ON THE EXISTENCE OF THE THIRD SOLUTION OF THE NONLINEAR BIHARMONIC EQUATION WITH DIRICHLET BOUNDARY CONDITION

TACKSUN JUNG* and Q-HEUNG CHOI**

Abstract

We are concerned with the multiplicity of solutions of the nonlinear biharmonic equation with Dirichlet boundary condition, $\Delta^{2} u+c \Delta u=g(u)$, in Ω, where $c \in R$ and Δ^{2} denotes the biharmonic operator. We show that there exists at least three solutions of the above problem under the suitable condition of $g(u)$.

1. Introduction

Let Ω be a smooth bounded region in R^{n} with smooth boundary $\partial \Omega$. Let $\lambda_{1}<\lambda_{2} \leq \ldots \leq \lambda_{k} \leq \ldots$ be the eigenvalues of $-\Delta$ with Dirichlet boundary condition in Ω. In this paper we are concerned with the multiplicity of solutions of the nonlinear biharmonic equation with Dirichlet boundary condition

$$
\begin{gather*}
\Delta^{2} u+c \Delta u=g(u) \quad \text { in } \Omega \tag{1.1}\\
u=0, \quad \Delta u=0 \\
\text { on } \partial \Omega
\end{gather*}
$$

where g is a differentiable function from R to R such that $g(0)=0$, $c \in R$ and Δ^{2} denotes the biharmonic operator. Let

$$
g^{\prime}(\infty)=\lim _{|u| \rightarrow \infty} \frac{g(u)}{u} \in R
$$

The problem (1.1) was studied by Choi and Jung in [5]. The authors proved that (1.1) has at least two solutions by a variation of linking theorem. The authors also proved in [7] that the problem

$$
\begin{equation*}
\Delta^{2} u+c \Delta u=b u^{+}+s \quad \text { in } \Omega \tag{1.2}
\end{equation*}
$$

[^0]$$
u=0, \quad \Delta u=0 \quad \text { on } \partial \Omega
$$
has at least two solutions by a variational reduction method when $\lambda_{1}<$ $c<\lambda_{2}, b<\lambda_{1}\left(\lambda_{1}-c\right)$ or $c<\lambda_{1}, \lambda_{k}\left(\lambda_{k}-c\right)<b<\lambda_{k+1}\left(\lambda_{k+1}-c\right)$. This type problem arises in the study of travelling waves in a suspension bridge ([8], [10]) or the study of the static deflection of an elastic plate in a fluid. The following is the main result of this paper.

Theorem 1.1. Assume that $\lambda_{i}<c<\lambda_{i+1}, \lambda_{i+1}\left(\lambda_{i+1}-c\right)<\lambda_{k}\left(\lambda_{k}-\right.$ $c)<g^{\prime}(\infty)<\lambda_{k+1}\left(\lambda_{k+1}-c\right), \lambda_{k+m}\left(\lambda_{k+m}-c\right)<g^{\prime}(0)<\lambda_{k+m+1}\left(\lambda_{k+m+1}\right.$ $-c)$ and $g^{\prime}(t) \leq \gamma<\lambda_{k+m+1}\left(\lambda_{k+m+1}-c\right)$, where $m \geq 1, k>i+1$ and $\gamma \in R$. Then problem (1.1) has at least three solutions.

Theorem 1.2. Assume that $\lambda_{i}<c<\lambda_{i+1}, \lambda_{i+1}\left(\lambda_{i+1}-c\right)<\lambda_{k}\left(\lambda_{k}-\right.$ $c)<g^{\prime}(0)<\lambda_{k+1}\left(\lambda_{k+1}-c\right), \lambda_{k+m}\left(\lambda_{k+m}-c\right)<g^{\prime}(\infty)<\lambda_{k+m+1}\left(\lambda_{k+m+1}\right.$ $-c)$ and $g^{\prime}(t) \leq \gamma<\lambda_{k+m+1}\left(\lambda_{k+m+1}-c\right)$, where $m \geq 1, k>i+1$ and $\gamma \in R$. Then problem (1.1) has at least three solutions.

In section 2 we recall a Linking Scale Theorem which will play a crucial role in our argument. In section 3 we define a Banach space H spanned by eigenfunctions of $\Delta^{2}+c \Delta$ with Dirichlet boundary condition which can be applied in the linking scale theorem. In section 4 we prove Theorem 1.1 and Theorem 1.2.

2. Linking scale theorem

Definition 2.1. Let X be a Hilbert space, $Y \subset X$, $r h o>0$ and $e \in X \backslash Y, e \neq 0$. Set:

$$
\begin{gathered}
B_{\rho}(Y)=\left\{x \in Y \mid\|x\|_{X} \leq \rho\right\} \\
S_{\rho}(Y)=\left\{x \in Y \mid\|x\|_{X}=\rho\right\} \\
\Delta_{\rho}(e, Y)=\left\{\sigma e+v \mid \sigma \geq 0, v \in Y,\|\sigma e+v\|_{X} \leq \rho\right\} \\
\Sigma_{\rho}(e, Y)=\left\{\sigma e+v \mid \sigma \geq 0, v \in Y,\|\sigma e+v\|_{X}=\rho\right\} \cup\left\{v \mid v \in Y,\|v\|_{X} \leq \rho\right\}
\end{gathered}
$$

Now we recall a theorem of existence of three solutions which is linking scale theorem.

