda_{1}+(n-2) \alpha_{2}\right)\left[\left[n(n-2) e_{n}\left(\alpha_{2}\right)\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right)\left(s_{1}-\lambda_{1}-(n-1) \alpha_{2}\right)\right.\right. \\
& \quad-(n-2)\left(n \alpha_{2}-s_{1}\right)\left[(n-2) e_{n}\left(\alpha_{2}\right)\left(s_{1}-\lambda_{1}-(n-1) \alpha_{2}\right)\right. \\
& \left.\left.\quad-(n-1)\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right) e_{n}\left(\alpha_{2}\right)\right]\right] \\
& \left.\quad \times \frac{1}{\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right)^{2}\left(s_{1}-\lambda_{1}-(n-1) \alpha_{2}\right)^{2}}-\frac{(n-1) e_{n}\left(\alpha_{2}\right)}{\left(s_{1}-\lambda_{1}-(n-1) \alpha_{2}\right)^{2}}\right] \\
& \left.\left.\quad+\frac{(n-1)\left(s_{1}-\lambda_{1}\right) e_{n}\left(\alpha_{2}\right)}{\left(s_{1}-\lambda_{1}-(n-1) \alpha_{2}\right)^{2}}\right]\right] \\
& = \\
& -3 s_{2} e_{n}\left(\alpha_{2}\right)\left[2\binom{n-2}{2} s_{1}-2(n-2)^{2} \lambda_{1}+\alpha_{2}\left[6\binom{n-2}{3}-6(n-2)\binom{n-2}{2}\right]\right] .
\end{aligned}
$$

Let's divide Equation (73) by $e_{n}\left(\alpha_{2}\right)$ and then substitute $e_{1}\left(s_{2}\right)$ of Equation (72). So coefficients $\beta+\alpha$ and s_{2} are eliminated. Thus we get that α_{2} should satisfy of a polynomial of degree 7 which its coefficients of functions of λ_{1}. So α_{2} is a function of λ_{1}. Then by Equation (17), we get $e_{n}\left(\alpha_{2}\right)=0$ which is contradiction.
Case 2: If $k=2$, then by Equations (61), (64) and $\beta_{n}-\alpha_{2}=s_{1}-\lambda_{1}-(n-1) \alpha_{2} \neq$ 0 we have $e_{n}\left(\alpha_{2}\right)=0$.

Therefore by Case 1 and Case 2, we have

$$
\begin{equation*}
e_{2}\left(\alpha_{2}\right)=\cdots=e_{n}\left(\alpha_{2}\right)=0 \tag{74}
\end{equation*}
$$

Now by Equations (37) and (44),

$$
\begin{equation*}
\alpha \beta=c+\left(s_{1}-\lambda_{1}-(n-2) \alpha_{2}\right) \alpha_{2} . \tag{75}
\end{equation*}
$$

By Equation (37) we have

$$
\begin{equation*}
e_{1}\left(\lambda_{1}\right)=-\beta\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right)-(n-2) \alpha\left(\alpha_{2}-\lambda_{1}\right) \tag{76}
\end{equation*}
$$

Differentiating Equation (76) in direction e_{1} and by use of Equations (16), (37), (39), (41) and (75) we get

$$
\begin{align*}
e_{1} e_{1}\left(\lambda_{1}\right)= & \left(c+\lambda_{1}\left(s_{1}-\lambda_{1}-(n-2) \alpha_{2}\right)\right)\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right) \tag{77}\\
& +\left(-\beta+\frac{(n-2) \alpha}{2}\right) \frac{e_{1}\left(s_{k+1}\right)}{\sum_{l=1}^{k+1}(-1)^{l} s_{k+1-l} l \lambda_{1}^{l-1}} \\
& -(n-2)\left(c+\left(s_{1}-\lambda_{1}-(n-2) \alpha_{2}\right) \alpha_{2}\right)\left(\alpha_{2}-\lambda_{1}\right) \\
& -(n-2)\left(c+\lambda_{1} \alpha_{2}\right)\left(\alpha_{2}-\lambda_{1}\right)
\end{align*}
$$

$$
+\beta^{2}\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right)-2(n-2) \alpha^{2}\left(\alpha_{2}-\lambda_{1}\right) .
$$

We rewrite the last term of Equation (77). We have by Equations (16), (37), (75) and (76),

$$
\begin{align*}
& \beta^{2}\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right)-2(n-2) \alpha^{2}\left(\alpha_{2}-\lambda_{1}\right) \tag{78}\\
= & -\beta\left(e_{1}\left(\lambda_{1}\right)+(n-2) e_{1}\left(\alpha_{2}\right)-2(n-2) \alpha e_{1}\left(\alpha_{2}\right)\right. \\
= & (2 \alpha-\beta) \frac{e_{1}\left(s_{k+1}\right)}{2 \sum_{l=1}^{k+1}(-1)^{l} s_{k+1-l} l \lambda_{1}^{l-1}} \\
& -(n-2)\left(c+\alpha_{2}\left(s_{1}-\lambda_{1}-(n-2) \alpha_{2}\right)\right)\left(\alpha_{2}-\lambda_{1}\right) \\
& +2\left(c+\alpha_{2}\left(s_{1}-\lambda_{1}-(n-2) \alpha_{2}\right)\right)\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right) .
\end{align*}
$$

So substituting Equation (78) in equation (77), we get

$$
\begin{align*}
e_{1} e_{1}\left(\lambda_{1}\right)= & (n \alpha-3 \beta) \frac{e_{1}\left(s_{k+1}\right)}{2 \sum_{l=1}^{k+1}(-1)^{l} s_{k+1-l} l \lambda_{1}^{l-1}} \tag{79}\\
& +\left(c+\lambda_{1}\left(s_{1}-\lambda_{1}-(n-2) \alpha_{2}\right)\right)\left(n \lambda_{1}-s_{1}\right) \\
& -(n-2)\left(c+\lambda_{1} \alpha_{2}\right)\left(\alpha_{2}-\lambda_{1}\right) .
\end{align*}
$$

