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EXISTENCE OF NONTRIVIAL SOLUTIONS OF THE

NONLINEAR BIHARMONIC SYSTEM

Tacksun Jung and Q-Heung Choi∗

Abstract. We investigate the existence of nontrivial solutions of
the nonlinear biharmonic system with Dirichlet boundary condition

(0.1)
∆2ξ + c∆ξ = µh(ξ + η) in Ω,

∆2η + c∆η = νh(ξ + η) in Ω,

where c ∈ R and ∆2 denote the biharmonic operator.

1. Introduction

Let Ω be a smooth bounded region in Rn with smooth boundary
∂Ω. We investigate the existence of nontrivial solutions of the nonlinear
biharmonic system with Dirichlet boundary condition

(1.1)

∆2ξ + c∆ξ = µh(ξ + η) in Ω,

∆2η + c∆η = νh(ξ + η) in Ω,

ξ = 0, ∆ξ = 0 on ∂Ω,

η = 0, ∆η = 0 on ∂Ω,

where c ∈ R and ∆2 denote the biharmonic operator. Here we assume
that h : R → R is a differentiable function such that h(0) = 0 and

h′(∞) = lim
|u|→∞

h(u)

u
∈ R.
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Let λk, k ≥ 1 denote the eigenvalues and φk, k ≥ 1 the corresponding
eigenfunctions, suitably normalized with respect to L2(Ω) inner product,
of the eigenvalue problem

∆u + λu = 0 in Ω,

u = 0 on ∂Ω,

where each eigenvalue λk is repeated as often as its multiplicity. We
recall that 0 < λ1 ≤ λ2 ≤ · · · → +∞, and that φ1(x) > 0 for x ∈ Ω.

In [3, 4, 5] Choi and Jung study the multiplicity of solutions of the
nonlinear biharmonic equation

(1.2)
∆2u + c∆u = g(u) in Ω,

u = 0, ∆u = 0 on ∂Ω,

where c ∈ R and ∆2 denote the biharmonic operator. Here we assume
that g : R → R is a differentiable function such that g(0) = 0 and

g′(∞) = lim
|u|→∞

g(u)

u
∈ R.

The authors proved in [3] that problem (1.2) has at least two solutions by
the Variation of Linking Theorem under the condition that g is a differen-
tiable function with g(0) = 0, λi < c < λi+1, λi+1(λi+1−c) < λk(λk−c) <
g′(∞) < λk+1(λk+1 − c), λk+m(λk+m − c) < g′(0) < λk+m+1(λk+m+1 − c)
for m ≥ 1, and g′(t) ≤ γ < λk+m+1(λk+m+1−c), k > i+1. The nonlinear
biharmonic equation with jumping nonlinearity was extensively studied
by some authors [4, 13, 15]. Choi and Jung studied the following problem
in [4]

(1.3)
∆2u + c∆u = bu+ + f in Ω,

u = 0, ∆u = 0 on ∂Ω.

They proved that (1.2) has at least two solutions by variational reduction
method when λ1 < c < λ2, b < λ1(λ1 − c) and f = s > 0, or c < λ1,
λk(λk − c) < b < λk+1(λk+1 − c), (k = 1, 2, . . .) and f = s < 0. They
also investigate a relation between multiplicity of solutions and source
term of (1.2) with the nonlinearity crossing an eigenvalue. Tarantello also
considered the nonlinear biharmonic equation with jumping nonlinearity,
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with Dirichlet boundary condition

(1.4)
∆2u + c∆u = b[(u + 1)+ − 1] in Ω,

u = 0, ∆u = 0 on ∂Ω.

She showed by degree theory that if b ≥ λ1(λ1 − c), then (1.4) has a
negative solution in Ω.

In section 2 we introduce the completed normed space spanned by
eigenfunctions of the biharmonic operator and the basic theorem which
will play a crucial role in our argument. In section 3 we prove the main
theorem.

2. Nontrivial solutions of the nonlinear biharmonic system

Let Ω be a smooth bounded region in Rn with smooth boundary ∂Ω.
We consider the multiplicity of solutions of the nonlinear biharmonic
equation

(2.1)
∆2u + c∆u = g(u) in Ω,

u = 0, ∆u = 0 on ∂Ω,

where c < λ1 and ∆2 denote the biharmonic operator. Here we assume
that g : R → R is a differentiable function such that g(0) = 0 and

g′(∞) = lim
|u|→∞

g(u)

u
∈ R.