Theorem 2.1. (Linking scale theorem) Let X be an Hilbert space, which is topological direct sum of the four subspaces X_{0}, X_{1}, X_{2} and X_{3}. Let $F \in C^{1}(X, R)$. Moreover assume:
(a) $\operatorname{dim} X_{i}<+\infty$ for $i=0,1,2$;
(b) there exist $\rho>0, R>0$ and $e \in X_{2}, e \neq 0$ such that;

$$
\rho<R \quad \text { and } \quad \sup _{S_{\rho}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)} F<\inf _{\Sigma_{R}\left(e, X_{3}\right)} F ;
$$

(c) there exist $\rho^{\prime}>0, R^{\prime}>0$ and $e^{\prime} \in X_{1}, e^{\prime} \neq 0$ such that:

$$
\rho^{\prime}<R^{\prime} \quad \text { and } \quad \sup _{S_{\rho^{\prime}}\left(X_{0} \oplus X_{1}\right)} F \leq \inf _{\Sigma_{R^{\prime}}\left(e^{\prime}, X_{2} \oplus X_{3}\right)} F ;
$$

(d) $R \leq R^{\prime}\left(\Rightarrow \Delta_{R}\left(e, X_{3}\right) \subset \Sigma_{R^{\prime}}\left(e^{\prime}, X_{2} \oplus X_{3}\right)\right)$;
(e) $-\infty<a=\inf _{\Delta_{R^{\prime}}\left(e, X_{2} \oplus X_{3}\right)} F$;
$(f)(P . S .)_{c}$ holds for any $c \in[a, b]$ where $b=\sup _{B_{\rho}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)} F$.
Then there exist three critical levels c_{1}, c_{2} and c_{3} for the functional F such that:

$$
\begin{aligned}
a \leq c_{3} \leq & \sup _{S_{\rho^{\prime}}\left(X_{0} \oplus X_{1}\right)} F<\inf _{\Sigma_{R^{\prime}}\left(e^{\prime}, X_{2} \oplus X_{3}\right)} F \leq \inf _{\Delta_{R}\left(e, X_{3}\right)} F \leq c_{2} \\
& \leq \sup _{S_{\rho}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)} F<\inf _{\Sigma_{R}\left(e . X_{3}\right)} F \leq c_{1} \leq b
\end{aligned}
$$

3. Variational formulation

Let $\lambda_{k}(k=1,2, \ldots)$ denote the eigenvalues and $\phi_{k}(k=1,2, \ldots)$ the corresponding eigenfunctions, suitably normalized with respect to $L^{2}(\Omega)$ inner product, of the eigenvalue problem $\Delta u+\lambda u=0$ in Ω, with the Dirichlet boundary condition, where each eigenvalue λ_{k} is repeated as often as its multiplicity. We recall that $0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \ldots, \lambda_{i} \rightarrow$ $+\infty$ and that $\phi_{1}(x)>0$ for $x \in \Omega$. The eigenvalue problem $\Delta^{2} u+$ $c \Delta u=\mu u$ in Ω with the Dirichlet boundary condition $u=0, \Delta u=0$ on $\partial \Omega$, has infinitely many eigenvalues $\lambda_{k}\left(\lambda_{k}-c\right), k=1,2, \ldots$, and corresponding eigenfunctions $\phi_{k}(x)$. The set of functions $\left\{\phi_{k}\right\}$ is an orthogonal base for $W_{0}^{1,2}(\Omega)$. Let us denote an element u of $W_{0}^{1,2}(\Omega)$ as $u=\sum h_{k} \phi_{k}, \sum h_{k}^{2}<\infty$. Let c be not an eigenvalue of $-\Delta$ and define a subspace E of $W_{0}^{1,2}(\Omega)$ as follows

$$
E=\left\{u \in W_{0}^{1,2}(\Omega): \sum\left|\lambda_{k}\left(\lambda_{k}-c\right)\right| h_{k}^{2}<\infty\right\}
$$

Then this is a complete normed space with a norm

$$
\left|\|u \mid\|=\left[\sum\left|\lambda_{k}\left(\lambda_{k}-c\right)\right| h_{k}^{2}\right]^{\frac{1}{2}} .\right.
$$

We need the following some properties which are proved in [6, 7]. Since $\lambda_{k} \rightarrow+\infty$ and c is fixed, we have:

Proposition 3.1. Let c be not an eigenvalue of $-\Delta$ with the Dirichlet boundary condition. Then we have
(i) $\left(\Delta^{2} u+c \Delta\right) u \in E$ implies $u \in E$.
(ii) $\left|\|u \mid\| \geq C\|u\|_{L^{2}(\Omega)}\right.$, for some $C>0$.
(iii) $\|u\|_{L^{2}(\Omega)}=0$ if and only if $|\|u \mid\|=0$.

Proposition 3.2. Assume that $g: E \rightarrow R$ satisfies the assumptions of Theorem 1.1. Then all solutions in $L^{2}(\Omega)$ of

$$
\Delta^{2} u+c \Delta u=g(u) \quad \text { in } L^{2}(\Omega)
$$

belong to E.
Proof. Let $g(u)=\sum h_{k} \phi_{k} \in L^{2}(\Omega)$. Then

$$
\left(\Delta^{2}+c \Delta\right)^{-1}(g(u))=\sum \frac{1}{\lambda_{k}\left(\lambda_{k}-c\right)} h_{k} \phi_{k}
$$

Hence we have

$$
\left|\left\|\left(\Delta^{2}+c \Delta\right)^{-1} g(u)\left|\|^{2}=\sum\right| \lambda_{k}\left(\lambda_{k}-c\right) \left\lvert\, \frac{1}{\left.\lambda_{k}\left(\lambda_{k}-c\right)\right)^{2}} h_{k}^{2} \leq C \sum h_{k}^{2}\right.\right.\right.
$$

for some $C>0$, which means that

$$
\left|\left\|\left(\Delta^{2}+c \Delta\right)^{-1} g(u) \mid\right\| \leq C_{1}\|u\|_{L^{2}(\Omega)}\right.
$$

With the aid of Proposition 3.2 it is enough that we investigate the existence of solutions of (1.1) in the subspace E of $L^{2}(\Omega)$. Let $I: E \rightarrow R$ be the functional defined by,

$$
\begin{equation*}
I(u)=\int_{\Omega} \frac{1}{2}|\Delta u|^{2}-\frac{c}{2}|\nabla u|^{2}-G(u) \tag{3.1}
\end{equation*}
$$

where $G(s)=\int_{0}^{s} g(\sigma) d \sigma$. Under the assumptions of Theorem 1.1, $I(u)$ is well defined. By the following Proposition, I is of class C^{1} and the weak solutions of (1.1) coincide with the critical points of $I(u)$.