Differentiating of Equation (16) in direction e_{1} and use of Equations (76) and (79) we obtain
(80) $e_{1} e_{1}\left(s_{k+1}\right)=2 e_{1} e_{1}\left(\lambda_{1}\right) \sum_{l=1}^{k+1}(-1)^{l} s_{k+1-l} l \lambda_{1}^{l-1}$

$$
\begin{aligned}
& +2\left(e_{1}\left(\lambda_{1}\right)\right)^{2} \sum_{l=2}^{k+1}(-1)^{l} s_{k+1-l} l(l-1) \lambda_{1}^{l-2} \\
= & 2 e_{1} e_{1}\left(\lambda_{1}\right) \sum_{l=1}^{k+1}(-1)^{l} s_{k+1-l} l \lambda_{1}^{l-1} \\
& \quad+\left(-\beta\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right)-(n-2) \alpha\left(\alpha_{2}-\lambda_{1}\right)\right)
\end{aligned}
$$

$$
\times\left(\frac{e_{1}\left(s_{k+1}\right)}{\sum_{l=1}^{k+1}(-1)^{l} s_{k+1-l} l \lambda_{1}^{l-1}}\right) \sum_{l=2}^{k+1}(-1)^{l} s_{k+1-l} l(l-1) \lambda_{1}^{l-2}
$$

$$
=\frac{e_{1}\left(s_{k+1}\right)}{\sum_{l=1}^{k+1}(-1)^{l} s_{k+1-l} l \lambda_{1}^{l-1}}\left((n \alpha-3 \beta) \sum_{l=1}^{k+1}(-1)^{l} s_{k+1-l} l \lambda_{1}^{l-1}\right.
$$

$$
+\left(-\beta\left(2 \lambda_{1}+(n-2) \alpha_{2}-s_{1}\right)-(n-2) \alpha\left(\alpha_{2}-\lambda_{1}\right)\right)
$$

$$
\left.\times \sum_{l=2}^{k+1}(-1)^{l} s_{k+1-l} l(l-1) \lambda_{1}^{l-2}\right)
$$

$$
+2\left(\left(c+\lambda_{1}\left(s_{1}-\lambda_{1}-(n-2) \alpha_{2}\right)\right)\left(n \lambda_{1}-s_{1}\right)\right.
$$

$$
\left.-(n-2)\left(c+\lambda_{1} \alpha_{2}\right)\left(\alpha_{2}-\lambda_{1}\right)\right) \sum_{l=1}^{k+1}(-1)^{l} s_{k+1-l} l \lambda_{1}^{l-1} .
$$

Let $F_{i}=F_{i}\left(\lambda_{1}^{\max _{1}} \alpha_{2}^{\min _{2}}, \lambda_{1}^{\min _{1}} \alpha_{2}^{\max _{2}}\right.$)'s be polynomials in term of λ_{1} and α_{2} of degree $\max _{1}+\min _{2}=\min _{1}+\max _{2}$ where $\max _{j}$ and $\min _{j}$ show the maximum and minimum power of its base. So by use of this notation and by Equation (80) we get

$$
\begin{align*}
& e_{1} e_{1}\left(s_{k+1}\right) \tag{81}\\
= & \frac{e_{1}\left(s_{k+1}\right)}{F_{1}\left(\lambda_{1}^{k}\right)}\left[(n \alpha-3 \beta) F_{1}\left(\lambda_{1}^{k}\right)\right. \\
& \left.+\left(-\beta F_{2}\left(\lambda_{1}, \alpha_{2}\right)-(n-2) \alpha F_{3}\left(\lambda_{1}, \alpha_{2}\right)\right) F_{4}\left(\lambda_{1}^{k-1}\right)\right] \\
& +\left[2 F_{5}\left(\lambda_{1}^{3}, \lambda_{1}^{2} \alpha_{2}\right)-2(n-2) F_{6}\left(\lambda_{1}^{2} \alpha_{2}, \lambda_{1} \alpha_{2}^{2}\right)\right] \\
= & \frac{e_{1}\left(s_{k+1}\right)}{F_{1}\left(\lambda_{1}^{k}\right)}\left[\alpha F_{7}\left(\lambda_{1}^{k}, \lambda_{1}^{k-1} \alpha_{2}\right)+\beta F_{8}\left(\lambda_{1}^{k}, \lambda_{1}^{k-1} \alpha_{2}\right)\right]+F_{9}\left(\lambda_{1}^{3}, \lambda_{1} \alpha_{2}^{2}\right) .
\end{align*}
$$

Now by Equations (46), (48), (49), (53) and (81) we have

$$
\begin{aligned}
& \quad F_{10}\left(\lambda_{1}^{k}\right)\left[\frac{e_{1}\left(s_{k+1}\right)}{F_{1}\left(\lambda_{1}^{k}\right)}\left[\alpha F_{7}\left(\lambda_{1}^{k}, \lambda_{1}^{k-1} \alpha_{2}\right)+\beta F_{8}\left(\lambda_{1}^{k}, \lambda_{1}^{k-1} \alpha_{2}\right)\right]\right. \\
& \left.\quad+F_{9}\left(\lambda_{1}^{3}, \lambda_{1} \alpha_{2}^{2}\right)+\alpha e_{1}\left(s_{k+1}\right)\right] \\
& \quad+e_{1}\left(s_{k+1}\right)\left[F_{11}\left(\lambda_{1}^{k}, \alpha_{2}^{k}\right)(\alpha+\beta)-\alpha(n-k) s_{k}\right] \\
& = \\
& F_{12}\left(\lambda_{1}^{2} \alpha_{2}^{k-1}, \alpha_{2}^{k+1}\right)\left[F_{13}\left(\lambda_{1}^{2} \alpha_{2}^{k-1}, \alpha_{2}^{k+1}\right)+F_{14}\left(\lambda_{1}^{2} \alpha_{2}^{k}, \alpha_{2}^{k+2}\right)\right] .
\end{aligned}
$$

