• Title/Summary/Keyword: basic hypergeometric series

Search Result 23, Processing Time 0.03 seconds

CERTAIN NEW WP-BAILEY PAIRS AND BASIC HYPERGEOMETRIC SERIES IDENTITIES

  • Ali, S. Ahmad;Rizvi, Sayyad Nadeem Hasan
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.885-898
    • /
    • 2017
  • The Bailey lemma has been a powerful tool in the discovery of identities of Rogers-Ramanujan type and also ordinary and basic hyper-geometric series identities. The mechanism of Bailey lemma has also led to the concepts of Bailey pair and Bailey chain. In the present work certain new WP-Bailey pairs have been established. We also have deduced a number of basic hypergeometric series identities as an application of new WP-Bailey pairs.

RECURSION FORMULAS FOR q-HYPERGEOMETRIC AND q-APPELL SERIES

  • Sahai, Vivek;Verma, Ashish
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.207-236
    • /
    • 2018
  • We obtain recursion formulas for q-hypergeometric and q-Appell series. We also find recursion formulas for the general double q-hypergeometric series. It is shown that these recursion relations can be expressed in terms of q-derivatives of the respective q-hypergeometric series.

THREE-TERM CONTIGUOUS FUNCTIONAL RELATIONS FOR BASIC HYPERGEOMETRIC SERIES 2φ1

  • KIM, YONG-SUP;RATHIE ARJUN K.;CHOI, JUNE-SANG
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.395-403
    • /
    • 2005
  • The authors aim mainly at giving fifteen three-term contiguous relations for the basic hypergeometric series $series\;_2{\phi}_1$ corresponding to Gauss's contiguous relations for the hypergeometric series $series\;_2F_1$ given in Rainville([6], p.71). They also apply them to obtain two summation formulas closely related to a known q-analogue of Kummer's theorem.

A POWER SERIES ASSOCIATED WITH THE GENERALIZED HYPERGEOMETRIC FUNCTIONS WITH THE UNIT ARGUMENT WHICH ARE INVOLVED IN BELL POLYNOMIALS

  • Choi, Junesang;Qureshi, Mohd Idris;Majid, Javid;Ara, Jahan
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.169-187
    • /
    • 2022
  • There have been provided a surprisingly large number of summation formulae for generalized hypergeometric functions and series incorporating a variety of elementary and special functions in their various combinations. In this paper, we aim to consider certain generalized hypergeometric function 3F2 with particular arguments, through which a number of summation formulas for p+1Fp(1) are provided. We then establish a power series whose coefficients are involved in generalized hypergeometric functions with unit argument. Also, we demonstrate that the generalized hypergeometric functions with unit argument mentioned before may be expressed in terms of Bell polynomials. Further, we explore several special instances of our primary identities, among numerous others, and raise a problem that naturally emerges throughout the course of this investigation.

ON THE BERGMAN KERNEL FOR SOME HARTOGS DOMAINS

  • Park, Jong-Do
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.521-533
    • /
    • 2020
  • In this paper, we compute the Bergman kernel for Ωp,q,r = {(z, z', w) ∈ ℂ2 × Δ : |z|2p < (1 - |z'|2q)(1 - |w|2)r}, where p, q, r > 0 in terms of multivariable hypergeometric series. As a consequence, we obtain the behavior of KΩp,q,r (z, 0, 0; z, 0, 0) when (z, 0, 0) approaches to the boundary of Ωp,q,r.

Confluent Hypergeometric Distribution and Its Applications on Certain Classes of Univalent Functions of Conic Regions

  • Porwal, Saurabh
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.3
    • /
    • pp.495-505
    • /
    • 2018
  • The purpose of the present paper is to investigate Confluent hypergeometric distribution. We obtain some basic properties of this distribution. It is worthy to note that the Poisson distribution is a particular case of this distribution. Finally, we give a nice application of this distribution on certain classes of univalent functions of the conic regions.

A TYPE OF FRACTIONAL KINETIC EQUATIONS ASSOCIATED WITH THE (p, q)-EXTENDED 𝜏-HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Khan, Owais;Khan, Nabiullah;Choi, Junesang;Nisar, Kottakkaran Sooppy
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.381-392
    • /
    • 2021
  • During the last several decades, a great variety of fractional kinetic equations involving diverse special functions have been broadly and usefully employed in describing and solving several important problems of physics and astrophysics. In this paper, we aim to find solutions of a type of fractional kinetic equations associated with the (p, q)-extended 𝜏 -hypergeometric function and the (p, q)-extended 𝜏 -confluent hypergeometric function, by mainly using the Laplace transform. It is noted that the main employed techniques for this chosen type of fractional kinetic equations are Laplace transform, Sumudu transform, Laplace and Sumudu transforms, Laplace and Fourier transforms, P𝛘-transform, and an alternative method.