Proposition 3.3. Assume that $g(u)$ satisfies the assumptions of Theorem 1.1. Then $I(u)$ is continuous and Frèchet differentiable in E and

$$
\begin{equation*}
D I(u)(h)=\int_{\Omega} \Delta u \cdot \Delta h-c \nabla u \cdot \nabla h-g(u) h \tag{3.2}
\end{equation*}
$$

for $h \in X$. Moreover $\int_{\Omega} G(u) d x$ is C^{1} with respect to u. Thus $I \in C^{1}$.

Proof. Let $u \in E$. First we will prove that $I(u)$ is continuous. We consider

$$
\begin{aligned}
I(u+v)-I(u)= & \int_{\Omega}\left[\frac{1}{2}|\Delta(u+v)|^{2}-\frac{c}{2}|\nabla(u+v)|^{2}-G(u+v)\right] \\
& -\int_{\Omega}\left[\frac{1}{2}|\Delta u|^{2}-\frac{c}{2}|\nabla u|^{2}-G(u)\right] \\
= & \int_{\Omega}\left[u \cdot\left(\Delta^{2} v+c \Delta v\right)+\frac{1}{2} v \cdot\left(\Delta^{2} v+c \Delta v\right)\right. \\
& -(G(u+v)-G(u))]
\end{aligned}
$$

Let $u=\sum h_{k} \phi_{k}, v=\sum \tilde{h}_{k} \phi_{k}$. Then we have

$$
\begin{gathered}
\left|\int_{\Omega} u \cdot\left(\Delta^{2} v+c \Delta v\right) d x\right|=\left|\sum \lambda_{k}\left(\lambda_{k}-c\right) h_{k} \tilde{h}_{k}\right| \leq|\|u|\|\cdot|\|v \mid\| \\
\quad\left|\int_{\Omega} v \cdot\left(\Delta^{2} v+c \Delta v\right) d x\right|=\left|\sum \lambda_{k}\left(\lambda_{k}-c\right) \tilde{h}_{k}^{2}\right| \leq\left|\|v \mid\|^{2}\right.
\end{gathered}
$$

On the other hand, by Mean Value Theorem and $g^{\prime}(t) \leq \gamma$, we have

$$
\begin{aligned}
|G(u+v)-G(u)| & =\left|\int_{0}^{u+v} g(s) d s-\int_{0}^{u} g(s) d s\right| \\
& \leq \gamma|v|(|u|+|v|)
\end{aligned}
$$

Hence

$$
\left|\int_{\Omega}[G(u+v)-G(u)] d x\right| \leq C \gamma|\|v \mid\|(|\|u|\|+|\|v \mid\|)
$$

With the above results, we see that $I(u)$ is continuous at u. To prove that $I(u)$ is Fréchet differentiable at $u \in E$, we compute

$$
\begin{aligned}
\mid I(u+v) & -I(u)-D I(u) v \mid \\
& =\left|\int_{\Omega} \frac{1}{2} v\left(\Delta^{2} v+c \Delta v\right)-G(u+v)+G(u)-g(u) v\right| \\
& \leq \frac{1}{2}\left|\left\|v \left|\left\|^{2}+C \gamma\left|\|v \mid\|^{2}\right.\right.\right.\right.\right.
\end{aligned}
$$

since $|G(u+v)-G(u)-g(u) v|=\left|\int_{u}^{u+v} g(s) d s-g(u) v\right| \leq \gamma v^{2}$.
Let Z_{2} act on E orthogonally. Then E has two invariant orthogonal subspaces $F i x_{Z_{2}}$ and $F i x_{Z_{2}}^{\perp}$. Let us set

$$
H=F i x_{Z_{2}}^{\perp}
$$

The Z_{2} action has the representation $u \mapsto-u, \forall u \in H$. Thus Z_{2} acts freely on the invariant subspace H. We note that H is a closed invariant linear subspace of E compactly embedded in $L^{2}(\Omega)$. It is easily checked that $\Delta^{2}+c \Delta$ and g are equivariant on H, so I is invariant on H. Moreover $\left(\Delta^{2}+c \Delta\right)(H) \subseteq H, \Delta^{2}+c \Delta: H \rightarrow H$ is an isomorphism and $D I(H) \subseteq H$. Therefore critical points on H are critical points on E.

4. Proof of Theorem 1.1 and Theorem 1.2.

Here we let $\lambda_{i}<c<\lambda_{i+1}$. First, we consider the case $\lambda_{i+1}\left(\lambda_{i+1}-c\right)<$ $\lambda_{k}\left(\lambda_{k}-c\right)<g^{\prime}(\infty)<\lambda_{k+1}\left(\lambda_{k+1}-c\right), \lambda_{k+m}\left(\lambda_{k+m}-c\right)<g^{\prime}(0)<$ $\lambda_{k+m+1}\left(\lambda_{k+m+1}-c\right)$ and $g^{\prime}(t) \leq \gamma<\lambda_{k+m+1}\left(\lambda_{k+m+1}-c\right)$, where $m \geq 1$ and $k>i+1$. Let H_{k} be the subspace of H spanned by $\phi_{1}, \ldots, \phi_{k}$ whose eigenvalues are $\lambda_{1}\left(\lambda_{1}-c\right), \ldots, \lambda_{k}\left(\lambda_{k}-c\right)$. Let H_{k}^{\perp} be the orthogonal complement of H_{k} in H. Let $r=\frac{1}{2}\left\{\lambda_{k}\left(\lambda_{k}-c\right)+\lambda_{k+1}\left(\lambda_{k+1}-c\right)\right\}$ and let $L: H \rightarrow H$ be the linear continuous operator such that

$$
(L u, v)=\int_{\Omega}\left(\Delta^{2} u+c \Delta u\right) \cdot v d x-r \int_{\Omega} u v d x
$$

Then L is symmetric, bijective and equivariant. The spaces H_{k}, H_{k}^{\perp} are the negative space of L and the positive space of L. Moreover, there exists $\nu>0$ such that

$$
\begin{array}{lll}
\forall u \in H_{k} \quad: & (L u, u) \leq\left(\lambda_{k}\left(\lambda_{k}-r\right)\right) \int_{\Omega} u^{2} d x \leq-\nu\left|\|u \mid\|^{2}\right. \\
\forall u \in H_{k}^{\perp} \quad: & (L u, u) \geq\left(\lambda_{k+1}\left(\lambda_{k+1}-c\right)\right) \int_{\Omega} u^{2} d x \geq \nu\left|\|u \mid\|^{2} .\right.
\end{array}
$$

We can write

$$
I(u)=\frac{1}{2}(L u, u)-\psi(u)
$$

where

$$
\psi(u)=\int_{\Omega}\left[G(u)-\frac{1}{2} r u^{2}\right] d x
$$

Since H is compactly embedded in L^{2}, the map $D \psi: X \rightarrow X$ is compact.
Lemma 4.1. Assume that $g(u)$ satisfies the assumptions of Theorem 1.1. Then $I(u)$ satisfies the $(P . S .)_{M}$ condition for any $M \in R$.