Therefore

$$
\begin{align*}
& e_{1}\left(s_{k+1}\right)\left[\alpha F_{15}\left(\lambda_{1}^{2 k}, \lambda_{1}^{k} \alpha_{2}^{k}\right)+\beta F_{16}\left(\lambda_{1}^{2 k}, \lambda_{1}^{k} \alpha_{2}^{k}\right)\right] \\
= & F_{17}\left(\lambda_{1}^{k+4} \alpha_{2}^{2 k-1}, \lambda_{1}^{k} \alpha_{2}^{2 k+3}\right)+F_{18}\left(\lambda_{1}^{2 k+3}, \lambda_{1}^{2 k+1} \alpha_{2}^{2}\right) . \tag{82}
\end{align*}
$$

Differentiating of Equation (82) in direction e_{1},

$$
\begin{align*}
& \quad e_{1} e_{1}\left(s_{k+1}\right)\left[\alpha F_{15}+\beta F_{16}\right] \tag{83}\\
& \quad+e_{1}\left(s_{k+1}\right)\left[e_{1}(\alpha) F_{15}+e_{1}(\beta) F_{16}+\alpha\left[e_{1}\left(\lambda_{1}\right) \frac{\partial F_{15}}{\partial \lambda_{1}}+e_{1}\left(\alpha_{2}\right) \frac{\partial F_{15}}{\partial \alpha_{2}}\right]\right. \\
& \left.\quad+\beta\left[e_{1}\left(\lambda_{1}\right) \frac{\partial F_{16}}{\partial \lambda_{1}}+e_{1}\left(\alpha_{2}\right) \frac{\partial F_{16}}{\partial \alpha_{2}}\right]\right] \\
& =e_{1}\left(\lambda_{1}\right) \frac{\partial F_{17}}{\partial \lambda_{1}}+e_{1}\left(\alpha_{2}\right) \frac{\partial F_{17}}{\partial \alpha_{2}}+e_{1}\left(\lambda_{1}\right) \frac{\partial F_{18}}{\partial \lambda_{1}}+e_{1}\left(\alpha_{2}\right) \frac{\partial F_{18}}{\partial \alpha_{2}},
\end{align*}
$$

and by use of Equations $(37),(39),(41),(75),(76)$ and (83) we get

$$
\begin{align*}
& e_{1} e_{1}\left(s_{k+1}\right)\left[\alpha F_{15}\left(\lambda_{1}^{2 k}, \lambda_{1}^{k} \alpha_{2}^{k}\right)+\beta F_{16}\left(\lambda_{1}^{2 k}, \lambda_{1}^{k} \alpha_{2}^{k}\right)\right] \tag{84}\\
& +e_{1}\left(s_{k+1}\right)\left[\alpha^{2} F_{19}\left(\lambda_{1}^{2 k}, \lambda_{1}^{k-1} \alpha_{2}^{k+1}\right)+\beta^{2} F_{20}\left(\lambda_{1}^{2 k}, \lambda_{1}^{k-1} \alpha_{2}^{k+1}\right)\right. \\
& \left.+F_{21}\left(\lambda_{1}^{2 k+2}, \lambda_{1}^{k-1} \alpha_{2}^{k+3}\right)\right]
\end{align*}
$$

$$
\begin{aligned}
= & \alpha\left[F_{22}\left(\lambda_{1}^{k+5} \alpha_{2}^{2 k-2}, \lambda_{1}^{k-1} \alpha_{2}^{2 k+4}\right)+F_{23}\left(\lambda_{1}^{2 k+3}, \lambda_{1}^{2 k} \alpha_{2}^{3}\right)\right] \\
& +\beta\left[F_{24}\left(\lambda_{1}^{k+4} \alpha_{2}^{2 k-1}, \lambda_{1}^{k-1} \alpha_{2}^{2 k+4}\right)+F_{25}\left(\lambda_{1}^{2 k+3}, \lambda_{1}^{2 k} \alpha_{2}^{3}\right)\right]
\end{aligned}
$$

By substituting Equation (81) in Equation (84) and multiplying in $F_{1}\left(\lambda_{1}^{k}\right)$ we get

$$
\begin{align*}
& e_{1}\left(s_{k+1}\right)\left[\alpha^{2} F_{26}\left(\lambda_{1}^{3 k}, \lambda_{1}^{2 k-1} \alpha_{2}^{k+1}\right)+\beta^{2} F_{27}\left(\lambda_{1}^{3 k}, \lambda_{1}^{2 k-1} \alpha_{2}^{k+1}\right)\right. \tag{85}\\
& \left.+F_{28}\left(\lambda_{1}^{3 k+2}, \lambda_{1}^{2 k-1} \alpha_{2}^{k+3}\right)\right] \\
= & \alpha\left[F_{29}\left(\lambda_{1}^{2 k+5} \alpha_{2}^{2 k-2}, \lambda_{1}^{2 k-1} \alpha_{2}^{2 k+4}\right)+F_{30}\left(\lambda_{1}^{3 k+3}, \lambda_{1}^{2 k+1} \alpha_{2}^{k+2}\right)\right] \\
& +\beta\left[F_{31}\left(\lambda_{1}^{2 k+4} \alpha_{2}^{2 k-1}, \lambda_{1}^{2 k-1} \alpha_{2}^{2 k+4}\right)+F_{32}\left(\lambda_{1}^{3 k+3}, \lambda_{1}^{2 k+1} \alpha_{2}^{k+2}\right)\right] .
\end{align*}
$$

Now we compute two terms

$$
e_{1}\left(s_{k+1}\right) \alpha^{2} F_{26}\left(\lambda_{1}^{3 k}, \lambda_{1}^{2 k-1} \alpha_{2}^{k+1}\right) \text { and } e_{1}\left(s_{k+1}\right) \beta^{2} F_{27}\left(\lambda_{1}^{3 k}, \lambda_{1}^{2 k-1} \alpha_{2}^{k+1}\right)
$$

of Equation (85). By Equation (82) we get

$$
\begin{aligned}
& \text { (86) } e_{1}\left(s_{k+1}\right) \alpha^{2} F_{26}\left(\lambda_{1}^{3 k}, \lambda_{1}^{2 k-1} \alpha_{2}^{k+1}\right) \\
& =\frac{1}{F_{15}\left(\lambda_{1}^{2 k}, \lambda_{1}^{k} \alpha_{2}^{k}\right)}\left[\alpha\left[F_{33}\left(\lambda_{1}^{4 k+4} \alpha_{2}^{2 k-1}, \lambda_{1}^{3 k-1} \alpha_{2}^{3 k+4}\right)+F_{34}\left(\lambda_{1}^{5 k+3}, \lambda_{1}^{4 k} \alpha_{2}^{k+3}\right)\right]\right. \\
& \\
& \left.+e_{1}\left(s_{k+1}\right) F_{35}\left(\lambda_{1}^{5 k+1} \alpha_{2}, \lambda_{1}^{3 k-1} \alpha_{2}^{2 k+3}\right)\right]
\end{aligned}
$$