Let λk, k ≥ 1 denote the eigenvalues and φk, k ≥ 1 the corresponding
eigenfunctions, suitably normalized with respect to L2(Ω) inner product,
of the eigenvalue problem

∆u + λu = 0 in Ω,

u = 0 on ∂Ω,

where each eigenvalue λk is repeated as often as its multiplicity. We
recall that 0 < λ1 ≤ λ2 ≤ · · · → +∞, and that φ1(x) > 0 for x ∈ Ω.

We assume that c < λ1. Let us denote an element u in L2(Ω) as

u =
∑

hkφk,
∑

h2
k < ∞.
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Now, we define a subspace H of L2(Ω) as follows

H =
{

u ∈ L2(Ω) :
∑

|λk(λk − c)|h2
k < ∞

}
.

Then this is a complete normed space with a norm

|‖u‖| =
[∑

|λk(λk − cj)|h2
k

] 1
2
.

Since λk → +∞ and c is fixed, we have

(i) ∆2u + c∆u ∈ H implies u ∈ H.

(ii) |‖|u‖| ≥ C‖u‖L2(Ω), for some C > 0.

(iii) ‖u‖L2(Ω) = 0 if and only if |‖u‖| = 0.

We assume that g is differentiable,

g′(0) < λ1(λ1 − c),

g′(∞) ∈ (λk(λk − c), λk+1(λk+1 − c)),

and 0 < g′(t) ≤ γ < λk+1(λk+1 − c). From the assumptions of g there
exists a > 0 such that |g(u)| ≤ a(1 + |u|).

Lemma 2.1. All solutions in L2(Ω) of

∆2u + c∆u = g(u) in L2(Ω)

belong to H.

For the proof of the lemma, see[4].
By the contraction mapping principle we have the uniqueness result:

Lemma 2.2. Let c < λ1. Then the system

∆2u + c∆u = 0

has only the trivial solution in H.

Let us define the functional in H,

I(u) =

∫

Ω

1

2
|∆u|2 − c

2
|∇u|2 −G(u),

where G(u) =
∫ s

o
g(σ)dσ. Then I(u) is well defined. The solutions of

(2.1) coincide with the critical points of I(u).
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Proposition 1. Assume that g(u) satisfies the conditions of Theo-
rem 1.1. Then I(u) is continuous and Frechét differentiable in H and
for h ∈ H

DI(u)(h) =

∫

Ω

∆u ·∆h− c∇u · ∇h− g(u)h.

For the proof of Proposition 1, see [4], [5].
For the sake of completeness we recall that if I is a function of class

C1 and u0 is a critical point of I, then u0 is called of mountain pass type
if for every open neighborhood U of u0, I−1(−∞, I(u0)) ∩ U 6= φ and
I−1(−∞, I(u0)) ∩ U\{u0} is not pass-connected.

Let V be k dimensional subspace of h spanned by φ1, · · · , φk whose
eigenvalues are λ1(λ1 − c), · · · , λk(λk − c). Let W be the orthogonal
complement of V in H. Let P : H → V be the orthogonal projection of
H onto V and I − P : H → W denote that of H onto W . Then every
element u ∈ L2(Ω) is expressed by u = v + z, v ∈ Pu, z = (I − P )u.

Hence (2.1) is equivalent to the system with two unknowns v and z:

∆2v + c∆v = P (g(v + z)),

∆2z + c∆z = (I − P )(g(v + z)).

Lemma 2.3. Let c < λ1. Assume that g′(0) < λ1(λ1 − c), g′(∞) ∈
(λk(λk − c), λk+1(λk+1 − c)), and 0 < g′(t) ≤ γ < λk+1(λk+1 − c), k ≥ 2.
Then we have :

(i) For any fixed v ∈ V there are m > 0 and α > 1 such that for all
w ∈ W , w1 ∈ W

(DI(v + w)−DI(v + w1), w − w1) ≥ m‖w − w1‖α.

(ii) There exists a unique solution z ∈ W of the equation

∆2z + c∆z = (I − P )(g(v + z)) in W

If we put z = θ(v), then θ is continuous on V and satisfies a uniform
Lipschitz condition in v which respect to the L2 norm(also norm
|‖ · ‖|). Moreover

DI(v + θ(v))(w) = 0 for all w ∈ W,

and

I(v + θ(v)) = min
w∈W

I(v + w).
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(iii) If Ĩ : V → R is defined by Ĩ(v) = I(v + θ(v)), then Ĩ has a
continuous Fréchet derivative DI with respect to v, and

DĨ(v)(h) = DI(v + θ(v))(h) for all h ∈ V.