Proof. Let $\left(u_{n}\right)$ be a sequence in H with $D I\left(u_{n}\right) \rightarrow 0$ and $I\left(u_{n}\right) \rightarrow M$. Since L is an isomorphism and $D \psi$ is compact, it is sufficient to show that
$\left(u_{n}\right)$ is bounded in H. By contradiction, we assume that $\left\|\left\|u_{n} \mid\right\| \rightarrow+\infty\right.$. Let us take $a, b \in R$ with

$$
\lambda_{k}\left(\lambda_{k}-c\right)<a<\lim _{|s| \rightarrow \infty} \frac{g(s)}{s}<b<\lambda_{k+1}\left(\lambda_{k+1}-c\right)
$$

and define $g_{r}: R \rightarrow R$ by

$$
g_{r}(s)=g(s)-r s
$$

Set $\alpha=a-r$ and $\beta=b-r$, so that

$$
\alpha<\lim _{|s| \rightarrow \infty} \frac{g_{r}(s)}{s}<\beta
$$

Let $g_{r}(s)=\eta_{r}(s)+\gamma_{r}(s) s$ with

$$
\gamma_{r}(s)= \begin{cases}\min \left\{\max \left\{\frac{g_{r}(s)}{s}, \alpha\right\}, \beta\right\} & \text { if } s \neq 0 \\ \min \left\{\max \left\{g^{\prime}(0)-r, \alpha\right\}, \beta\right\} & \text { if } s=0\end{cases}
$$

Then γ_{r} is a Borel function with $\alpha \leq \gamma_{r}(s) \leq \beta$ for every $s \in R$ and $\eta_{r} \in C_{c}(R)$. Let $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\| \|}$. Up to a subsequence, we have $v_{n} \rightarrow v$ in H and $\gamma_{r}\left(u_{n}\right) \rightharpoonup \gamma^{\prime}$ in $L^{\infty}(\Omega)$ with $\alpha \leq \gamma^{\prime} \leq \beta$ a.e. in Ω. Moreover

$$
\frac{\eta_{r}\left(u_{n}\right)}{\left|\left\|u_{n} \mid\right\|\right.} \rightarrow 0 \quad \text { in } L^{\infty}(\Omega)
$$

Since $D I\left(u_{n}\right) \rightarrow 0$, we get

$$
\frac{D I\left(u_{n}\right) u_{n}}{\left|\left\|u_{n} \mid\right\|^{2}\right.}=\left(L v_{n}, v_{n}\right)-\int_{\Omega} \frac{\eta_{r}\left(u_{n}\right)}{\left|\left\|u_{n} \mid\right\|\right.} v_{n}-\int_{\Omega} \gamma_{r}\left(u_{n}\right) v_{n}^{2} \longrightarrow 0
$$

Let $P^{+}: H \rightarrow H_{k}^{\perp}$ and $P^{-}: H \rightarrow H_{k}$ denote the orthogonal projections.
Since $P^{+} v_{n}-P^{-} v_{n}$ is bounded in H, we have

$$
\begin{aligned}
\left(L P^{+} v_{n}, P^{+} v_{n}\right)- & \left(L P^{-} v_{n}, P^{-} v_{n}\right)-\int_{\Omega} \frac{\eta_{r}\left(u_{n}\right)}{\| \| u_{n}\| \|}\left(P^{+} v_{n}-P^{-} v_{n}\right) d x \\
& -\int_{\Omega} \gamma_{r}\left(u_{n}\right) v_{n}\left(P^{+} v_{n}-P^{-} v_{n}\right) d x \longrightarrow 0
\end{aligned}
$$

Since $P^{+} v_{n}-P^{-} v_{n} \rightarrow P^{+} v-P^{-} v$ in H, we get

$$
\nu \leq \int_{\Omega} \gamma^{\prime} v\left(P^{+} v-P^{-} v\right) d x
$$

Hence $v \neq 0$. On the other hand, we also have

$$
\begin{gathered}
\left(L v_{n}, P^{+} v-P^{-} v\right)-\int_{\Omega} \frac{\eta_{r}\left(u_{n}\right)}{\left|\left\|u_{n} \mid\right\|\right.}\left(P^{+} v-P^{-} v\right) d x \\
\quad-\int_{\Omega} \gamma_{r}\left(u_{n}\right) v_{n}\left(P^{+} v-P^{-} v\right) d x \longrightarrow 0
\end{gathered}
$$

so that

$$
\begin{aligned}
& \left(L P^{+} v, P^{+} v\right)-\left(L P^{-} v, P^{-} v\right)-\int_{\Omega} \gamma^{\prime}\left(P^{+} v\right)^{2} d x+\int_{\Omega} \gamma^{\prime}\left(P^{-} v\right)^{2} d x \\
& \quad=\left(L v, P^{+} v-P^{-} v\right)-\int_{\Omega} \gamma^{\prime}\left(P^{+} v+P^{-} v\right)\left(P^{+} v-P^{-} v\right) d x=0
\end{aligned}
$$

It follows that

$$
\left(\lambda_{k+1}\left(\lambda_{k+1}-c\right)-r-\beta\right) \int_{\Omega}\left(P^{+} v\right)^{2} d x+\left(r+\alpha-\lambda_{k}\left(\lambda_{k}-c\right)\right) \int_{\Omega}\left(P^{-} v\right)^{2} d x \leq 0
$$