(87) $e_{1}\left(s_{k+1}\right) \beta^{2} F_{27}\left(\lambda_{1}^{3 k}, \lambda_{1}^{2 k-1} \alpha_{2}^{k+1}\right)$

$$
\begin{array}{r}
=\frac{1}{F_{16}\left(\lambda_{1}^{2 k}, \lambda_{1}^{k} \alpha_{2}^{k}\right)}\left[\beta\left[F_{36}\left(\lambda_{1}^{4 k+4} \alpha_{2}^{2 k-1}, \lambda_{1}^{3 k-1} \alpha_{2}^{3 k+4}\right)+F_{37}\left(\lambda_{1}^{5 k+3}, \lambda_{1}^{4 k} \alpha_{2}^{k+3}\right)\right]\right. \\
\left.+e_{1}\left(s_{k+1}\right) F_{38}\left(\lambda_{1}^{5 k+1} \alpha_{2}, \lambda_{1}^{3 k-1} \alpha_{2}^{2 k+3}\right)\right]
\end{array}
$$

Substituting Equations (86) and (87) in Equation (85) we get

$$
\begin{align*}
& e_{1}\left(s_{k+1}\right) F_{39}\left(\lambda_{1}^{7 k+2}, \lambda_{1}^{4 k-1} \alpha_{2}^{3 k+3}\right) \tag{88}\\
= & \alpha\left[F_{40}\left(\lambda_{1}^{6 k+5} \alpha_{2}^{2 k-2}, \lambda_{1}^{4 k-1} \alpha_{2}^{4 k+4}\right)+F_{41}\left(\lambda_{1}^{7 k+3}, \lambda_{1}^{4 k+1} \alpha_{2}^{3 k+2}\right)\right] \\
& +\beta\left[F_{42}\left(\lambda_{1}^{6 k+4} \alpha_{2}^{2 k-1}, \lambda_{1}^{4 k-1} \alpha_{2}^{4 k+4}\right)+F_{43}\left(\lambda_{1}^{7 k+3}, \lambda_{1}^{4 k+1} \alpha_{2}^{3 k+2}\right)\right] .
\end{align*}
$$

By Equations (16) and (76) we have

$$
\begin{equation*}
e_{1}\left(s_{k+1}\right)=\alpha F_{44}\left(\lambda_{1}^{k+1}, \lambda_{1}^{k} \alpha_{2}\right)+\beta F_{45}\left(\lambda_{1}^{k+1}, \lambda_{1}^{k} \alpha_{2}\right) . \tag{89}
\end{equation*}
$$

So by Equations (88) and (89) we have

$$
\begin{equation*}
\alpha F_{46}\left(\lambda_{1}^{8 k+3}, \lambda_{1}^{4 k-1} \alpha_{2}^{4 k+4}\right)+\beta F_{47}\left(\lambda_{1}^{8 k+3}, \lambda_{1}^{4 k-1} \alpha_{2}^{4 k+4}\right)=0 \tag{90}
\end{equation*}
$$

Now by Equations (75), (82) and (89),
(91)

$$
\alpha^{2} F_{48}\left(\lambda_{1}^{3 k+1}, \lambda_{1}^{2 k} \alpha_{2}^{k+1}\right)+\beta^{2} F_{49}\left(\lambda_{1}^{3 k+1}, \lambda_{1}^{2 k} \alpha_{2}^{k+1}\right)=F_{50}\left(\lambda_{1}^{3 k+2} \alpha_{2}, \lambda_{1}^{k} \alpha_{2}^{2 k+3}\right) .
$$

By multiplying Equation (90) in α and β and by use of Equation (75) we get

$$
\begin{align*}
& \alpha^{2}=\frac{F_{51}\left(\lambda_{1}^{8 k+4} \alpha_{2}, \lambda_{1}^{4 k-1} \alpha_{2}^{4 k+6}\right)}{F_{46}\left(\lambda_{1}^{8 k+3}, \lambda_{1}^{4 k-1} \alpha_{2}^{4 k+4}\right)}, \tag{92}\\
& \beta^{2}=\frac{F_{52}\left(\lambda_{1}^{8 k+4} \alpha_{2}, \lambda_{1}^{4 k-1} \alpha_{2}^{4 k+6}\right)}{F_{47}\left(\lambda_{1}^{8 k+3}, \lambda_{1}^{4 k-1} \alpha_{2}^{4 k+4}\right)} \tag{93}
\end{align*}
$$

Now by substituting Equations (92) and (93) in Equation (91) we get

$$
\begin{equation*}
F_{53}\left(\lambda_{1}^{19 k+8} \alpha_{2}, \lambda_{1}^{9 k-2} \alpha_{2}^{10 k+11}\right)=0 . \tag{94}
\end{equation*}
$$

