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A BIFURCATION PROBLEM FOR THE BIHARMONIC

OPERATOR

Tacksun Jung and Q-Heung Choi∗

Abstract. We investigate the number of the solutions for the bi-
harmonic boundary value problem with a variable coefficient non-
linear term. We get a theorem which shows the existence of m weak
solutions for the biharmonic problem with variable coefficient. We
obtain this result by using the critical point theory induced from the
invariant function and invariant linear subspace.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let
∆ be the elliptic operator and ∆2 be the biharmonic operator. Let
c ∈ R, a : Ω → R be a continuous function and g : Ω → R be a C1

function. Assume that a(x) > 0 in Ω. In this paper we investigate the
multiplicity of the weak solutions for the following variable coefficient
nonlinear biharmonic equation with Dirichlet boundary condition

∆2u+ c∆u = Λ(a(x)u+ g(u)) in Ω,(1.1)

u = 0, ∆u = 0 on ∂Ω.

Let λj, j ≥ 0 be the eigenvalues and ϕj, j ≥ 1 be the corresponding
eigenfunctions suitably normalized with respect to L2(Ω) inner product
and each eigenvalue λj is repeated as often as its multiplicity, of the
eigenvalue problem

∆u+ λu = 0 in Ω,
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u = 0 on ∂Ω.

The eigenvalue problem

∆2u+ c∆u = µa(x)u in Ω,

u = 0, ∆u = 0 on ∂Ω,

has also infinitely many eigenvalues µj = λj(λj − c), j ≥ 1 and cor-
responding eigenfunctions ψj, j ≥ 1. We note that µ1 < µ2 ≤ µ3 . . .,
µj → +∞.

We assume that g satisfies the following conditions:

(g1) g ∈ C1(R,R) and g(ξ) = o(|ξ|) uniformly with respect to x ∈ Ω.

(g2) g(ξ) < 0 for any ξ ∈ R.

(g3) g(u) = −g(−u) for any u ∈ Ω.

Jung and Choi [4] showed the existence of at least two solutions, one of
which is bounded solution and large norm solution of (1.1) when g(u) is
polynomial growth or exponential growth nonlinear term. The authors
proved this result by the variational method and the mountain pass
theorem. For the constant coefficient nonlinear case Choi and Jung [3]
showed that the problem

∆2u+ c∆u = bu+ + s in Ω,(1.2)

u = 0, ∆u = 0 on ∂Ω,

has at least two nontrivial solutions when (c < λ1, Λ1 < b < Λ2 and
s < 0) or (λ1 < c < λ2, b < Λ1 and s > 0). The authors obtained these
results by use of the variational reduction method. The authors [5] also
proved that when c < λ1, Λ1 < b < Λ2 and s < 0, (1.2) has at least
three nontrivial solutions by use of the degree theory. Tarantello [9] also
studied the problem

∆2u+ c∆u = b((u+ 1)+ − 1) in Ω,(1.3)

u = 0, ∆u = 0 on ∂Ω.

She show that if c < λ1 and b ≥ Λ1, then (1.3) has a negative solution.
She obtained this result by the degree theory. Micheletti and Pistoia
[7] also proved that if c < λ1 and b ≥ Λ2, then (1.3) has at least four
solutions by the vatiational linking theorem and Leray-Schauder degree
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theory. The authors [6] investigate the multiple solutions of semilinear
elliptic equations. In this paper we are trying to find weak solutions of
(1.1), that is,∫

Ω

[∆2u · v + c∆u · v − Λ(a(x)u+ g(u))v]dx = 0, ∀v ∈ H,

where H is introduced in section 2.
Our main result is the following.

Theorem 1.1. Let λj < c < λj+1. Assume that a(x) > 0 and g
satisfies the conditions (g1) − g(3). If µk < Λ < µk+1, k ≥ j + 1, then
(1.1) has at least k weak solutions.

We prove Theorem 1.1 by the critical point theory induced from the
invariant subspace and invariant functional. The outline of the proof of
Theorem 1.1 is as follows: In section 2, we introduce a Hilbert space H
and a closed invariant linear subspace X of H which is invariant under
the operator u 7→

∫
Ω
|∆u|2− c|∇u|2dx, the invariant subspaces of X and

the invariant function on X. We obtain some results on the norm ∥ · ∥
and the functional f(u), and recall a critical point theory in terms of the
invariant functional and invariant subspaces which plays a crucial role
for the proof of the main result. In section 3, we prove Theorem 1.1.

2. Critical point theory induced from the invariant subspace
and the invariant function

Let L2(Ω) be a square integrable function space defined on Ω. Any
element u in L2(Ω) can be written as

u =
∑

hkϕk with
∑

h2k <∞.

We define a subspace H of L2(Ω) as follows

H = {u ∈ L2(Ω)|
∑

|µk|h2k <∞}.

Then this is a complete normed space with a norm

∥u∥ = [
∑

|µk|h2k]
1
2 .

Since λk → +∞ and c is fixed, we have
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(i) ∆2u+ c∆u ∈ H implies u ∈ H.