Thus $P^{+} v=P^{-} v=0$, which gives a contradiction.
Lemma 4.2. Under the same assumptions of Theorem 1.1, The function $I(u)$ is bounded from above on H_{k};

$$
\begin{equation*}
\sup _{u \in H_{k}} I(u)<0 \tag{4.1}
\end{equation*}
$$

and from below on H_{k}^{\perp}; there exists $R_{k}>0$ such that

$$
\begin{equation*}
\inf _{\substack{u \in H_{1}^{\perp} \\ \text { and } \\ \mid\|u\| \|=R_{k}}} I(u)>0 \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\inf _{\substack{u \in H_{k}^{\perp} \\ \mid\|u\|<R_{k}}} I(u)>-\infty \tag{4.3}
\end{equation*}
$$

Proof. For some constant $d \geq 0$, we have $G_{r}(s) \geq \frac{1}{2} \alpha s^{2}+d$, where $G_{r}(s)=\int_{0}^{s} g_{r}(\sigma) d \sigma$. For $u \in H_{k}$,

$$
\begin{aligned}
(L u, u) \leq\left(\lambda_{k}\left(\lambda_{k}-c\right)-r\right) \int_{\Omega} u^{2} d x & =\frac{\lambda_{k}\left(\lambda_{k}-c\right)-\lambda_{k+1}\left(\lambda_{k+1}-c\right)}{2} \int_{\Omega} u^{2} \\
\int_{\Omega} G_{r}(u) & \geq \frac{\alpha}{2} \int_{\Omega} u^{2}+d|\Omega|
\end{aligned}
$$

so that

$$
I(u) \leq \frac{1}{2} \cdot \frac{\lambda_{k}\left(\lambda_{k}-c\right)-\lambda_{k+1}\left(\lambda_{k+1}-c\right)}{2} \int_{\Omega} u^{2}-\frac{\alpha}{2} \int_{\Omega} u^{2}-d|\Omega|<0
$$

since $\frac{\lambda_{k}\left(\lambda_{k}-c\right)-\lambda_{k+1}\left(\lambda_{k+1}-c\right)}{2}<\alpha$. Thus the functional I is bounded from above on H_{k}. Next we will prove that (4.2) and (4.3) hold. To get our claim (4.2), it is enough to prove that:

$$
\lim _{\substack{u \in H^{\perp} \\\| \| u \| \rightarrow+\infty}} I(u)=+\infty .
$$

We have

$$
\begin{aligned}
& \lim _{\substack{u \in H-H_{k}^{\perp} \\
\| \\
\| u \| \rightarrow+\infty}} I(u) \\
& \geq \lim _{\substack{u \in H^{\frac{1}{k}} \\
\| \| u \| \rightarrow \infty}} \frac{1}{2}\left(1-\frac{r}{\lambda_{k+1}\left(\lambda_{k+1}-c\right)}\right)\|u\|^{2}-\lim _{\substack{u \in H^{\perp} \\
{ }_{k} \\
\|u u\| \rightarrow+\text { inft }^{\prime}}} \int_{\Omega} G_{r}(u) d x \\
& \geq \lim _{\substack{u \in H \frac{1}{b} \\
\|u\| \rightarrow+\infty}} \frac{1}{2}\left(1-\frac{r}{\lambda_{k+1}\left(\lambda_{k+1}-c\right)}\right)\left|\left\|\left.u\left|\|^{2}-\lim _{\substack{u \in H^{\frac{1}{b}} \\
\|u u\| \rightarrow+\infty}} \frac{1}{2} \beta \int_{\Omega} u^{2}-\bar{b}\right| \Omega \right\rvert\,\right.\right. \\
& \geq \lim _{\substack{u \in H_{\vec{\perp}}^{\perp} \\
\|u\| \rightarrow+\infty}} \frac{1}{2}\left(1-\frac{r}{\lambda_{k+1}\left(\lambda_{k+1}-c\right)}-\frac{\beta}{\lambda_{k+1}\left(\lambda_{k+1}-c\right)}\right)\left|\left\|u\left|\|^{2}-\bar{b}\right| \Omega \mid\right.\right. \\
& \longrightarrow+\infty \text {, }
\end{aligned}
$$

since there exists $\bar{b} \in R$ such that $G_{r}(u)<\frac{1}{2} \beta u^{2}+\bar{b}$, and

$$
\beta<\frac{\lambda_{k+1}\left(\lambda_{k+1}-c\right)-\lambda_{k}\left(\lambda_{k}-c\right)}{2} .
$$

Now we will prove (4.3). Since $\lambda_{k+m}\left(\lambda_{k+m}-c\right)<g^{\prime}(0)<\lambda_{k+m+1}\left(\lambda_{k+m+1}\right.$ $-c)$ and $g^{\prime}(t) \leq \gamma<\lambda_{k+m+1}\left(\lambda_{k+m+1}-c\right)$, there exists $\lambda_{k+m}\left(\lambda_{k+m}-c\right)<$ $\bar{\gamma}<\lambda_{k+m+1}\left(\lambda_{k+m+1}-c\right)$ and $\bar{d} \geq 0$ such that $G(u)<\frac{\bar{\gamma}}{2} u^{2}+\bar{d}$. Thus

$$
\begin{aligned}
\inf _{\substack{u \in H_{k}^{\perp} \\
\|u\| \|<R}} I(u) & =\inf _{\substack{\left.u \in H \frac{\perp}{k} \\
\right\rvert\,\|u\|<R}}\left\{\frac{1}{2}\left|\|u \mid\|-\int_{\Omega} G(u)\right\}\right. \\
& >\inf _{\substack{\left.u \in H \frac{\perp}{k} \\
\right\rvert\,\|u\|<R}}\left\{\frac { 1 } { 2 } (1 - \frac { \overline { \gamma } } { \lambda _ { k + 1 } (\lambda _ { k + 1 } - c) }) \left|\left\|u\left|\|^{2}-\bar{d}\right| \Omega \mid\right\}\right.\right. \\
& >-\infty .
\end{aligned}
$$