In the following we show that $e_{1}\left(\alpha_{2}\right) \neq 0$. Let $e_{1}\left(\alpha_{2}\right)=0$ then by Equation (74), α_{2} is constant and by Equation (37), $\alpha=0$. Therefore by Equation (39), $c+\lambda_{1} \alpha_{2}=0$ and by differentiating we get $e_{1}\left(\lambda_{1}\right) \alpha_{2}=0$ and so by Equation (17), $\alpha_{2}=0$. If $k=2$, then by hypothesis s_{1} and s_{2} is constant. Since $\alpha_{2}=0$, by Equations (4) and (21), $s_{1}=\lambda_{1}+\beta_{n}, s_{2}=\lambda_{1} \beta_{n}$. Then differentiating in direction of e_{1} we get $e_{1}\left(\lambda_{1}\right)+e_{1}\left(\beta_{n}\right)=0$ and $e_{1}\left(\lambda_{1}\right) \beta_{n}+\lambda_{1} e_{1}\left(\beta_{n}\right)=0$, so $e_{1}\left(\lambda_{1}\right)\left(\beta_{n}-\lambda_{1}\right)=0$. Therefore $\beta_{n}=\lambda_{1}$ which is a contradiction. If $k=1$, we have s_{1} is constant. Since $\alpha=\alpha_{2}=0$, by Equation (90), $\beta F_{47}\left(\lambda_{1}^{11}\right)=0$. If $\beta \neq 0$, then $F_{47}\left(\lambda_{1}^{11}\right)=0$, so λ_{1} is constant which contradicts Equation (17). Thus $\beta=0$ and by Equation (76), $e_{1}\left(\lambda_{1}\right)=0$ which contradicts Equation (17). Finally by Equation (74) we have

$$
\begin{equation*}
e_{1}\left(\alpha_{2}\right) \neq 0 \quad \text { and } \quad e_{2}\left(\alpha_{2}\right)=\cdots=e_{n}\left(\alpha_{2}\right)=0 \tag{95}
\end{equation*}
$$

Now assume that $\gamma(t)$ be integral curve of e_{1} that $\gamma\left(t_{0}\right)=p$ which $p \in M$ and $t_{0} \in I$. By Equations (17) and (95), we have in some neighborhood of t_{0}, $\lambda_{1}=\lambda_{1}(t)$ and $\alpha_{2}=\alpha_{2}(t)$, and so $t=t\left(\alpha_{2}\right)$ and $\lambda_{1}=\lambda_{1}\left(\alpha_{2}\right)$. Therefore by Equations (37), (76) and (90) we have

$$
\begin{equation*}
\frac{\mathrm{d} \lambda_{1}}{\mathrm{~d} \alpha_{2}}=\frac{\mathrm{d} \lambda_{1}}{\mathrm{~d} t} \frac{\mathrm{~d} t}{\mathrm{~d} \alpha_{2}}=\frac{e_{1}\left(\lambda_{1}\right)}{e_{1}\left(\alpha_{2}\right)}=\frac{F_{54}\left(\lambda_{1}^{8 k+4}, \lambda_{1}^{4 k-1} \alpha_{2}^{4 k+5}\right)}{F_{55}\left(\lambda_{1}^{8 k+4}, \lambda_{1}^{4 k-1} \alpha_{2}^{4 k+5}\right)} . \tag{96}
\end{equation*}
$$

Now differentiating of Equation (94) relative to α_{2} and using Equation (96) we get

$$
\begin{equation*}
F_{56}\left(\lambda_{1}^{27 k+12}, \lambda_{1}^{13 k-4} \alpha_{2}^{14 k+16}\right)=0 \tag{97}
\end{equation*}
$$

Now rewriting polynomials (94) and (97) in term of α_{2} we get

$$
\begin{align*}
& \sum_{i=0}^{10 k+11} f_{i}\left(\lambda_{1}\right) \alpha_{2}^{i}=0 \tag{98}\\
& \sum_{i=0}^{14 k+16} g_{i}\left(\lambda_{1}\right) \alpha_{2}^{i}=0
\end{align*}
$$

where $f_{i}\left(\lambda_{1}\right)$ and $g_{i}\left(\lambda_{1}\right)$ are polynomials in term of λ_{1}. By multiplying equation (98) in $g_{14 k+16}\left(\lambda_{1}\right) \alpha_{2}^{4 k+5}$ and Equation (99) in $f_{10 k+11}\left(\lambda_{1}\right)$ and subtracting them we get a polynomial in term of α_{2} of degree $14 k+15$. Then by this new polynomial and Equation (98), similarly we get a polynomial of degree $14 k+14$.

By continuing this method, finally we omit α_{2} and we earn a polynomial in term of λ_{1} with constant coefficients. So λ_{1} should be constant which is a contradiction. Therefore s_{k+1} is constant.
Proof of Theorem 1.2. Let k_{1}, k_{2}, k_{3} be principal curvatures of M, respectively with multiplicities $m_{1}, m_{2}, m_{3}, n=m_{1}+m_{2}+m_{3}$. Suppose that $\left\{e_{i}\right\}_{i=1}^{n}$ is a local orthonormal frame field on M which are the eigenvectors of the shape operator S of M with respect to the globally chosen unit normal vector field N and $S e_{i}=k_{1} e_{i} i \leq m_{1}, S e_{i}=k_{2} e_{i} m_{1}<i \leq m_{1}+m_{2}, S e_{i}=k_{3} e_{i} m_{1}+m_{2}<$ $i \leq n$.
Case 1. Let $k=1$. By hypothesis s_{1} is constant and by Lemma 3.1, s_{2} is constant. Let $s_{2}=0$. If multiplicities of principal curvatures are greater than one, equations $S e_{i}=k_{1} e_{i} i \leq m_{1}, S e_{i}=k_{2} e_{i} m_{1}<i \leq m_{1}+m_{2}$ and $S e_{i}=k_{3} e_{i} m_{1}+m_{2}<i \leq n$ together with the Codazzi equation, $\left(\nabla_{e_{i}} S\right) e_{j}=$ $\left(\nabla_{e_{j}} S\right) e_{i}$, imply that

$$
\begin{array}{ll}
\nabla_{e_{i}} k_{1}=0, & i \leq m_{1} \\
\nabla_{e_{i}} k_{2}=0, & m_{1}<i \leq m_{1}+m_{2} \\
\nabla_{e_{i}} k_{3}=0, & m_{1}+m_{2}<i \leq n \tag{102}
\end{array}
$$

Since s_{1} is constant and $s_{2}=0$, by Equation (4) we get that $k_{2}=g_{1}\left(k_{1}\right)$ and $k_{3}=g_{2}\left(k_{1}\right)$ where g_{1} and g_{2} are some smooth functions. So for every i we have

$$
\begin{equation*}
\nabla_{e_{i}} k_{2}=g_{1}^{\prime}\left(k_{1}\right) \nabla_{e_{i}} k_{1} \tag{103}
\end{equation*}
$$