(iv) If v0 ∈ V is a critical point of Ĩ if and only if v0 + θ(v0) is a critical
point of I.

(v) Let S ⊂ V and Σ ⊂ H be open bounded regions such that

{v + θ(v); v ∈ S} = Σ ∩ {v + θ(v); v ∈ V }.
If DĨ(v) 6= 0 for v ∈ ∂S, then

d(DĨ, S, 0) = d(DI, Σ, 0),

where d denote the Leray-Schauder degree.
(vi) If u0 = v0 + θ(v0) is a critical point of mountain pass type of I,

then v0 is a critical point of mountain pass type of Ĩ.

With the above lemma, Choi and Jung [5] showed, by degree theory,
the existence of nontrivial solutions of (2.1):

Theorem 2.1. Let c < λ1. If g′(0) < λ1(λ1 − c), g′(∞) ∈ (λk(λk −
c), λk+1(λk+1 − c)) with k ≥ 2, and 0 < g′(t′) ≤ γ < λk+1(λk+1 − c).
Then (2.1) has at least three solutions, two of which are nontrivial.

3. Nontrivial solutions for the system

In this section we investigate the existence of multiple nontrivial so-
lutions (ξ, η) for a perturbation (µ+ν)h(ξ+η) of the biharmonic system
with Dirichlet boundary condition

(3.1)

∆2ξ + c∆ξ = µh(ξ + η) in Ω,

∆2η + c∆η = νh(ξ + η) in Ω,

ξ = 0, ∆ξ = 0 on ∂Ω,

η = 0, ∆η = 0 on ∂Ω,

where c ∈ R and ∆2 denote the biharmonic operator. Here we assume
that h : R → R is a differentiable function such that h(0) = 0 and

h′(∞) = lim
|u|→∞

h(u)

u
∈ R.
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Theorem 3.1. Let µ, ν be nonzero constants and µ
ν
6= −1. Let c <

λ1. Assume that (µ + ν)h′(0) < λ1(λ1 − c), (µ + ν)h′(∞) ∈ (λk(λk −
c), λk+1(λk+1−c)) with k ≥ 2, and 0 < (µ+ν)h′(t) ≤ γ < λk+1(λk+1−c).
Then biharmonic system (3.1) has at least three solutions (ξ, η), two of
which are nontrivial solutions.

Proof. From problem (3.1) we get that ∆2ξ + c∆ξ = µ
ν
(∆2η + c∆η).

By Lemma 2.2, the problem

(3.2)
∆2u + c∆u = 0 in Ω,

u = 0, ∆u = 0 on ∂Ω

has only the trivial solution. So the solution (ξ, η) of problem (3.1)
satisfies ξ = µ

ν
η. On the other hand, from problem (3.1) we get the

equation

(3.3)

(∆2 + c∆)(ξ + η) = (µ + ν)h(ξ + η) in Ω,

ξ = 0, ∆ξ = 0 on ∂Ω,

η = 0, ∆η = 0 on ∂Ω.

Put w = ξ + η. Then the above equation is equivalent to

(3.4)
(∆2 + c∆)w = (µ + ν)h(ξ + η) in in Ω,

w = 0, ∆w = 0 on ∂Ω.

Under the condition of the theorem, if we use Theorem 2.1, the above
equation has at least three solutions , two of which are nontrivial so-
lutions, say w1, w2. Hence we get the solutions (ξ, η) of problem (3.1)
from the following systems:

(3.5)

ξ + η = 0 in Ω,

ξ =
µ

ν
η in Ω,

ξ = 0, ∆ξ = 0 on ∂Ω,

η = 0, ∆η = 0 on ∂Ω,

(3.6)

ξ + η = w1 in Ω,

ξ =
µ

ν
η in Ω,

ξ = 0, ∆ξ = 0 on ∂Ω,

η = 0, ∆η = 0 on ∂Ω,
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(3.7)

ξ + η = w2 in Ω,

ξ =
µ

ν
η inΩ,

ξ = 0, ∆ξ = 0 on ∂Ω,

η = 0, ∆η = 0 on ∂Ω.

From (3.5) we get the trivial solution (ξ, η) = (0, 0). From (3.6), (3.7)
we get the nontrivial solutions (ξ1, η1), (ξ2, η2).

Therefore system (3.1) has at least three solutions, two of which are
nontrivial solutions.

Acknowledgement: The authors appreciate very much the referee
for his kind corrections.
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