Lemma 4.3. Under the same assumptions of Theorem 1.1, there exists $\rho_{k}>0$ such that

$$
\sup _{\substack{u \in H_{k} \\\| \| u \|=\rho_{k}}} I(u)<0 .
$$

Proof. Let $L_{\infty}: H \rightarrow H$ be the linear operator defined by

$$
\left(L_{\infty} u, v\right)=\left(\Delta^{2} u+c \Delta u\right) v-g^{\prime}(\infty) \int_{\Omega} u v d x
$$

where $\lambda_{i+1}\left(\lambda_{i+1}-c\right)<\lambda_{k}\left(\lambda_{k}-c\right)<g^{\prime}(\infty)<\lambda_{k+1}\left(\lambda_{k+1}-c\right), k>i+1$. Then L_{∞} is an isomorphism. The spaces H_{k}, and H_{k}^{\perp} are the negative
space of L_{∞} and the positive space of L_{∞} respectively, and

$$
H=H_{k} \oplus H_{k}^{\perp}
$$

Set $G_{\infty}(s)=G(s)-\frac{1}{2} g^{\prime}(\infty) s^{2}$. Then

$$
I(u)=\frac{1}{2}\left(L_{\infty} u, u\right)-\int_{\Omega} G_{\infty}(s) d x
$$

Thus, by Lemma 4.2, $\lim _{\substack{u \in H \\ u \rightarrow 0}} \frac{1}{\|u\|^{2}} \int_{\Omega} G_{\infty}(u) d x \geq 0$. Then

$$
\begin{aligned}
\lim _{\substack{u \in H_{k} \\
u \rightarrow 0}} \frac{I(u)}{\|u \mid\|^{2}} & <\lim _{\substack{u \in H_{k} \\
u \rightarrow 0}} \frac{1}{2\left|\|u \mid\|^{2}\right.}\left[\lambda_{k}\left(\lambda_{k}-c\right)-g^{\prime}(\infty)\right] \int_{\Omega} u^{2} \\
& -\lim _{\substack{u \in H_{k} \\
u \rightarrow 0}} \frac{1}{\|u \mid\|^{2}} \int_{\Omega} G_{\infty}(u) d x<0 .
\end{aligned}
$$

thus there exists $\rho_{k}>0$ such that

$$
\sup _{\substack{u \in H_{k} \\ \mid\|u\|=\rho_{k}}}<0 .
$$

Lemma 4.4. Under the same assumptions of Theorem 1.1,

$$
\inf _{\substack{z \in H, \frac{1}{k}, \sigma \geq 0 \\ \mid\left\|z-\sigma e_{1}\right\| \|=R_{k}}} I\left(z-\sigma e_{1}\right) \geq 0 .
$$

Proof. By Lemma 4.2, there exists $R_{k}>0$ such that

$$
\inf _{\substack{u \in H_{b}^{\perp} \\ \mid\|u\|=R_{k}}} I(u)>0
$$

To get our claim, it is enough to prove that

$$
\begin{equation*}
\lim _{\substack{z \in H_{k}^{\perp}, \sigma \geq 0,\left\|z-\sigma e_{1}\right\| \rightarrow+\infty}} I\left(z-\sigma e_{1}\right)=+\infty . \tag{4.4}
\end{equation*}
$$

To prove (4.4), we need to show that

$$
\begin{equation*}
\max _{\substack{z \in H \\ \text { IU } \\\|z\| \|=1}} \int z^{2}=\max _{\substack{z \in H \frac{1}{k}, \sigma \geq 0 \\ \mid\left\|z-\sigma e_{1}\right\| \|=1}} \int\left(z-\sigma e_{1}\right)^{2} . \tag{4.5}
\end{equation*}
$$

In fact, we have immediately $\max _{\substack{z \in H \\ \mid\|z\| \|=1}} \int z^{2} \leq \max _{\substack{z \in H \frac{1}{k}, \sigma \geq 0 \\ \mid\left\|z-\sigma e_{1} \backslash\right\|=1}} \int(z-$

If $\sigma>0$, then

$$
2 \int\left(z-\sigma e_{1}\right) v=\nu\left(z-\sigma e_{1}, v\right), \quad \forall v \in H_{1} \oplus H_{k}^{\perp}
$$

Taking $v=z-\sigma e_{1}$ we get $\nu=2 \int\left(z-\sigma e_{1}\right)^{2}$ and taking $v=e_{1}$ we also get
$0 \leq 2 \int\left(z-\sigma e_{1}\right) e_{1}=2 \int\left(z-\sigma e_{1}\right)^{2}\left(z-\sigma e_{1}, e_{1}\right)=-2 \sigma \int\left(z-\sigma e_{1}\right)^{2}<0$
which gives a contradiction. Then $z-\sigma e_{1}=z \in H_{k}^{\perp}$ and so

$$
\max _{\substack{z \in H_{k}^{亡} \\\left\|z-\sigma e_{1}\right\|=1}} \int\left(z-\sigma e_{1}\right)^{2}=\max _{\substack{z \in H \frac{1}{k} \\\|z\| \|=1}} \int z^{2} .
$$

Thus we proved (4.5). Now we prove (4.4). For some constant $\beta, b \geq 0$, we have $G_{\infty}(s) \geq \frac{1}{2} s^{2}+b$, where $G_{\infty}(s)=\int_{0}^{s} g_{\infty}(\sigma) d \sigma, g_{\infty}(s)=g(\bar{s})-$ $g^{\prime}(\infty) s$. For $z \in H_{k}^{\perp}$ and $\sigma \geq 0$, by (4.5) we get