We have

$$
\begin{equation*}
s_{1}=m_{1} k_{1}+m_{2} k_{2}+m_{3} k_{3} . \tag{104}
\end{equation*}
$$

Thus we have by Equations (102) and (103),

$$
\begin{equation*}
\left(m_{1}+m_{2} g_{1}^{\prime}\left(k_{1}\right)\right) \nabla_{e_{i}} k_{1}=0 \quad m_{1}+m_{2}<i \leq n \tag{105}
\end{equation*}
$$

If for some $i, m_{1}+m_{2}<i \leq n, \nabla_{e_{i}} k_{1} \neq 0$, then by Equation (105), $g_{1}^{\prime}\left(k_{1}\right)=$ $-\frac{m_{1}}{m_{2}}$. So $k_{2}=g_{1}\left(k_{1}\right)=-\frac{m_{1}}{m_{2}} k_{1}+C$ where C is a constant. Therefore by Equation (104), k_{3} is constant. Now by equation $s_{2}=0$, we get that k_{1} should satisfy a polynomial. Therefore k_{1} is constant which is a contradiction. Thus for every $i, m_{1}+m_{2}<i \leq n, \nabla_{e_{i}} k_{1}=0$, and together with Equations (100), (101) and (103), we get k_{2} is constant. In a similar way we get k_{3} and so k_{1} is constant. Therefore M is an isoparametric hypersurface. If $s_{2} \neq 0$, By Equation (2), we have

$$
\begin{equation*}
s_{1} s_{2}-3 s_{3}-c(n-1) s_{1}=0 \tag{106}
\end{equation*}
$$

Since s_{1} and s_{2} are constant, Equation (106) implies that s_{3} is constant. Because M has three principal curvatures, we get that all principal curvatures are constant. So M is an isoparametric hypersurface.
Case 2. Let $k=2$. By hypothesis s_{1} and s_{2} is constant and by Lemma 3.1, s_{3} is constant. Because M has three principal curvatures, we get that all principal
curvatures are constant. So M is an isoparametric hypersurface. We know for $c=0,-1$, isoparametric hypersurfaces has at most two principal curvatures, So by Case 1, we get $s_{2}=0$ and at least one of the multiplicities of principal curvatures is one, and by Case 2 , there is not L_{2}-biharmonic hypersurface with three disjoint principal curvatures, and s_{1} and s_{2} is constant. In the rest, we assume that $c=1$. By Theorem 2.1, an isoparametric hypersurface with three constant principal curvature $k_{1}>k_{2}>k_{3}$ in \mathbb{S}^{n+1} have the multiplicities: $m=1,2,4$ and 8 . Therefore we have the following equations:

If $m=1$, then by Equation (4), we have

$$
\begin{equation*}
s_{1}=k_{1}+k_{2}+k_{3}, \quad s_{2}=k_{1} k_{2}+k_{1} k_{3}+k_{2} k_{3}, \quad s_{3}=k_{1} k_{2} k_{3} \tag{107}
\end{equation*}
$$

If $m=2$, then by Equation (4), we have

$$
\begin{align*}
& s_{1}=2\left(k_{1}+k_{2}+k_{3}\right), \tag{108}\\
& s_{2}=4 k_{1} k_{2}+4 k_{1} k_{3}+k_{1}^{2}+k_{2}^{2}+4 k_{2} k_{3}+k_{3}^{2}, \tag{109}\\
& s_{3}=8 k_{1} k_{2} k_{3}+2 k_{1}^{2} k_{2}+2 k_{1} k_{3}^{2}+2 k_{1}^{2} k_{3}+2 k_{2} k_{3}^{2}+2 k_{2}^{2} k_{3}+2 k_{1} k_{2}^{2}, \tag{110}\\
& s_{4}=k_{2}^{2} k_{3}^{2}+4 k_{1} k_{2} k_{3}^{2}+4 k_{1} k_{2}^{2} k_{3}+k_{1}^{2} k_{3}^{2}+4 k_{1}^{2} k_{2} k_{3}+k_{1}^{2} k_{2}^{2} . \tag{111}
\end{align*}
$$

If $m=4$, then by Equation (4), we have

$$
\begin{align*}
s_{1}= & 4\left(k_{1}+k_{2}+k_{3}\right), \tag{112}\\
s_{2}= & 6 k_{3}^{2}+16 k_{2} k_{3}+6 k_{2}^{2}+16 k_{1} k_{3}+16 k_{1} k_{2}+6 k_{1}^{2}, \tag{113}\\
s_{3}= & 4 k_{3}^{3}+24 k_{2} k_{3}^{2}+24 k_{2}^{2} k_{3}+4 k_{2}^{3}+24 k_{1} k_{3}^{2}+64 k_{1} k_{2} k_{3} \tag{114}\\
& +24 k_{1} k_{2}^{2}+24 k_{1}^{2} k_{3}+24 k_{1}^{2} k_{2}+4 k_{1}^{3}, \\
s_{4}= & k_{3}^{4}+16 k_{2} k_{3}^{3}+36 k_{2}^{2} k_{3}^{2}+16 k_{2}^{3} k_{3}+k_{2}^{4}+16 k_{1} k_{3}^{3} \tag{115}\\
& +96 k_{1} k_{2} k_{3}^{2}+96 k_{1} k_{2}^{2} k_{3}+16 k_{1} k_{2}^{3}+36 k_{1}^{2} k_{3}^{2} \\
& +96 k_{1}^{2} k_{2} k_{3}+36 k_{1}^{2} k_{2}^{2}+16 k_{1}^{3} k_{3}+16 k_{1}^{3} k_{2}+k_{1}^{4} .
\end{align*}
$$