(ii) ∥u∥ ≥ C∥u∥L2(Ω), for some C > 0.

(iii) ∥u∥L2(Ω) = 0 if and only if ∥u∥ = 0,

which is proved in [2].
Let

H+ = {u ∈ H| hk = 0 if µk < 0},
H− = {u ∈ H| hk = 0 if µk > 0}.

Then H = H−⊕H+, for u ∈ H, u = u−+u+ ∈ H−⊕H+. Let P+ be
the orthogonal projection on H+ and P− be the orthogonal projection
on H−. We can wtite P+u = u+, P−u = u−, for u ∈ H. We are looking
for the weak solutions of (1.1). By the following Proposition 2.1, the
weak solutions of (1.1) coincide with the critical points of the associated
functional

I(u) ∈ C1(H,R),

I(u) =

∫
Ω

[
1

2
|∆u|2 − c

2
|∇u|2 − Λ

∫
Ω

[
1

2
a(x)u2 +G(u)]dx(2.1)

=
1

2
(∥P+u∥2 − ∥P−u∥2)− Λ

∫
Ω

[
1

2
a(x)u2 +G(u)]dx,

where G(ξ) =
∫ ξ

0
g(τ)τ . By (g1), I is well defined.

Proposition 2.1. Assume that λj < c < λj+1, j ≥ 1, and g satisfies
(g1) − (g3). Then I(u) is continuous and Fréchet differentiable in H
with Fréchet derivative

(2.2) ∇I(u)h =

∫
Ω

[∆u ·∆h− c∇u · ∇h− Λ(a(x)u+ g(u))h]dx.

If we set

F (u) = Λ

∫
Ω

[
1

2
a(x)u2 +G(u)]dx,

then F ′(u) is continuous with respect to weak convergence, F ′(u) is
compact, and

F ′(u)h = Λ

∫
Ω

(a(x)u+ g(u))hdx for all h ∈ H,

this implies that I ∈ C1(H,R) and F (u) is weakly continuous.
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The proof of Proposition 2.1 has the similar process to that of the
proof in Appendix B in [8].

Let us define some notations and concepts on Z2−invariant set and
Z2−invariant function: LetH be a real Hilbert space on which the action
Z2 acts orthogonally. For u ∈ H, we define Z2− actions on H by

Tu = u or Tu = −u.
that is, the Z2 action have the identity map and the antipodal map as
an action. Thus Z2− action acts freely on the subspace {u| Tu = −u}.
Let FixZ2 be the set of fixed points of the action, i.e.,

FixZ2 = {u ∈ H| Tu(x) = u(x), for all x ∈ Ω, u ∈ H, Z2 − action T}.
We note that FixZ2 = {0}. Let

X1 = FixZ2 = {0} X2 = X⊥
1 .

Thus Z2− action has the representation x 7→ −x, for x ∈ X2 and H =
X1 ⊕X2. We say a subset B of H an Z2-invariant set if for all u ∈ B,
Tu ∈ B. A function I : H → R1 is called Z2-invariant if I(Tu) = I(u),
∀u ∈ H. Let C(B,H) be the set of continuous functions from B into
H. If B is an invariant set we say h ∈ C(B,H) is an equivariant map
if h(Tu) = Th(u) for all u ∈ B. We note that H is a closed invariant
linear subspace of H compactly embedded in L2(Ω, R) under the Z2−
action. Let

(Lu)h =

∫
Ω

[∆u ·∆h− c∇u · ∇h]dx.

We can check easily that L(H) ⊆ H, L : H → H is an isomorphism
and ∇I(H) ⊆ H. Therefore constrained critical points on H are in fact
free critical points on H. Moreover, distinct critical orbits give rise to
geometrically distinct solutions. We have the following lemma which can
be checked easily since FixZ2 = {0}:

Lemma 2.1. Assume that g satisfies the conditions (g1) − (g3). Let
u ∈ FixZ2 = {0} and u be a critical point of the functional of I, i.e.,
∇I(u) = 0. Then I(u) = 0.

Now we recall the critical point theory in terms of the invariant sub-
space and invariant function in Theorem 4.1 of [1] which plays a crucial
role for the proof of Theorem 1.1: Let Sρ be the sphere centered at the
origin of radius ρ. Let I : H → R be a functional of the form

(2.3) I(u) =
1

2
(Lu)u− F (u),
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where L : H → H is linear, continuous, symmetric and equivariant,
F : H → R is of class C1 and invariant and DF : H → H is compact.

Theorem 2.1. Assume that I ∈ C1(H,R1) is Z2-invariant and there
exist two closed invariant linear subspaces V , W of H and ρ > 0 with
the following properties:

(a) V +W is closed and of finite codimension in H;

(b) FixZ2 ⊆ V +W ;

(c) L(W ) ⊆ W ;

(d) supSρ∩V I < +∞ and infW I > −∞;

(e) u /∈ FixZ2 whenever DI(u) = 0 and infW I ≤ I(u) ≤ supSρ∩V I;

(f) I satisfies (P.S.)c condition whenever infW I ≤ c ≤ supSρ∩V I.