$$
\begin{aligned}
& I\left(z-\sigma e_{1}\right) \\
\geq & \frac{1}{2}\left|\left\|\left.z-\sigma e_{1}\left|\|^{2}-\frac{1}{2} g^{\prime}(\infty) \int_{\Omega}\left(z-\sigma e_{1}\right)^{2}-\frac{1}{2} \beta \int_{\Omega}\left(z-\sigma e_{1}\right)^{2}-b\right| \Omega \right\rvert\,\right.\right. \\
= & \frac{1}{2}\left|\left\|\left.z-\sigma e_{1}\left|\|^{2}\left(1-g^{\prime}(\infty) \int \frac{\left(z-\sigma e_{1}\right)^{2}}{\left|\left\|z-\sigma e_{1} \mid\right\|^{2}\right.}-\beta \int \frac{\left(z-\sigma e_{1}\right)^{2}}{\left|\left\|z-\sigma e_{1} \mid\right\|^{2}\right.}\right)-b\right| \Omega \right\rvert\,\right.\right. \\
\geq & \frac{1}{2}\left|\left\|\left.z-\sigma e_{1}\left|\|^{2}\left(1-\left(g^{\prime}(\infty)+\beta\right) \max _{z \in H_{k}^{\stackrel{\rightharpoonup}{k}}, \sigma \geq 0} \int \frac{\left(z-\sigma e_{1}\right)^{2}}{\left|\left\|z-\sigma e_{1} \mid\right\|^{2}\right.}\right)-b\right| \Omega \right\rvert\,\right.\right. \\
\geq & \frac{1}{2}\left|\left\|\left.z-\sigma e_{1}\left|\|^{2}\left(1-\left(g^{\prime}(\infty)+\beta\right) \max _{\substack{z \in H \frac{1}{b} \\
\| \| z=1 \|}} \int z^{2}\right)-b\right| \Omega \right\rvert\, \longrightarrow \infty\right.\right.
\end{aligned}
$$

as $\left|\left|z-\sigma e_{1}\right| \| \rightarrow+\infty\right.$. Thus we proved the lemma.
From Lemma 4.3 and Lemma 4.4 we have
Lemma 4.5. Under the same assumptions of Theorem 1.1, there exists $\rho_{k}>0$ such that

$$
\sup _{\substack{u \in H_{k} \\\|u\| \|=\rho_{k}}} I(u) \leq \inf _{z \in \Sigma\left(-e_{1}, H_{k}^{\perp}\right)} I\left(z-\sigma e_{1}\right),
$$

where $\Sigma\left(-e_{1}, H_{k}^{\perp}\right)=\left\{z \in H_{k}^{\perp}\left|\|z \mid\| \leq R_{k}\right\} \cup\left\{z-\sigma e_{1} \mid z \in H_{k}^{\perp}, \sigma \geq\right.\right.$ $\left.0, \mid\left\|z-\sigma e_{1}\right\| \|=R_{k}\right\}$, with $R_{k}>\rho_{k}$.

Lemma 4.6. Let $G_{0}: R \rightarrow R$ be a continuous function such that

$$
\inf _{s \in R} \frac{G_{0}(s)}{1+s^{2}}>-\infty, \quad \lim _{s \rightarrow 0} \frac{G_{0}(s)}{s^{2}} \geq 0
$$

Then

$$
\lim _{\substack{u \rightarrow 0 \\ u \in H}} \frac{1}{\left|\|u \mid\|^{2}\right.} \int_{\Omega} G_{0}(u) d x \geq 0
$$

Proof.

$$
h(s)= \begin{cases}\left(\frac{G_{o}(s)}{s^{2}}\right)^{-} & \text {if } s \neq 0 \\ 0 & \text { if } s=0\end{cases}
$$

Then $h: R \rightarrow R$ is bounded, continuous, with $h(0)=0$ and $G_{0}(s) \geq$ $-h(s) s^{2}$. If $\left(u_{n}\right)$ is a sequence in H with $u_{n} \rightarrow 0$, then up to a subsequence, $u_{n} \rightarrow 0$ a.e., and $v_{n}=\frac{u_{n}}{\| \| u_{n}\| \|}$ is strongly convergent in $L^{2}(\Omega)$. Since

$$
\frac{1}{\left\|u_{n} \mid\right\|^{2}} \int_{\Omega} G_{0}\left(u_{n}\right) d x \geq-\int_{\Omega} h\left(u_{n}\right) v_{n}^{2} d x
$$

the claim follows.
Lemma 4.7. Under the same assumptions of Theorem 1.1, there exists $\rho_{k+m}>0$ such that

$$
\sup _{\substack{u \in H_{k+m} \\\|u\| \|=\rho_{k+m}}} I(u)<\inf _{z \in \Sigma\left(e_{k+m}, H_{k+m}^{\perp}\right)} I(z),
$$

where $\Sigma\left(e_{k+m}, H_{k+m}^{\perp}\right)=\left\{w \in H_{k+m}^{\perp}|\| \| w| \| \leq R_{k+m}\right\} \cup\left\{w+\sigma e_{k+m} \mid w \in\right.$ $H_{k+m}^{\perp}, \sigma \geq 0,\left|\left\|w+\sigma e_{k+m} \mid\right\|=R_{k+m}\right\}$ with $R_{k+m}>\rho_{k+m}$.

Proof.

$$
\begin{equation*}
\sup _{\substack{u \in H_{k+m} \\\| \|\| \|=\rho_{k+m}, \rho \rightarrow 0}} I(u)<0 . \tag{4.4}
\end{equation*}
$$

From the assumptions of Theorem 1.1, $\lambda_{k+m}\left(\lambda_{k+m}-c\right)<g^{\prime}(0)<$ $\lambda_{k+m+1}\left(\lambda_{k+m+1}-c\right), m \geq 1$. Let $L_{0}: H \rightarrow H$ be the linear operator defined by

$$
\left(L_{0} u, v\right)=\left(\Delta^{2} u+c \Delta u\right) v-g^{\prime}(0) \int_{\Omega} u v d x
$$

Then L_{0} is an isomorphism. The space H_{k+m}, H_{k+m}^{\perp} are the negative space of L_{0} and the positive space of L_{0}, respectively, and

$$
H=H_{k+m} \oplus H_{k+m}^{\perp}
$$

Set $G_{0}(s)=G(s)-\frac{1}{2} g^{\prime}(0) s^{2}$. Then

$$
I(u)=\frac{1}{2}\left(L_{0} u, u\right)-\int_{\Omega} G_{0}(u) d x
$$

Note that $\inf \frac{G_{0}(s)}{1+s^{2}}>-\infty, \lim _{s \rightarrow 0} \frac{G_{0}(s)}{s^{2}} \geq 0$. Thus by Lemma 4.1, $\lim _{\substack{u \rightarrow 0 \\ u \in H}} \frac{1}{\|u\|^{2}} \int_{\Omega} G_{0}(u) d x \geq 0$. Then

$$
\begin{aligned}
\lim _{\substack{u \rightarrow 0 \\
u \in H_{k+m}}} \frac{I(u)}{\left|\|u \mid\|^{2}\right.} & <\lim _{\substack{u \rightarrow 0 \\
u \in H_{k+m}}} \frac{1}{2\left|\|u \mid\|^{2}\right.}\left[\lambda_{k+m}\left(\lambda_{k+m}-c\right)-g^{\prime}(0)\right] \int_{\Omega} u^{2} \\
& -\lim _{\substack{u \rightarrow 0 \\
u \in H_{k+m}}} \frac{1}{\left|\|u \mid\|^{2}\right.} \int_{\Omega} G_{0}(u) d x<0 .
\end{aligned}
$$