If $m=8$, then by Equation (4), we have

$$
\begin{align*}
s_{1}= & 8\left(k_{1}+k_{2}+k_{3}\right), \tag{116}\\
s_{2}= & 28 k_{3}^{2}+64 k_{2} k_{3}+28 k_{2}^{2}+64 k_{1} k_{3}+64 k_{1} k_{2}+28 k_{1}^{2}, \tag{117}\\
s_{3}= & 56 k_{3}^{3}+224 k_{2} k_{3}^{2}+224 k_{2}^{2} k_{3}+56 k_{2}^{3}+224 k_{1} k_{3}^{2}+512 k_{1} k_{2} k_{3} \tag{118}\\
& +224 k_{1} k_{2}^{2}+56 k_{1}^{3}+224 k_{1}^{2} k_{3}+224 k_{1}^{2} k_{2}, \\
s_{4}= & 170 k_{1}^{4}+448 k_{1}^{3} k_{2}+448 k_{1}^{3} k_{3}+784 k_{1}^{2} k_{2}^{2}+1792 k_{1}^{2} k_{2} k_{3} \tag{119}\\
& +784 k_{1}^{2} k_{3}^{2}+1792 k_{1} k_{2}^{2} k_{3}+448 k_{1} k_{2}^{3}+1792 k_{1} k_{2} k_{3}^{2}+448 k_{1} k_{3}^{3} \\
& +170 k_{2}^{4}+448 k_{2}^{3} k_{3}+784 k_{2}^{2} k_{3}^{2}+448 k_{2} k_{3}^{2}+170 k_{3}^{4} .
\end{align*}
$$

Let $k=1$. If $s_{2}=0$ and multiplicities of principal curvatures are greater than one, and or $s_{2} \neq 0$, by Case1, M is an isoparametric hypersurface with three constant principal curvature $k_{1}>k_{2}>k_{3}$.

If $s_{2}=0$ and multiplicities of principal curvatures are greater than one, we have the following:

If $m=2$, by Equations (10) and (109), we get $k_{1} \approx 3.286, k_{2} \approx 0.232, k_{3} \approx$ -1.069 or $k_{1} \approx 1.069, k_{2} \approx-0.232, k_{3} \approx-3.286$.

If $m=4$, by Equations (10) and (113), we get $k_{1} \approx 2.527, k_{2} \approx 0.147, k_{3} \approx$ -1.261 , or $k_{1} \approx 1.261, k_{2} \approx-0.147, k_{3} \approx-2.527$.

If $m=8$, by Equations (10) and (117), we get $k_{1} \approx 2.216, k_{2} \approx 0.1, k_{3} \approx$ -1.39 or $k_{1} \approx 1.39, k_{2} \approx-0.1, k_{3} \approx-2.216$.

If $s_{2} \neq 0$, by Case1, M is an isoparametric hypersurface with three constant principal curvature $k_{1}>k_{2}>k_{3}$ and so the multiplicities: $m=1,2,4$ and 8 . So we have the following:

If $m=1$ by Equations (10), (106) and (107), we get $k_{1}=\sqrt{3}, k_{2}=0$ and $k_{3}=-\sqrt{3}$.

If $m=2$ by Equations (10), (106), (108), (109) and (110), we get either $k_{1}=\sqrt{3}, k_{2}=0, k_{3}=-\sqrt{3}$ or $k_{1} \approx 1.369, k_{2} \approx-0.107, k_{3} \approx-2.261$ or $k_{1} \approx 2.261, k_{2} \approx 0.107, k_{3} \approx-1.369$.

If $m=4$ by Equations (10), (106), (112), (113) and (114), we get $k_{1}=$ $\sqrt{3}, k_{2}=0, k_{3}=-\sqrt{3}$.

If $m=8$ by Equations (10), (106), (116),(117) and(118), we get $k_{1}=$ $\sqrt{3}, k_{2}=0, k_{3}=-\sqrt{3}$.

Let $k=2$. By Case $2, M$ is an isoparametric hypersurface. So the multiplicities of constant principal curvatures $k_{1}>k_{2}>k_{3}$ is $m=1,2,4$ and 8.

If $s_{3}=0$, then we have the following:
If $m=1$, by Equations (10) and (107), we get $k_{1}=\sqrt{3}, k_{2}=0$ and $k_{3}=-\sqrt{3}$.

If $m=2$ by Equations (10) and (110), we get $k_{1}=\sqrt{3}, k_{2}=0, k_{3}=-\sqrt{3}$.
If $m=4$ by Equations (10) and (114), we get $k_{1}=\sqrt{3}, k_{2}=0, k_{3}=-\sqrt{3}$ or $k_{1} \approx 0.993, k_{2} \approx-0.271, k_{3} \approx-3.777$ or $k_{1} \approx 3.777, k_{2} \approx 0.271, k_{3} \approx-0.993$.

If $m=8$ by Equations (10) and (118), we get $k_{1}=\sqrt{3}, k_{2}=0, k_{3}=-\sqrt{3}$ or $k_{1} \approx 1.189, k_{2} \approx-0.177, k_{3} \approx-2.757$ or $k_{1} \approx 2.757, k_{2} \approx 0.177, k_{3} \approx-1.189$.

If $s_{3} \neq 0$, then by Equation (2), we have

$$
\begin{equation*}
s_{1} s_{3}-4 s_{4}-(n-2) s_{2}=0 \tag{120}
\end{equation*}
$$

If $m=1$, by Equations (10), (107) and (120), we get either $k_{1}=1, k_{2}=$ $\sqrt{3}-2, k_{3}=-\sqrt{3}-2$ or $k_{1}=2+\sqrt{3}, k_{2}=2-\sqrt{3}, k_{3}=-1$.

If $m=2$, by Equations (10), (108), (109), (110), (111) and (120), we get that there is not real solution for all k_{1}, k_{2}, k_{3}. So there is not proper L_{2}-biharmonic hypersurface in \mathbb{S}^{7} with three disjoint principal curvatures, and s_{1} and s_{2} is constant.

If $m=4$, by Equations (10), (112), (113), (114), (115) and (120), we get either $k_{1} \approx 1.083, k_{2} \approx-0.225, k_{3} \approx-3.213$ or $k_{1} \approx 3.213, k_{2} \approx 0.225, k_{3} \approx$ -1.083 .

If $m=8$, by Equations (10), (116), (117), (118), (119) and (120), we get that there is not real solution for all k_{1}, k_{2}, k_{3}. So there is not proper L_{2}-biharmonic hypersurface in \mathbb{S}^{25} with three disjoint principal curvatures, and s_{1} and s_{2} is constant. Summarizing all of above and Theorem 2.1, we get the result.