Then I possesses at least

dim(V ∩W )− codimH(V +W )

distinct critical orbits in I−1([infW I, supSρ∩V I]).

3. Proof of Theorem 1.1

To prove Theorem 1.1 we shall prove that the functional I satisfies
the assumptions (g1)− g(3) of Theorem 2.1. We assume that g satisfies
the conditions (g1)− (g3). Let us set

H+
1 = {u| u ∈ H, u ∈ span{ψl, l ≥ 1}},

H−
k = {u| u ∈ H, u ∈ span{ψl, 1 ≤ l ≤ k}}.

We have the following lemma which can be checked easily since FixZ2 =
{0}:

Lemma 3.1. Assume that g satisfies the conditions (g1)− (g3). Then
there exist ρ > 0 and a sphere Sρ centered at 0 in H such that the
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functional I(u) is bounded from above on Sρ ∩ H−
k and from below on

H+
1 . That is,

−∞ < inf
u∈H+

1

I(u) and sup
u∈Sρ∩H−

k

I(u) < 0.

Proof. We note that

∀u ∈ H−
k : (Lu)u ≤ µk

∫
Ω
a(x)u2dx,(3.1)

∀u ∈ H+
1 : (Lu)u ≥ µ1

∫
Ω
a(x)u2dx.

Then for u ∈ H−
k ,

I(u) =
1

2
(Lu)u− Λ

∫
Ω

[
1

2
a(x)u2 +G(u)]dx(3.2)

≤ 1

2
(µk − Λ)

∫
Ω

a(x)u2dx+ o(∥u∥2L2(Ω))

since G(ξ) ∈ C2. Thus we can choose a number ρ > 0 and a sphere Sρ

centered at 0 in H such that for any u ∈ Sρ,

1

2
(µk − Λ)

∫
Ω

a(x)u2dx+ o(∥u∥2L2(Ω))(3.3)

≤ 1

2
(µk − Λ)(sup a(x))ρ2 + o(∥u∥2L2(Ω)) < 0

since µk − Λ < 0. Thus we have supSρ∩H−
k
I(u) < 0. Let u ∈ H+

1 . Then

we have

I(u) =
1

2
(Lu)u− Λ

∫
Ω

[
1

2
a(x)u2 +G(u)]dx

≥ 1

2
(µ1 − Λ)

∫
Ω

a(x)u2dx+ o(∥u∥2L2(Ω))

>
1

2
(µ1 − Λ)(sup a(x))∥u∥2L2 + o(∥u∥2L2(Ω))

> −∞

since µ1 − Λ < 0, G(u) = o(∥u∥2L2(Ω)).

Thus we have infu∈H+
1
I(u) > −∞.

Lemma 3.2. Assume that g satisfies the conditions (g1)− (g3). Then
the functional I satisfies (P.S.)c condition for every c ∈ [infW I(u), supSρ∩V I(u)].
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Proof. Let u ∈ H. Since H = H+
1 , the functional

I(u) =
1

2
(Lu)u− Λ

∫
Ω

[
1

2
a(x)u2 +G(u)]dx(3.4)

≥ 1

2
(µ1 − Λ)

∫
Ω

a(x)u2dx− Λ

∫
Ω

G(u)dx

>
1

2
(µ1 − Λ) sup(a(x))∥u∥2L2 − o(∥u∥2L2)

≥ 1

2
(µ1 − Λ) sup(a(x))∥u∥2L(Ω) − o(∥u∥2L2)

> −∞.

Thus I(u) is bounded from below since G(ξ) = o(|ξ|2). Thus I(u) satis-
fies the (P.S.)c condition.

[Proof of Theorem 1.1]

If we set V = H−
k and W = H+

1 = H, then V +W is closed invariant
subspaces of H with V +W = H and of finite codimension in H. We
note that FixZ2 = {0} and FixZ2 = {0} ⊆ V +W = H. We also note
that L(W ) ⊆ W . By Lemma 3.1,

−∞ < inf
W
I sup

H−
k

∩SρI < 0.

Thus the condition (d) of Theorem 2.1 is satisfied. Suppose that u be
a critical point of the functional of I and infW I ≤ I(u) ≤ supSρ∩V I.
Then by Lemma 3.1, −∞ < infW I ≤ I(u) ≤ supSρ∩V I < 0. We claim
that u /∈ FixZ2 . If not, then u ∈ FixZ2 = {0} i.e., u = 0. Since u = 0 is
a critcal point of I(u) with I(0) = 0 and 0 /∈ [infW I, supSρ∩V I], it leads
to a contradiction to the fact that infW I ≤ I(u) ≤ supSρ∩V I. Thus
u /∈ FixZ2 . Thus the condition (e) is satisfied. By Lemma 3.2, I satisfies
(P.S.)c condition whenever infW I ≤ c ≤ supSρ∩V I.
Thus the assumptions (a) − (e) of Theorem 1.1 are satisfied. Thus by
the Theorem 2.1, Then I possesses at least

dim(V ∩W )− codimH(V +W ) = k

distinct critical orbits in I−1([infW I, supSρ∩V I]).
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