Thus there exists $\rho_{k+m}>0$ such that $\sup \underset{\substack{u \in H_{k+m} \\ \mid\|u\| \|=\rho_{k+m}, \rho \rightarrow 0}}{ } I(u)<0$. By Lemma 4.2, inf $\underset{\substack{u \in H_{k} \\ \mid\|u\|=R_{k}}}{\perp} I(u)>0$. Thus we have

$$
\sup _{\substack{u \in H_{k+m} \\ \mid\|u\|=\rho_{k+m}, \rho_{k+m} \rightarrow 0}} I(u)<\inf _{\substack{u \in H \frac{1}{k} \\\|u\| \|=R_{k}}} I(u)
$$

with $R_{k}>\rho_{k+m}$. In other words, there exists

$$
e_{k+m} \in \operatorname{Span}\left\{\phi_{k+1}, \ldots, \phi_{k+m}\right\}
$$

such that

$$
\sup _{\substack{u \in H_{k+m} \\\left|\|u \mid\|=\rho_{k+m}, \rho_{k+m} \rightarrow 0\right.}} I(u)<\underset{\substack{u \in H_{k+m}^{\perp} \oplus e_{k+m} \\ e_{k+m} \in \operatorname{Span}\left\{\phi_{k+1}, \ldots, \phi_{k+n}\right\},\left|\|u \mid\|=R_{k+m}\right.}}{ } I(u) .
$$

PROOF OF THEOREM 1.1. AND THEOREM 1.2.

By Lemma 4.5, there exists $\rho_{k}>0$ such that

$$
\sup _{\substack{u \in H_{k} \\\| \| u \|=\rho_{k}}} I(u) \leq \inf _{z \in \Sigma\left(-e_{1}, H_{k}^{\perp}\right)} I\left(z-\sigma e_{1}\right)
$$

where $\Sigma\left(-e_{1}, H_{k}^{\perp}\right)=\left\{z \in H_{k}^{\perp}\| \| z \mid \| \leq R_{k}\right\} \cup\left\{z-\sigma e_{1} \mid z \in H_{k}^{\perp}, \sigma \geq\right.$ $0,\left|\left|z-\sigma e_{1}\right| \|=R_{k}\right\}$, with $R_{k}>\rho_{k}$. By Lemma 4.7, there exists $\rho_{k+m}>$ 0 such that

$$
\sup _{\substack{u \in H_{k+m} \\\|u\| \|=\rho_{k+m}}} I(u)<\inf _{z \in \Sigma\left(e_{k+m}, H_{k+m}^{\perp}\right)} I(z),
$$

where $\Sigma\left(e_{k+m}, H_{k+m}^{\perp}\right)=\left\{w \in H_{k+m}^{\perp}|\| \| w| \| \leq R_{k+m}\right\} \cup\left\{w+\sigma e_{k+m} \mid w \in\right.$ $H_{k+m}^{\perp}, \sigma \geq 0,\left|\left\|w+\sigma e_{k+m} \mid\right\|=R_{k+m}\right\}$ with $R_{k+m}>\rho_{k+m}$ and $R_{k}>$
R_{k+m}. Thus by linking scale theorem 2.1., (1.1) has at least three solutions.

References

[1] H. Amann, A note on the degree theory for gradient mappings. Proc. AMS 85 (1982), 591-595.
[2] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory, J. Funct. Analysis 14 (1973), 343-381.
[3] K. C. Chang, Infinite dimensional Morse theory and multiple solution problems, Birkhäuser, (1993).
[4] R. Chiappinelli and D. G. De Figueiredo, Bifurcation from infinity and multiple solutions for an elliptic system, Differential Integral Equations 6 (1993), 757771.
[5] Q. H. Choi and T. Jung, An application of a variational linking theorem to a nonlinear biharmonic equation, Nonlinear Analysis, TMA. 2001, in press.
[6] Q. H. Choi and T. Jung, Multiplicity of solutions and source terms in a fourth order nonlinear elliptic equation, Acta Mathematica Scientia 19(4) (1999), 361374.
[7] Q. H. Choi and T. Jung, Multiplicity results on a fourth order nonlinear elliptic equation, Rocky Mountain J. Math. 29(1) (1999), 141-164.
[8] A. C. Lazer and P. J. McKenna, Large amplitude periodic oscillations in suspension bridge: some new connections with nonlinear analysis, SIAM Review 32 (1990), 537-578.
[9] A. Marino and C. Saccon, Some variational theorems of mixed type and elliptic problem with jumping nonlinearities, Annali S.N.S. XXV, (1997), 631-665.
[10] P. J. McKenna and W. Walter, Travelling waves in a suspension bridge, SIAM J. Appl. Math. 50 (1990), 703-715.
[11] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS. Regional conf. Ser. Math. 65 Amer. Math. Soc., Providence, Rhode Island (1986).
[12] J. T. Schwartz, Nonlinear functional analysis, Gordon and Breach, New York, 1969.
[13] G. Tarantello, A note on a semilinear elliptic problem, Differential and Integral Equations, 5 (1992), 561-566.

Department of Mathematics
Kunsan National University
Kunsan 573-701, Republic of Korea
E-mail: tsjung@kunsan.ac.kr
**
Department of Mathematics
Inha University
Incheon 402-751, Republic of Korea
E-mail: qheung@inha.ac.kr

[^0]: Received Feburuary 9, 2007.
 2000 Mathematics Subject Classification: Primary 34C15, 34C25, 35Q72.
 Key words and phrases: Dirichlet condition, biharmonic equation, linking theorem.