Proof of Theorem 1.3. We have $P_{3}=s_{3} I-S \circ P_{2}$. Since $P_{3}=0$, Equation (1) implies that $3 s_{3} \nabla s_{3}=0$. Thus $\nabla s_{3}^{2}=0$, and so s_{3} is constant. By assumption s_{2} is constant and $s_{3} \neq 0$, and so by Equation (2), s_{1} is constant. Now by Theorem 1.2, we get the result.

References

[1] K. Akutagawa and S. Maeta, Biharmonic properly immersed submanifolds in Euclidean spaces, Geom. Dedicata 164 (2013), 351-355. https://doi.org/10.1007/s10711-012-9778-1
[2] L. J. Alías, S. C. García-Martínez, and M. Rigoli, Biharmonic hypersurfaces in complete Riemannian manifolds, Pacific J. Math. 263 (2013), no. 1, 1-12. https://doi.org/10. 2140/pjm.2013.263.1
[3] L. J. Alías and N. Gürbüz, An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata 121 (2006), 113-127. https://doi.org/10.1007/s10711-006-9093-9
[4] M. Aminian, Proper l_{k}-biharmonic hypersurfaces in the euclidean sphere with two principal curvatures, Submitted.
[5] M. Aminian and S. M. B. Kashani, L_{k}-biharmonic hypersurfaces in the Euclidean space, Taiwanese J. Math. 19 (2015), no. 3, 861-874. https://doi.org/10.11650/tjm. 19. 2015.4830
[6] M. Aminian and S. M. B. Kashani, L_{k}-biharmonic hypersurfaces in space forms, Acta Math. Vietnam. 42 (2017), no. 3, 471-490. https://doi.org/10.1007/s40306-016-0195-7
[7] A. Balmuş, S. Montaldo, and C. Oniciuc, Classification results and new examples of proper biharmonic submanifolds in spheres, Note Mat. 28 (2009), [2008 on verso], suppl. 1, 49-61.
[8] A. Balmuş, S. Montaldo, and C. Oniciuc, New results toward the classification of biharmonic submanifolds in \mathbb{S}^{n}, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 20 (2012), no. 2, 89-114. https://doi.org/10.2478/v10309-012-0043-2
[9] R. Caddeo, S. Montaldo, and C. Oniciuc, Biharmonic submanifolds of S^{3}, Internat. J. Math. 12 (2001), no. 8, 867-876. https://doi.org/10.1142/S0129167X01001027
[10] E. Cartan, Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z. 45 (1939), 335-367. https://doi.org/10.1007/BF01580289
[11] , Sur des familles d’hypersurfaces isoparamétriques des espaces sphériques à 5 et à 9 dimensions, Univ. Nac. Tucumán. Revista A. 1 (1940), 5-22.
[12] B.-Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), no. 2, 169-188.
[13] _, Total mean curvature and submanifolds of finite type, second edition, Series in Pure Mathematics, 27, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.
[14] B.-Y. Chen and M. I. Munteanu, Biharmonic ideal hypersurfaces in Euclidean spaces, Differential Geom. Appl. 31 (2013), no. 1, 1-16. https://doi.org/10.1016/j.difgeo. 2012.10.008
[15] F. Defever, Hypersurfaces of \mathbf{E}^{4} with harmonic mean curvature vector, Math. Nachr. 196 (1998), 61-69. https://doi.org/10.1002/mana. 19981960104
[16] I. Dimitrić, Submanifolds of E^{m} with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 53-65.
[17] Y. Fu, Biharmonic hypersurfaces with three distinct principal curvatures in Euclidean space, Tohoku Math. J. (2) 67 (2015), no. 3, 465-479. https://doi.org/10.2748/tmj/ 1446818561
[18] , Biharmonic hypersurfaces with three distinct principal curvatures in spheres, Math. Nachr. 288 (2015), no. 7, 763-774. https://doi.org/10.1002/mana. 201400101
[19] R. S. Gupta, Biharmonic hypersurfaces in space forms with three distinct principal curvatures, arXiv:1412.5479 [math.DG], 2014.
[20] Th. Hasanis and Th. Vlachos, Hypersurfaces in E^{4} with harmonic mean curvature vector field, Math. Nachr. 172 (1995), 145-169. https://doi.org/10.1002/mana. 19951720112
[21] A. Mohammadpouri and F. Pashaie, L_{1}-biharmonic hypersurfaces with three distinct principal curvatures in Euclidean 5-space, Funct. Anal. Approx. Comput. 7 (2015), no. 1, 67-75.
[22] A. Mohammadpouri, F. Pashaie, and S. Tajbakhsh, L_{1}-biharmonic hypersurfaces in Euclidean spaces with three distinct principal curvatures, Iran. J. Math. Sci. Inform. 13 (2018), no. 2, 59-70. https://doi.org/10.7508/ijmsi.2018.13.005
[23] H. F. Münzner, Isoparametrische Hyperflächen in Sphären, Math. Ann. 251 (1980), no. 1, 57-71. https://doi.org/10.1007/BF01420281
[24] N. Nakauchi and H. Urakawa, Biharmonic submanifolds in a Riemannian manifold with non-positive curvature, Results Math. 63 (2013), no. 1-2, 467-474. https://doi.org/ 10.1007/s00025-011-0209-7
[25] Y.-L. Ou, Biharmonic hypersurfaces in Riemannian manifolds, Pacific J. Math. 248 (2010), no. 1, 217-232. https://doi.org/10.2140/pjm.2010.248.217
[26] Y.-L. Ou and L. Tang, On the generalized Chen's conjecture on biharmonic submanifolds, Michigan Math. J. 61 (2012), no. 3, 531-542. https://doi.org/10.1307/mmj/ 1347040257
[27] R. C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differential Geometry 8 (1973), 465-477. http://projecteuclid.org/ euclid.jdg/1214431802

Mehran Aminian
Department of Mathematics
Vali-e-Asr University of Rafsanjan
Rafsanjan, Iran
Email address: mehran.aminian@vru.ac.ir

